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Abstract The COVID-19 outbreak in 2020 resulted in rapidly rising infection rates with high associated
mortality rates. In response, several epidemiological studies aimed to define ways in which the spread and
severity of COVID-19 can be curbed. As a result, there is a steady increase in the evidence linking greenspaces
and COVID-19 impact. However, the evidence of the benefits of greenspaces or greenness to human wellbeing
in the context of COVID-19 is fragmented and sometimes contradictory. This calls for a meta-analysis of
existing studies to clarify the matter. Here, we identified 621 studies across the world on the matter, which were
then filtered down to 13 relevant studies for meta-analysis, covering Africa, Asia, Europe, and the USA. These
studies were meta-analyzed, with the impacts of greenness on COVID-19 infection rate quantified using
regression estimates whereas impacts on mortality rates were measured using mortality rate ratios. We found
evidence of significant negative correlations between greenness and both COVID-19 infection and mortality
rates. We further found that the impacts on COVID-19 infection and related mortality are moderated by year of
publication, greenness metrics, sample size, health and political covariates. This clarification has far-reaching
implications for policy development toward the establishment and management of green infrastructure for the
benefit of human wellbeing.

Plain Language Summary The research on whether greenspaces help people's health during
COVID-19 is unclear and sometimes has conflicting results. To address this, we conducted a detailed study of
this body of knowledge. First, we found 621 studies from around the world and narrowed them down to 13 that
fit our research questions, from places like Africa, Asia, Europe, and the USA. We then consolidated the results
of these studies to see how greenspaces affected the number of COVID-19 cases and deaths. Our analysis
showed that more greenspaces are linked to fewer COVID-19 cases and deaths. We also found that other factors
such as when the study was conducted, how they measured greenness, and other health and political factors have
a strong impact on the results of each study. These findings are important because they can help guide policies
on creating and taking care of greenspaces to improve people's health.

1. Introduction

The global human population is changing rapidly following an exponential growth path, putting tremendous
pressures on natural resources. Currently, it is approximately 7.9 billion people (UN DESA, 2021) and is pre-
dicted to reach above 9 billion by 2050 and 11 billion by 2100 (Bongaarts, 2016). In response, nature fights back
in various ways to bring down global population to a sustainable level. One of these ways is through global
pandemics, for example, COVID-19 pandemic.

Indeed, the world has been witnessing the COVID-19 pandemic since 2020, with over half a million infection
cases and over 20,000 deaths reported at the start of the pandemic (WHO, 2020). In 2022, these figures grew
tremendously, reaching over 600 million cumulative cases with over 6 million cumulative deaths
(WHO, 2022). Since humans have been using plants to treat various diseases over centuries, various studies,
using different metrics of greenness (the total amount of vegetation in an area), were conducted across the
globe to investigate whether greenspaces or greenness may act as buffer infrastructure against the spread of
COVID-19 infection rates and severity. We use interchangeably “greenness” or “greenspaces” in the present
study to mean the total plant diversity or vegetation in a given delimited area. These plants altogether may
form a natural or man-made habitat which may be used by humans for various purposes, including recreative
activities as well as passive (meditation) or active (physical) exercises (Huang et al., 2021; Pan et al., 2021;
Zhang et al., 2017).
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However, the findings reported in these studies are mixed (Spotswood et al., 2021; Yang et al., 2022; Zhai
etal., 2022). For example, Spotswood et al. (2021) found that a 0.1 increase in Normalized Difference Vegetation
Index (NDVI) corresponds to a 4.1% reduction in the COVID-19 incidence rate ratio in the USA. A similar pattern
was observed using street-level indicators of greenness (Nguyen et al., 2020). The mitigating effects of greenness
have also been reported elsewhere: in China and India, an increase in greenness shows a significant negative
correlation with the spread of COVID-19 infections and mortalities (Peng et al., 2022; Sikarwar et al., 2023).
These negative effects may be interpreted as follows: activities of the Natural Killer cells in the human body are
boosted with frequent exposure to vegetation (Q. Li, 2010; WHO, 2020)—NK cells, as part of the immune
system, attack to eliminate virus-infected cells in human body (Vivier et al., 2008). Also, by safeguarding against
air pollution, vegetation, thus greenspaces, contributes to lower health risks that may aggravate the severity of
COVID-19 infection (Q. X. Chen et al., 2020; Lin et al., 2019). Additionally, greenspaces often provide spacious
environments for physical exercises, recreation, and social events with reduced chances of person-to-person
contact (Huang et al., 2021; Pan et al., 2021). As opposed to these negative correlations between greenness
and COVID-19 infection rates, reports of positive correlations are also documented. For example, Pan
et al. (2021) found that urban greenspaces were associated with an increase in the spread of COVID-19 infections
(see also Huang et al., 2021).

These mixed findings could be linked to the differences in how COVID-19 severity was measured, for example,
as hospitalization rates, mortality rates, admission rates to intensive care unit (ICU), etc. Additional sources of
differences in findings may be linked to differences in sample sizes, types and number of covariates analyzed, and
choices of statistical tests (Labib et al., 2020; Zhang & Tan, 2019). Furthermore, the mixed findings may also be
related to differences in how greenness was measured in different studies. Indeed, greenness was variously
measured as street trees, botanical gardens, natural forests and grasslands, and residential gardens or as amount of
greenness captured in NDVI or EVI (Enhanced Vegetation Index) or as quality of greenspaces (K. Chen
et al., 2023; Huang et al., 2021; Jiang et al., 2022; Nguyen et al., 2020; Spotswood et al., 2021). For example,
Huang et al. (2021) measured greenness as “green space density” which is the proportion of specific vegetation
types in a given spatial unit which they correlated with COVID-19 infection risk measured as “venue density”
(number of buildings visited by confirmed COVID-19 positive cases). Since greenspaces are attraction sites, they
may have attracted an increasing number of visitors, thus increasing the infection risks, and leading to a positive
correlation between greenness and infection rates (Huang et al., 2021). Finally, the mixed findings may also be
linked to the use of various confounding factors in the model of COVID-19 infection and mortality rates. These
factors may be age (Bajaj et al., 2021), ethnicity (Mathur et al., 2021), and poverty levels (Hussey et al., 2021),
among others.

The emergence of conflicting findings presents a challenge with regard to the generalization of the benefits of
greenness or vegetation to human wellbeing in the context of the COVID-19 pandemic. In such context, a meta-
analysis of existing evidence is an opportunity to integrate all reported effects of greenness on COVID-19
infection rates and severity to investigate whether generalization is possible. Scientifically rigorous methodol-
ogies are increasingly adopted in various studies to improve the validity of findings and lower between-study
heterogeneity. These include the use of larger sample sizes, the use of multiple predictors, choices of relevant
statistical tests and covariates, and use of fine spatial scales (Hussey et al., 2021; H. Liet al., 2022; Lin et al., 2023;
Lu et al., 2021). Regardless of these advances, consolidation of measured effect sizes and determination of
between-study heterogeneity is still needed. To date, several studies have investigated the relationships between
the provision and quantity of greenness and its effects on the spread and severity of COVID-19 (K. Chen
et al., 2023; Sikarwar et al., 2023; Spotswood et al., 2021; Yang et al., 2022). However, in the context of
conflictual findings reported, a meta-analysis imposes itself or becomes an obligation if we are to clarify how
greenness or greenspaces could be of values to human in the context of COVID-19 pandemic. In the present study,
our main objective is to provide such clarifications.

2. Materials and Methods
2.1. Ethics Statement

There was no need for any ethics application since this is a meta-analysis.
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Figure 1. The PRISMA flow diagram for literature search and screening.

2.2. Study Selection

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRIMSA) guidelines (Page
et al., 2021; Figure 1) were followed to search for literature that focuses on green infrastructure and its impact on
COVID-19. All search results were reviewed for relevance based on their title and abstract to be considered for
meta-analysis; Figure 1. Furthermore, reference lists of all included articles were reviewed to identify studies that

meet the inclusion criteria.

2.3. Search Strategy

Three databases and data search platforms were identified for this study: PubMed, Scopus, and Google Scholar.
These platforms were selected based on the global, multidisciplinary research that they host and the ability to
apply advanced literature search. Literature search was limited to PubMed, Scopus, and Google Scholar. The
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following search string was used to search for literature on 17 April 2023: (“Greenspace” or “green space” or
“greenery” or “‘greenness” or “vegetation” or “trees” or “forest” or “grass” or “grassland”) and (“COVID-19” or
“SARS-CoV-2” or “coronavirus” or “COVID”). We did not apply any restrictions on the publication date in the
search.

2.4. Eligibility Criteria

Inclusion criteria for this study were as follows: (a) original research that investigates the effects of green spaces
on COVID-19 infections and related mortalities; (b) full-text is available; (c) publication is in English; (d)
required statistical parameters for meta-analysis are reported in the main article or Supporting Information S1
(i.e., regression estimates for predicting COVID-19 infections, and mortality rate ratios (MRR) for predicting
COVID-19 mortalities). Exclusion criteria were review or commentary articles, articles without required pa-
rameters, and articles not in English (see Figure 1).

2.5. Data Extraction and Analysis

A predetermined template was used to collect study characteristics which are surname of first author, year of
publication, country of study, measure of green infrastructure, temporal extent of study, sample size, measure of
COVID-19, effect type, effect size, standard error or confidence interval (CI), and list of covariates. All data
analyzed in this study are available as Supporting Information S1.

All analyses were conducted in R version 4.2.3 (R Core Team, 2021; see R script in https://doi.org/10.6084/m9.
figshare.26855890.v1). Two separate meta-analyses were conducted, focusing on the impacts of greenness on
COVID-19 infections (meta-analysis 1) and COVID-19 mortalities (meta-analysis 2). Regression estimates were
used as pre-calculated effect type when analyzing COVID-19 infections, and MRR were used as pre-calculated
effect type when analyzing COVID-19 mortalities. Subsequently, subgroup analyses were applied to the same
data to test the effects of predictor variables, sample size, and selection of covariates. Random models were
selected in each analysis using the metagen function found in the “Metafor” R library (Viechtbauer, 2010).

Outcomes are reported as pooled regression estimates for COVID-19 infections and as pooled MRR for COVID-
19 deaths. Furthermore, in each case, a 95% CI, t-value, and p-values are reported with p < 0.005 considered as an
indicator of statistical significance. Between-studies heterogeneity was quantified using Higgins and Thompson's
I? statistic (Higgins & Thompson, 2002) with the /* value of less than 25%, 50%, and 75% indicating low,
moderate, or high heterogeneity, respectively. Heterogeneity variance and prediction interval were also reported
to measure the extent of between-study heterogeneity. Publication bias was tested using the Funnel approach
(Sterne & Egger, 2001) and the Orwin's fail-safe number (Orwin, 1983).

3. Results
3.1. Characteristics of Studies Included in the Meta-Analysis

A total of 621 studies across the world (Figure 2a) were identified through the search of Scopus, PubMed, and
Google Scholar platforms. After removing irrelevant and duplicate studies, 25 studies remained, covering Africa,
Asia, Europe, and the USA (Figure 2b). A review of the 25 full-text articles resulted in the removal of 12 studies
that were either review/commentary in nature or did not report the statistical parameters required for a meta-
analysis.

The characteristics of all valid studies are summarized in Table 1. Nine studies that tested the relationships
between greenness and COVID-19 infections and four studies that investigated the relationships between
greenness and COVID-19 mortality rates were included in the final synthesis. Most of the studies (nine out of 13)
were conducted in the United States of America (USA) whereas China, England, India, and South Africa each had
one study (Figure 2b). A total of 7 out of 13 studies used more than one predictor of COVID-19 impact in each
study with NDVI and abundance of greenness (greenness provision) as the mostly used measures of greenness
(Figure 3a). Because multiple predictors are used in a single study, a total of 45 different correlations between
infection rates and greenness were tested in all 13 studies, whereas 14 correlations between mortality rates and
greenness were modeled in four studies of COVID-19, implying that statistical parameters of 59 different cor-
relations were included in our meta-analysis. We classified covariates into five broad groups: climatic, de-
mographic, economic, health, and political. All 13 studies considered at least one demographic covariate in their
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Figure 2. (a) Geographical distribution of the 621 studies that were retrieved during the literature search. (b) The geographical
distribution of the 25 studies that focus on the link between green spaces and COVID-19 impact (N.B: the 25 studies are
inclusive of studies that may not fit the inclusion criteria of the meta-analysis).

analyses, and only four studies included climatic, demographic, economic, health, and political covariates
(Figure 3b).

3.2. Greenness and COVID-19 Infections

We found a statistically significant negative effect of greenness on COVID-19 infections (f = —0.08, 95% CI:
—0.1396 to —0.0252; r = —2.90; p = 0.006) with a prediction interval of [-0.3601 to 0.1954] (95% CI) (Figure 4).
Between-study heterogeneity variance was estimated at 7° = 0.0184 (95% CI: 0.0185 to —0.0813), with an I
value of 94.1% (95% CI: 92.9%-95.1%). Subgroup analyses revealed that between-study heterogeneity can be
attributed to year of publication (X* = 8.24; p = 0.02), choice of predictors (X* = 129.68; p < 0.01), and use of
political covariates (X> = 8.27; p < 0.01) (see Table 2 and Figures S1-S6 in Supporting Information S1).
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Table 1

Characteristics of All Studies Included in the Present Meta-Analysis

Study
(1st author, year)

Country

Measure of green
infrastructure

Temporal
extent

Sample size

Measure of
COVID-19 impact

Covariates

Grigsby-Toussaint
and Shin (2022)

Jiang et al. (2022)

Johnson et al. (2021)

Klompmaker
et al. (2021)

Lin et al. (2023)

United States of
America

United States of
America

England

United States of
America

United States of
America

Normalized Difference
Vegetation Index
Tree Canopy

Open space inside park
Open space outside
park

Forest inside park
Forest outside park
Shrub and scrub
Herbaceous

Hay and pasture

Median frequency of
parks within a 1 km?
radius around
households

Available green space
per person (m?) within
the local authority
Mean values of

Normalized Difference
Vegetation Index

Population-density-

weighted NDVI

1 October
2020

22 January—
31 December
2020

1 March
2020-30
November
2020

1 April
2020-31
May 2020

April 2021

3,108

3,108

299

3,089

3,040

Positive cases per
1,000 people

Infection rate

Infection rate

COVID-19 death
rate (per
100,000)

Count of COVID-
19 infections

e Rural population; Total popu-
lation; Socioeconomic status;
Household composition and
disability; Minority status and
language; Housing and trans-
portation; Particulate matter
(PM, 5); Precipitation; Temper-
ature; Wind speed

e Socioeconomic and de-
mographic factors; Healthcare
and testing factors; Pre-existing
chronic disease factors; Politics
and policy factors; Behavioral
factors; Environmental Factors

e Lag case rate; Population den-
sity; Population clustering;
Mobility; Case average; Base-
line health; Percentage over 70;
Percentage unemployed

o Population density; % poverty;
% owner occupied housing; %
less than high school education;
% black; % Hispanic; % 65+
years of age; % 45-64 years of
age; %14-44 years of age; Me-
dian home value; Median
household income; % obese; %
current smokers; Days since
stay-at-home order; Days since
non-essential businesses
closure; Days since nursing
homes visitor ban; Days since
first case; Rate of hospital beds;
Rate of tests; Average summer
temperature; Average winter
temperature; Average summer
relative humidity; Average
winter relative humidity; PM, s;
Urban counties; Counties with
issuance of stay-at-home order;
Counties with 10< cases

e Particulate matter (PM, s);
Temperature; % unemploy-
ment; % poverty; GINI; % not
proficient in English; % bach-
elor; % females; % white; % 60
and older; % below 18; % rent;
Average household size; % se-
vere housing problems; % chil-
dren in single-parent
households; % limited access to
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Table 1
Continued
Study Measure of green Temporal Measure of
(1st author, year) Country infrastructure extent Sample size COVID-19 impact Covariates
healthy food; Social
associations; % adult obesity; %
adult diabetes; % physical
inactivity; %excessive drinking
Lu et al. (2021) United States of e Developed open space 10 July 2020 135 Number of e Population density; Female
America e Forest COVID-19 population ratio; Different in
e Shrub and scrub cases per black-white population;
e Grassland and 100,000 Different in black-white adult
herbaceous people population; Household size;
o Pasture and hay Households with broadband;
e Cultivated crops Median household income;
* Woody wetlands Healthcare receipts; Number of
e Emergent herbaceous firms; coronary heart disease;
wetlands death rate; Heart failure death
rate; Diagnosed diabetes rate
Peng et al. (2022) China e Mean value of Normal- 1 January 266 Number of ¢ Population density; Older peo-
ized Difference Vege- 2020-29 COVID-19 ple %; Gender ratio; Education
tation Index February cases per years; Urbanization rate; GDP
2020 100,000 per capita; Hospital beds;
people Number of doctors; Govern-
ment Response Index; Intra-city
movement intensity; PM, s;
NO,; CO; Temperature;
Relative humidity
Phogole and South Africa e Mean value of 4 June 2022 4,429 Count number of ¢ Aged 65 years or older; Surface
Yessoufou Enhanced Vegetation 226 COVID-19 area; Revenue per capita
(2023) Index cases per total
e Forest population in a
o Grassland unit area
Russette et al. (2021) United states of South e [ eaf area index 21 January 3,049 Count number of e Total population; Over 60%; No
Africa 2020-29 July COVID-19 high school diploma or equiva-
2020 deaths lent; Medical aid; Over-
crowding; Black %; Native
American %; Physical inactivity
Sikarwar India e Normalized Difference 1 May 2020 640 Count number of ¢ PM, ,; Temperature and rain-
et al. (2023) Vegetation Index COVID-19 fall; Total population; Popula-
deaths tion density; Proportion of older
adults and their sex ratio; Rural
population; Household crowd-
ing; Material deprivation
Spotswood United States of o Normalized Difference 1-30 2,652 Number of e Proportion of non-white people;
etal. (2021) America Vegetative Index September COVID-19 Income; Age; Population
o Park proximity 2020 cases per density; Days since first case
100,000
people
Yang et al. (2022) United States of e Forest inside park 22 January 3,025 Number of e Population density; Black non-
America o Forest outside park 2020-31 COVID-19 Hispanic; Population aged 65+;
e Grassland/Herbaceous December deaths per Gini index of income
o Pasture/hay 2020 100,000 inequality; Median home value;

L]

Open space inside park
Open space outside
park

Unemployment rate; Without
high school diploma; Popula-
tion without insurance; SARS-
CoV-2 testing rate; Diabetes;
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Table 1
Continued

Study
(1st author, year)

Country

Measure of green
infrastructure

Temporal

extent Sample size

Measure of
COVID-19 impact

Covariates

Zhai et al. (2022)

United States of
America

27 February
2020-27
May 2020

o Urban green spaces 3,108

visitation

Effective COVID-
19
reproduction
number

Obesity; Stroke; Hypertension;
Heart stroke; Smoker; Essential
worker; Places of interest visits;
Commute by walking; Physical
inactivity; Mobility; Mobility
index; Stay-at-hope orders;
Public mask mandate; Bars
closed and reopened;
Restaurant closed and
reopened; Crowded housing;
Proximity to highway; Airport
density; Railway density; Road
density; PM, 5; PM,; NO,;
Maximum temperature;
Humidity; Wind speed

Age; Proportion of blacks;
Poverty rate; Population den-
sity; Essential occupation rate;
Trump share; Healthcare
workers

3.3. Greenness and COVID-19 Mortalities

We found that an increase in greenness was strongly linked to a lower mortality rate ratio (MRR = 0.9272; 95%
CI: 0.8788-0.9783; t = —3.05; p = 0.009) with a prediction interval of [0.7683-1.1189] (95% CI) (Figure 5).
Furthermore, an estimated 0.0069 between-study heterogeneity variance (95% CI: 0.0032-0.0228) was observed

Figure 3. The illustration of the diversity of the use of (a) COVID-19 predictors and (b) covariates in the 13 studies that were included in the synthesis.
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Study [ SE Weight IV, Random, 95% CI IV, Random, 95% CI

Grigsby_toussaint 0.3100 0.2400 0.7% 0.31[-0.16; 0.78]
Grigsby_toussaint 0.4600 0.2100 0.9% 0.46[0.05; 0.87]
Grigsby_toussaint 0.0300 0.3200 0.5% 0.03 [-0.60; 0.66]
Grigsby_toussaint —0.4300 0.1400 1.4% -0.43[-0.70; -0.16]
Grigsby_toussaint —0.5000 0.1300 1.6% -0.50[-0.75; -0.25]
Grigsby_toussaint —0.3500 0.1800 1.1% -0.35[-0.70; 0.00]

Jiang -0.0590 0.0070 3.0% -0.06 [-0.07; —-0.05]
Jiang 0.0190 0.0090 3.0% 0.02[0.00; 0.04]
Jiang 0.0170 0.0070 3.0% 0.02[0.00; 0.03]
Jiang -0.0220 0.0060 3.0% -0.02[-0.03;-0.01]
Jiang 0.0160 0.0080 3.0% 0.02[0.00; 0.03]
Jiang 0.0580 0.0080 3.0% 0.06[0.04; 0.07]
Jiang -0.0580 0.0090 3.0% -0.06[-0.08; -0.04]
Jiang -0.0870 0.0080 3.0% -0.09[-0.10; -0.07]
Johnson 0.1100 0.0110 3.0% 0.11[-0.01; 0.03]
Johnson 0.0035 0.0110 3.0% 0.00[-0.02; 0.02]
Johnson -0.0570 0.0084 3.0% -—0.06 [-0.07; —0.04]
Johnson 0.0320 0.0110 3.0% 0.03[0.01; 0.05]
Johnson 0.0240 0.0108 3.0% 0.02[0.00; 0.04]
Lin -1.1300 0.3291 0.4% -1.13[-1.78; -0.49]
Lin -0.6900 0.3112  0.5% -0.69[-1.30; —-0.08]
Lin -0.8700 0.3699 0.4% -0.87[-1.59; -0.14]
Lin -0.8000 0.3725 0.4% -0.80[-1.53;-0.07]
Lu -0.3100 0.1250 1.6% -0.31[-0.56; —-0.07]
Lu -0.3100 0.1122  1.8% -0.31[-0.53; —-0.09]
Lu -0.3200 0.1250 1.6% -0.32[-0.56; -0.07]
Lu -0.4200 0.1020 1.9% -0.42[-0.62; -0.22]
Lu -0.1200 0.0918 2.1% -0.12[-0.30; 0.06]
Lu 0.0100 0.1225 1.6% 0.01[-0.23; 0.25]
Lu 0.0100 0.0944 2.0% 0.01[-0.18; 0.19]
Lu -0.0900 0.1097 1.8% -0.09[-0.30; 0.13]
Peng -0.0830 0.0130 3.0% -0.08[-0.11; -0.06]
Phogole -0.2707 0.0588 2.5% -0.27 [-0.39; -0.16]
Phogole -0.2665 0.0651 2.4% -0.27 [-0.39; —-0.14]
Phogole -0.0158 0.0473 2.7% -0.02[-0.11; 0.08]
Phogole -0.2707 0.0588 2.5% -0.27 [-0.39; -0.16]
Phogole 0.1397 0.0473 2.7% 0.14[0.05; 0.23]
Phogole -0.3410 0.0605 2.5% -0.34[-0.46; -0.22]
Spotswood -0.0600 0.0200 2.9% -0.06[-0.10;-0.02]
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Figure 4. A forest plot depicting the relationship between COVID-19 infection and green spaces.
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;E:Z:;‘izd Analyses of the Pooled Estimate of COVID-19 Infections and Green Infrastructure

Stratified analysis Number of results  Pooled estimate [95% CI] ~ Subgroup difference X, df (p-value)
Study year 45 —0.08 [—0.14; —0.03] 8.24,df =2 (p = 0.02)
2,021 15 —0.07 [-0.15; 0.01]

2,022 20 —0.02 [—0.06; 0.02]

2,023 10 —0.32 [-0.57; —0.07]

Sample size 45 —0.08 [—0.14; —0.03] 0.01,df =1 (p =091)
Small (n < 2,000) 19 —0.09 [-0.16; —0.02]

Large (n > 2,000) 26 —0.08 [—0.18; 0.02]

Predictor 45 —0.08 [-0.14; —0.03] 129.68, df = 4 (p < 0.01)
Abundance 25 —0.06 [—0.12; —0.00]

NDVI/EVI 11 —0.24 [-0.55; 0.07]

Canopy 3 —0.44 [-0.62; —0.27]

Visitation 5 0.01 [ 0.00; 0.01]

Proximity 1 —0.02 [—0.08; 0.04]

Covariates: demographic 45 —0.08 [—0.14; —0.03] NA

With demographic covariates 45 —0.08 [-0.14; —0.03]

Without demographic covariates 0

Covariates: health 45 —0.08 [—0.14; —0.03] 1.35,df =1 (p = 0.25)
With health covariates 37 —0.06 [—0.11; 0.00]

Without health covariates 8 —0.13 [—0.28; 0.01]

Covariates: economic 45 —0.08 [—0.14; —0.03] NA

With economic covariates 45 —0.08 [—0.14; —0.03]

Without economic covariates 0

Covariates: climatic 45 —0.08 [—0.14; —0.03] 0.35,df =1 (p = 0.56)
With climatic covariates 19 —0.12 [—0.27; 0.03]

Without climatic covariates 26 —0.08 [—0.14; —0.02]

Covariates: political 45 —0.08 [—0.14; —0.03] 8.27,df =1 (p < 0.01)
With political covariates 14 —0.01 [-0.04; 0.01]

Without political covariates 31 —0.15 [-0.24; —0.05]

with an /* value of 92% (95% CI: 88.3%—94.5%). We also found that year of publication (X*> = 19.10; p < 0.01),
sample size (X* = 7.92; p < 0.01), choice of predictors (X* = 14.92; p < 0.01), and use of health (X* = 7.92;
p < 0.01) and political covariates (X?=22.75; p < 0.01) strongly impact the degree of heterogeneity (see Table 3
and Figures S7-S13 in Supporting Information S1).

3.4. Publication Bias

The existence of publication bias was investigated using the Funnel approach and Orwin fail-safe number. The
presence of funnel plot symmetry (Figure 6a) indicated a lack of publication bias for studies that investigate the
effect of greenness on COVID-19 infections (Fail-safe N: 45). Publication bias was, however, observed for
studies that test the relationships between greenness and COVID-19 mortalities (Figure 6b; Fail-safe N: 14).

4. Discussion

Our meta-analysis provides evidence that an increase in abundance or exposure to greenness is associated with a
significant reduction in COVID-19 infection rates and death cases (Jiang et al., 2022; Klompmaker et al., 2021;
Sikarwar et al., 2023). However, we found high heterogeneity between the studies that were included in the meta-
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Figure 5. A forest plot depicting the relationship between COVID-19 mortality and green spaces.

analysis. Subgroup analyses revealed that heterogeneity in studies on COVID-19 infections and mortality is
strongly predicted by the studies' years of publication, choices of predictors (e.g., metrics of greenness), and
inclusion of political covariates. Additionally, sample size and consideration of health covariates strongly affect
the heterogeneity of studies on COVID-19 mortalities.

The sensitivity of effect size to year of publication can be attributed to the availability of data to adequately model
the impact of COVID-19. The spread of COVID-19 and increased global testing for COVID-19 infection have
accelerated over time, thus allowing successive studies to have an increasingly larger data pool to analyze
(OWD, 2023; Singh et al., 2021). This may also impact the sample sizes that are adopted in each study. As more
regions produce more data on COVID-19 infections and mortality, their eligibility to be included in studies
investigating the correlations between COVID-19 and greenness may enhance study designs. In our subgroup
analysis, we found that studies that used smaller sample sizes (n < 2,000) are likely to report larger effect sizes
compared to studies with larger sample sizes. Given the importance of selecting an appropriate sample size, the
need to define an appropriate sample size to investigate the health benefits of green infrastructure remains critical.

The diversity of greenness metrics, ranging from street trees to large forests, presents a unique challenge while
measuring their impacts. Commonly, studies that cover large study areas use vegetation indices such as NDVI or
EVI which are retrieved from satellite imagery (Brochu et al., 2022; Fong et al., 2018; Grigsby-Toussaint &
Shin, 2022). Since the health benefits of greenness are usually felt closer to the greenness (Dennis et al., 2020;
Ngom et al., 2016), several studies consider local greenness such as household gardens (Chalmin-Pui et al., 2021),
street trees (Marselle et al., 2020; Wolf et al., 2020), and local parks (Orstad et al., 2020; Weber et al., 2023) in
their analysis. However, this approach is only feasible when focusing on smaller areas. In some cases, subjective
measures of greenness were used (Lehberger et al., 2021; Yessoufou et al., 2020). Our findings in the present
study suggest that the choice of greenness metrics adopted in different studies affects its effect size. The use of
NDVI, EVI or vegetation canopy size produces large effects of greenness against COVID-19 infections and
mortalities. In contrast, studies that use proximity or visitation patterns are likely to report marginal effects.

All studies in our meta-analysis have included demographic covariates, and 92% of studies included economic
covariates. While modeling the effects of greenness, the inclusion of demographic variables such as population
density and age structure, as well as economic indicators such as gross domestic product and household income
level as covariates have been largely adopted (Klompmaker et al., 2021; Peng et al., 2022; Russette et al., 2021;
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Table 3
Stratified Analyses of Pooled Mortality Rate Ratio of COVID-19 Deaths

Stratified analysis Number of results Pooled mortality rate ratio [95% CI] Subgroup difference X?, df (p-value)

Year of publication 14 0.93 [0.88; 0.98] 19.10, df = 2 (p < 0.01)
2021 4 0.90 [0.78; 1.03]
2022 0.99 [0.96; 1.02]
2023 0.83 [0.73; 0.96]
Sample size 14 0.93 [0.88; 0.98] 7.92,df =1 (p <0.01)
Small (n < 2,000) 4 0.83 [0.73; 0.96]
Large (n > 2,000) 10 0.96 [0.91; 1.01]
Predictor 14 0.93 [0.88; 0.98] 14.92, df =2 (p < 0.01)
Canopy 3 0.87 [0.72; 1.05]
NDVI/EVI 5 0.87 [0.76; 0.99]
Abundance 6 0.99 [0.96; 1.02]
Covariates: demographic 14 0.93 [0.88; 0.98] NA
With demographic covariates 14 0.93 [0.88; 0.98]
Without demographic covariates 0
Covariates: health 14 0.93 [0.88; 0.98] 7.92,df =1 (p < 0.01)
With health covariates 10 0.96 [0.91; 1.01]
Without health covariates 4 0.83 [0.73; 0.96]
Covariates: economic 14 0.93 [0.88; 0.98] 2.60,df =1 (p =0.11)
With economic covariates 11 0.95 [0.89; 1.01]
Without economic covariates 3 0.87 [0.72; 1.05]
Covariates: climatic 14 0.93 [0.88; 0.98] 2.60,df =1 (p =0.11)
With climatic covariates 11 0.95 [0.89; 1.01]
Without climatic covariates 3 0.87 [0.72; 1.05]
Covariates: political 14 0.93 [0.88; 0.98] 22.75,df =1 (p < 0.01)
With political covariates 7 0.85 [0.80; 0.92]
Without political covariates 7 0.99 [0.97; 1.01]
A B
= (%co&:o 2 o .
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Figure 6. Illustrations of the results of the Funnel plot test for publication bias in studies on (a) COVID-19 infection and (b) COVID-19 mortality.
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Spotswood et al., 2021). Furthermore, the use of health covariates was featured in several studies (Jiang
etal., 2022; Lin et al., 2023; Yang et al., 2022). However, consideration of political covariates in the modeling of
greenness benefits to human wellbeing in the context of COVID-19 is only starting to emerge (Yang et al., 2022;
Zhai et al., 2022). Political factors such as the promulgation of mobility restrictions (Haug et al., 2020; Huang
et al., 2021) and face-masks mandates (Aravindakshan et al., 2022) have been shown to be significant predictors
of COVID-19 impacts, although their inclusion in studies linking greenness to COVID-19 infection and severity
remains limited. We found that the use of political covariates significantly affects the effect size. The inclusion of
political covariables resulted in a greater effect size in studies of COVID-19 mortality and a smaller effect size in
studies of COVID-19 infections. This may suggest that existing policies are more effective in reducing COVID-
19 fatalities than curbing the spread of infections.

5. Conclusions

Overall, when meta-analyzing studies from Africa, Asia, Europe, and USA, we found strong support for the
beneficial effects of greenness on humans in the face of COVID-19 infection and severity, suggesting that positive
correlations reported in some studies between greenness versus infection and mortality rates (Huang et al., 2021;
Pan et al., 2021) might simply imply that the greenness metrics used in those studies (e.g., green space density or
accessibility to greenspaces) may not fully capture important facets of greenness. This calls for a need to ho-
mogenize greenness metrics in studies to come. There is also a need for homogenization of COVID-19 severity
metrics since we could not include hospitalization rate in the present study as a measure of COVID-19 severity
because very limited studies have investigated hospitalization rate. Lastly, our results showed a high degree of
between-study heterogeneity which can be explained by year of publication, sample size, and choice of predictor
variables and covariates. However, evidence from existing studies shows that green infrastructure moderates the
impacts of COVID-19 by reducing the prevalence of infections and associated mortalities.

Nevertheless, our findings have some far-reaching implications for the establishment and management of green
infrastructure. In several countries, including the US, poor communities are less green than their rich counterparts
(Spotswood et al., 2021; Venter et al., 2020), and it is poor communities that bear the highest burden of COVID-
19 infection and severity—the pandemic injustice (McPhearson et al., 2020). In such context, clarifying that
greenness shows significant negative correlations with COVID-19 infection rates and severity implies that
greenspaces must be acknowledged as critical infrastructure that has substantial broader public health values, and
as such, deserve enough funding from governments worldwide, especially in the developing world.

Although this study provides key insights into the benefits of greenspaces against COVID-19, there is a notable
limitation that exists. Given the recency of the topic, there is a limited number of studies on this topic which
resulted in the small number of studies that were included in this meta-analysis. As this topic receives more
scholarly attention, the number of studies on this subject is expected to increase with strong coverage of different
geographical contexts.
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