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Osteosarcoma is a malignant primary bone tumor commonly occurring in children and
adolescents. The treatment of local osteosarcoma is mainly based on surgical resection
and chemotherapy, whereas the improvement of overall survival remains stagnant,
especially in recurrent or metastatic cases. Tumor microenvironment (TME) is closely
related to the occurrence and development of tumors, and macrophages are among the
most abundant immune cells in the TME. Due to their vital roles in tumor progression,
macrophages have gained increasing attention as the new target of tumor
immunotherapy. In this review, we present a brief overview of macrophages in the TME
and highlight the clinical significance of macrophages and their roles in the initiation and
progression of osteosarcoma. Finally, we summarize the therapeutic approaches
targeting macrophage, which represent a promising strategy in osteosarcoma therapies.
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INTRODUCTION

Osteosarcoma is one of the most common aggressive malignancies of bone tumors in children and
adolescents (1, 2). With improved surgical techniques and neoadjuvant chemotherapy, limb-salvage
surgery combined with systemic chemotherapy has been a better option than simply amputation.
These multidisciplinary combination treatments have increased 5-year survival to 60–70% in non-
metastatic patients with osteosarcoma (3). Despite great success in osteosarcoma management,
improvements in survival rates in the last decade were limited (4). Moreover, tumor metastasis or
recurrence of patients have consistently shown poorer outcomes and remain unresolved (5). As
such, new therapeutic strategies are urgently needed.

Recentlyattentionhasbeenpaid to the tumormicroenvironment (TME),whichplaysa crucial role in
cancer initiation and progression (6, 7). TME is constituted by tumor cells, fibroblasts, endothelial cells,
immune cells, various signaling molecules, and extracellular matrix (8). Due to the complexity and
heterogeneity of cells, TME has diverse effects during different stages of cancer progression and
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metastasis (9, 10). Tumor-associated macrophages (TAMs), as
the primary immune cells in the TME, have been identified as a
prognostic marker and a new target in tumor immunotherapy
(11). A thorough and comprehensive understanding of
macrophages may provide new insights and potential
therapeutic approaches for osteosarcoma (12–14). Therefore,
we briefly introduce the origin, polarization, and regulation of
macrophages. Then we focus on the relationship between the
polarization status and prognosis of macrophages in
osteosarcoma and elaborate on the mechanisms of
macrophages in the development and metastasis of
osteosarcoma. Finally, targeting macrophages therapy in
osteosarcoma is also discussed.
OVERVIEW OF MACROPHAGES

Macrophages are generally thought to be developed from the
hematopoietic stem cells (HSCs) and derived from the myeloid-
monocytic lineage. They are initially recruited from the
peripheral blood to eliminate harmful pathogens, infection and
inflammation (15, 16). Nevertheless, in recent years, the
increasing evidence indicates that tissue-resident macrophages
develop from embryos before the appearance of HSCs and
maintain self-renewal proliferation (17, 18). Thus the origin of
macrophages can be simply divided into two categories: one is
tissue-resident macrophages mainly derived from the yolk sac
and fetal liver; another is originated from bone marrow-derived
blood monocytes (19).

Although the content may significantly vary in different
tumors, tumor-associated macrophages (TAMs) are primary
immune cells present in the tumor microenvironment. Both
circulating monocytes and tissue-resident macrophages
contribute to the accumulation of TAMs. The secreted
chemokines from tumor cells and stromal cells, such as
macrophage colony-stimulating factor (M-CSF) and C-C motif
ligand 2 (CCL-2), can induce and recruit monocytes to the tumor
microenvironment (20, 21). Notably, it has been found that
TAMs were recruited by interleukin-34 (IL-34) released from
osteosarcoma cells and infiltrated massively into osteosarcoma
tissues (22). These monocytes can differentiate into macrophages
under the stimulation of local signal molecules (19).

Macrophages are plastic to multiple signals under the specific
TME. The activated macrophages, distinct from tissue-resident
macrophages, develop specific phenotypes that show different
polarization states and functions (20, 23). Traditionally, a
dichotomous spectrum including M1 and M2 phenotypes
represented two polarized terminals of the broad range of
macrophage activation: classically activated macrophages (M1),
stimulated by interferon-g, lipopolysaccharide (LPS) and Toll-
like receptor (TLR); and alternatively activated macrophages
(M2), activated by cytokines such as IL-4 and IL-13 and other
signal molecules (17, 18). Nevertheless, it is also worth noting
that macrophages are a heterogeneous population of myeloid
cells and have been recognized as a complex spectrum of
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activation states, represented by a mixed or intermediate
phenotype expressing both M1 and M2 markers albeit to a
different extent (20, 21). This spectrum model of macrophages
suggests a continuum of functional status and can better
generalize the real state of macrophage activation in the
microenvironment (24–26). Furthermore, due to the lack of
specificity of marker expression, the classification based on
polarization status via a single M1/M2 marker may simplify
the complexity of macrophages. For instance, Arginase-1 can be
upregulated upon M1 (LPS) or M2 (IL-4) stimulation (17).

Similarly, due to the plasticity and heterogeneity, TAMs are
characterized by pro- or anti-tumor activity according to the
tumor types and their interactions in the TME (21, 27). TAMs
showing M1-like features have the potential to kill tumor cells
and enhance the immune response. However, TAMs, generally
exhibiting an M2-like immunosuppressive phenotype in most
tumors, tend to promote angiogenesis and facilitate extravascular
invasion and immune escape, eventually leading to tumor
progression and metastasis (28, 29). First, TAMs can promote
tumor angiogenesis (29). Emerging studies have found that the
amount of TAMs in the tissues of various tumors (such as breast
cancer, lung cancer, glioma, gastric cancer, et al.) is positively
correlated with the number and density of tumor blood vessels
(20, 30). Various pro-angiogenic factors, such as vascular
endothelial growth factor (VEGF), fibroblast growth factor
(FGF) and matrix metallopeptidase 9 (MMP-9), are secreted to
participate in the process of tumor angiogenesis (31). Second,
TAMs can also mediate immunosuppression via interaction with
various immune effector cells. It is currently reported that TAMs
express the ligand receptors of programmed death 1 (PD-1) and
cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), which
inhibit the activation of T cells. Studies have found that TAMs
can produce not only immunosuppressive cytokines (IL-10 and
transforming growth factor-b (TGF-b)), but also chemokines
such as CCL5, CCL20, and CCL22 that recruit regulatory T cells
into tumor tissues (20, 29). Third, TAMs support invasion and
metastasis of tumor cells by increasing vascular extravasation,
promoting survival and growth of metastatic cells, and
suppressing effector T cells (20, 32). Ultimately pre-metastatic
niche was established at distant sites in specific metastatic organs
with the aid of macrophages. In the later sections, existing studies
on the roles of macrophages in osteosarcoma will be
further discussed.
MACROPHAGES AND OSTEOSARCOMA

Macrophage Phenotypes in Osteosarcoma
Macrophages are one of the crucial immune components in the
osteosarcoma niche. As described above, macrophages
demonstrate a broad spectrum of activation status. Researchers
mostly resort to the markers of the polarized extremes or a variety
of cellular deconvolutionmethodologies to depict the heterogeneity
of macrophages in osteosarcoma. A comprehensive study
described that CD14+/CD68+ TAMs represent the main
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infiltrating immune cell types in bone sarcomas, including
osteosarcoma (33). Similarly, an infiltration landscape of immune
cells using the CIBERSORT algorithm showed a high ratio of M0
and M2 macrophages in osteosarcoma tissues in the TARGET
cohort (34). Gene expression analysis and CD209 staining also
confirmed the enrichment of M2 macrophages in human
osteosarcoma tissues (35).

The progression and metastasis of osteosarcoma may induce
an imbalance of macrophage subtype populations (36). It was
reported that M2-like macrophage marker molecules, including
CD206, Arg-1, and Ym-1, were significantly upregulated in the
osteosarcoma tissues compared with non-tumor tissues (37).
Another independent study also showed higher frequencies of
CD163+ macrophages in tumor-infiltrating cells from resected
tumors than in peripheral blood immune cells (38).

Notably, the infiltration of macrophage is also different in
metastatic osteosarcoma. For instance, Han’s group observed
that CD68 was significantly higher in osteosarcoma tissues of
patients with detectable metastasis than patients without
metastasis (39). Furthermore, the level of CD68 was also
upregulated in human lung metastases than corresponding
primary osteosarcoma lesions, while CD163, a biomarker of
M2 macrophage, showed no significant difference (39).
Additionally, Dumars et al. revealed a higher infiltration of the
INOS+ M1 subtype in osteosarcoma tumors of non-metastatic
patients (40).

Accordingly, some previous preclinical studies have come to the
same conclusions. In a mouse model of human osteosarcoma
implantation, macrophages were recruited into the tumor tissue
and polarized into the M2 subset (41). Furthermore, it was found
that a large number of F4/80+ cells were infiltrated into the
metastatic pulmonary tissue (39) and M2-type (CD206+MHC-II−)
macrophages were increased in the metastatic mouse lung tissue,
but M1 (CD206−MHC-II+) remains unchanged (42). The levels of
infiltratedM1 orM2may vary in the primary andmetastatic lesions
(literature summarized in Table 1), suggesting their different role in
the development of osteosarcoma.

Relationship Between Macrophage
Phenotypes and Clinical Prognosis
Macrophages have diverse functions and show plasticity in
response to microenvironments. Mounting evidence suggests
that macrophages facilitate tumor progression and metastasis
(29, 48). In contrast to the tumor-supporting role for TAMs in
many other tumor types, higher numbers of infiltrating TAMs
correlated with better survival in osteosarcoma.

Several studies confirmed that the infi ltration of
macrophages, regardless of their polarization phenotype,
exhibited positive clinical outcomes in osteosarcoma patients.
Buddin et al. proved that TAMs defined as CD14-expressed cells
were associated with metastasis suppression and better overall
survival in high-grade osteosarcoma patients (43). A study based
on the RNA-seq data and CIBERSORT algorithm analysis
showed that higher M1 and M2 macrophages were associated
with improved overall survival in prognosis (34). Consistent with
this study, another bioinformatics analysis using different clinical
Frontiers in Oncology | www.frontiersin.org 3
dataset also observed that M0 macrophages were correlated with
good prognosis (44). Similarly, Gomez-Brouchet et al. reported
that upregulated CD163 TAM was significantly related to better
overall survival and more prolonged metastasis progression-free
survival (MPFS), and a similar trend was also observed for
patients with higher levels of CD68-positive cell though not
significant (45).

However, the relationship between CD68 positive macrophages
(used to represent pan-macrophages) and the prognosis was
controversial. Dumars et al. found that CD68+ TAM infiltration
was positively correlated with better overall survival (40). In
contrast, increased CD68+ macrophages in patients were
reported to have poorer five-year-event free survival by Koirala
et al. (46). Meanwhile, some studies also determined that the
presence of M2-like macrophage showed opposite effects. Su et al.
observed that CCL18/CD68 double-positive macrophages were
significantly correlated with lung metastasis and worse prognosis
in osteosarcoma patients (47). Intriguingly, Yang et al. also
reported that M2 macrophages were correlated with poor
prognosis in osteosarcoma patients, as seen in other types of
tumors (44).

These discrepancies may be due to multiple factors, such as
the different treatments before surgery or diverse experimental
methods and details. For instance, Han et al. (39) adopted the
surgically resected specimens after chemotherapy, while Gomez
et al. (45) performed tissue analysis on the diagnostic biopsies
from osteosarcoma patients without chemotherapy. Some
studies included patients from public databases like the
TARGET cohort (34) or GEO dataset (44), who varied largely
in age, gender, tumor stage, tumor location, histologic grading,
and metastatic status, resulting in unconformity in observing
evidence (34). Meanwhile, the lack of consistency in macrophage
markers used, as well as the lack of specificity of the selection of
the current markers, may have contributed to the inconsistent
results. Different markers were applied to serve as a pan-
macrophage marker such as CD68 and CD14 in different
studies, as described above. However, CD68 may be expressed
on other non-myeloid origin cells, such as granulocytes, dendritic
cells (49, 50). Apart from monocytes and macrophages,
neutrophils and dendritic cells are positive for the marker
CD14 (46). Most studies used CD163 as an M2-type TAM
marker, yet CD163 expression may also be found in dendritic
cells (51, 52). Notably, the activation status may also confuse the
results. For example, Arginase-1 can be upregulated upon M1
(LPS) stimulation (17).

These studies suggested that the relationship between
macrophage phenotypes and clinical prognosis in osteosarcoma
was more complex than previously thought (literature
summarized in Table 1). Based on the available evidence, we can
conclude that macrophages are associated with the prognosis of
osteosarcoma, whereas the adequate and homogeneous phenotypic
characterization of macrophage subpopulations is lacking. These
studies indicate macrophages exert distinct effects in osteosarcoma,
though the specific subsets are still unclear and need comprehensive
and thorough investigations. Moreover, osteosarcoma disease
progression causes dynamic regulation of macrophage activation
December 2020 | Volume 10 | Article 586580
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and reversion; thus, individual markers may not accurately evaluate
the multifaceted and complex nature of the macrophage population
(32). Harnessing new strategies, such as cell-fatemapping, single-cell
sequencing, multicolor immunofluorescence, and macrophage
lineages targeting, may uncover the full spectrum of macrophage
activation and give a landscape of the osteosarcoma tissue. Technical
standardization and validation in a large scale of a clinical cohort
with similar treatment and comparable clinical stages are required
before the use of M1/M2 markers (53).

The Role of Macrophages
in Osteosarcoma
Inflammation Modulation
The inflammatory microenvironment is now recognized as an
essential factor contributing to carcinogenesis, tumor metastasis,
and treatment resistance (54, 55). However, inflammation in the
microenvironment of osteosarcoma was recognized to have anti-
Frontiers in Oncology | www.frontiersin.org 4
tumor effects. It has been reported that post-operative infection
was associated with improved survival in osteosarcoma patients
(56, 57). Coley’s Toxins, which contained heat-killed bacteria or
bacterial products, were utilized to treat bone sarcomas in the
late 19th century (58, 59). Similarly, muramyl tripeptide, a
synthetic derivative of the bacteria cell wall, was shown to play
a positive role in treating osteosarcoma by activation of
macrophage (58, 60). Therefore, macrophages, as the primary
inflammatory cells stimulated by infection, may contribute to
anti-tumor immunity (61).

Inflammation may enhance anti-tumor effects by increasing
the level of infiltrating macrophages and secreting cytokine. A
study based on chronic bacterial osteomyelitis mice model
demonstrated that infection increased the number of TAMs
and inhibited the growth of tumors in mice via regulating
innate immune response elicited by macrophages. Moreover,
the depletion of macrophages reversed these anti-tumor
TABLE 1 | Macrophage phenotypes and their relation to clinical prognosis in osteosarcoma.

Species Detection
Methods

Markers of
Phenotypes

Different Phenotypes of Infiltrating Macrophages Prognosis Impact Ref.

Human Microarray
and IHC
analysis

Pan-marker: CD14;
M1: HLA-DRa; M2:
CD163

Higher CD14 expression in the non-metastasis group Higher CD14+ macrophages correlated with
metastasis suppression and better OS while
M1or M2 not significant

(43)

Human CIBERSORT
algorithm

Not mentioned M0 (0.23 ± 0.1) and M2 (0.24 ± 0.13) fraction of infiltrating
immune cells

Higher M1 and M2 macrophages with better OS (34)

Human CIBERSORT
algorithm

Not mentioned Not mentioned Higher M0 and lower M2 macrophages with
better prognosis

(44)

Human IHC analysis M2:CD163; Pan-
marker: CD68

High CD163 staining rate (43.8%) and high CD68 staining
rate (23.4%)

Higher CD163 macrophages with better OS and
MPFS

(45)

Human IHC analysis Pan-marker: CD68;
M1: iNOS

Higher INOS+ macrophages in primary tumor tissues of
patients of non-metastasis group

Higher CD68+ macrophages with Better OS (40)

Human IHC analysis Pan-marker: CD68 Not mentioned Higher CD68+ macrophage with poorer five year-
EFS

(46)

Human IHC analysis Pan-marker: CD68;
M2:CCL18

Higher CD68 in lung metastasis than primary
osteosarcoma tissues

Higher CCL18+CD68+ macrophages with poorer
prognosis

(47)

Human IHC analysis Pan-marker: CD14,
CD68

ratio of CD14+/CD68+ TAMs relative to CD45+ cell (6–
25%)

Not mentioned (33)

Human IHC analysis M2: CD209 CD209 positive staining rate (78.57%) Not mentioned (35)
Expression
analysis of
GEO data

M2: CD163, MRC1
and CCR2

higher gene expression levels of CD163, MRC1 and CCR2
in tumor

Not mentioned

Human IHC, PCR and
WB analysis

M2: CD206, Arg-1
and Ym-1

Upregulation of CD206, Arg-1 and Ym-1 in osteosarcoma
tissue than adjacent non-tumor tissue

Not mentioned (37)

Human FACS analysis Pan-marker: CD14;
M2:CD163

Higher CD14+/CD163+ macrophages in tumors than
peripheral blood

Not mentioned (38)

Human IHC analysis Pan-marker: CD68;
M1: iNOS; M2:
CD163

Higher CD68+ macrophages in primary tumor tissues of
patients with metastasis

Not mentioned (39)

Higher CD68, lower iNOS and unchanged CD163 in
metastasis than corresponding primary osteosarcoma
tissues

Not mentioned

NOD/
SCID
mice

FACS analysis Pan-marker: F4/80;
M2: CD163

Upregulation of CD163+/F4/80+ in 3 weeks after tumor
implantation

Not mentioned (41)

BALB/c
nude
mice

IHC analysis Pan-marker: F4/80 Higher F4/80+ cells in lung metastases than corresponding
primary osteosarcoma tissues

Not mentioned (39)

BALB/c
mice

FACS analysis M1: MHC-II; M2:
CD206

Higher CD206+/MHC-II− macrophages and unchanged
CD206−/MHC-II+ in metastatic mouse lung tissue than
control lung tissue

Not mentioned (42)
December 2020 | Volume 10 | Article 58
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responses (62). Besides, infection upregulates the cytokine
secretion of inflammatory macrophages, including tumor
necrosis factor-a (TNF-a) and interferon-g (IFN-g), and
reactivate the immune system towards anti-tumor response to
attenuate immunosuppression induced by osteosarcoma (63).
Although these models cannot precisely mimic the local
inflammatory microenvironment of osteosarcoma, these
preclinical researches, together with the above clinical data,
provide a new understanding of the role of macrophages and
the inflammatory response in osteosarcoma.

Involvement in Chemotherapy Resistance
Over the past 30 years, the application of adjuvant and
neoadjuvant chemotherapy has significantly improved the 5-
year survival rate to 60–70% for patients with osteosarcoma (3,
64). Despite treatment with chemotherapy, the 5-year event-free
survival (EFS) in patients with recurrent osteosarcoma was 15–
20%, and it seems unchanged over the years (3, 65).

Although the mechanisms are uncertain, scholars have found
that macrophages are closely linked to tumor resistance to
chemotherapy (50). Chemotherapeutic drugs can inhibit
tumorigenesis by blocking proliferation or promoting
apoptosis of tumor cells while they induce tissue damage that
inevitably activates macrophages’ tissue repair activities,
resulting in pro-tumoral effects and drug resistance (66, 67).
TAMs have been shown to hamper chemotherapy-induced anti-
tumor responses in different ways, as illustrated in Figure 1.
First, TAMs can sustain cell survival by secreting cytokines,
growth factors, and exosomes (68–70). Those factors may
contribute to the activation of anti-apoptotic programs and
regulation of CSC activities (71). It was also found that
macrophages protected against Taxol-induced tumor cell death
partially by expressing cathepsins B and S (72). Second,
immunosuppression induced by macrophages is also associated
with chemotherapy tolerance of the tumors. DeNardo et al.
Frontiers in Oncology | www.frontiersin.org 5
found that inhibition of macrophage by CSF1R antagonists
improved the survival of mammary tumor-bearing mice to
paclitaxel by CD8+ T-cell-dependent mechanisms (73).
Further, Ruffell et al. confirmed that IL-10 secreted by M2-type
macrophages inhibits the expression of IL-12 by dendritic cells,
thereby blocking the response of CD8+ T cells (74). Third,
macrophages may also affect the vascularization and indirectly
regulate the tumor sensitivity to chemotherapy (75, 76). VEGF-A
clearance in macrophages led to normalized vascular growth and
enhanced the sensitivity of Lewis Lung Carcinoma tumors to
cytotoxic drugs like cyclophosphamide and cisplatin (77).

Furthermore, the roles of macrophages in chemo-resistance
were evidenced by macrophage-targeting therapies (78). For
instance, Lu et al. reported that the depletion of TAMs by
CSF-1R inhibitors significantly improved the effects of
docetaxel in a murine epithelial ovarian cancer model (79).
Along the same lines, live imaging has demonstrated that the
treatment with doxorubicin or cisplatin is improved in mice
lacking CCR2+ TAMs (80). In the light of different cytotoxic
agents and types of tumor, mechanisms accounting for TAM
induced chemo-resistance need further investigation.

Several studies have confirmed this association between
macrophages and chemo-resistance of osteosarcoma cells.
Infiltrating CD68+ cells were higher in tumor tissues of
osteosarcoma patients who were poorly reactive to neoadjuvant
chemotherapy. Moreover, after treatment with chemotherapy
medications, macrophages secreted IL-1b, which could activate
downstream cancer signaling pathways and reduce the sensitivity
of osteosarcoma to chemotherapeutic drugs. Moreover, blockage
of the receptor of IL-1b restored the drug effects (81). Similarly,
exosomes released by macrophages promoted proliferation,
invasion and drug-resistance of osteosarcoma cells via the
activation of AKT signaling, which has been widely recognized
as a critical pathway mediated tumor progression (82). Those
studies revealed that the secretome of macrophages might play a
FIGURE 1 | Potential mechanisms involved in macrophage-mediated resistance to chemotherapy. By secreting cytokines, growth factors, cathepsins, and
exosomes or direct contact with tumor cells, TAMs blunt chemotherapeutic drugs’ efficacy by the following mechanisms: a. sustaining tumor cell survival;
b. promoting immunosuppression; c. inducing tumor re-vascularization.
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significant role in drug-resistance in osteosarcoma progression as
in other tumors. Targeting macrophage provides potential
strategies for improving the efficacy of neoadjuvant
chemotherapy for osteosarcoma.

Involvement in Metastasis
It has been discovered that the number and varied polarization
status of infiltrating macrophages were strongly correlated to the
prognosis of osteosarcoma patients, as described above (39, 40,
43). Though previous studies came to inconsistent conclusions,
macrophages were shown to enhance the metastatic process in
osteosarcoma. Maloney et al. demonstrated that macrophage
promoted the invasion of osteosarcoma cells and contributed to
pulmonary metastasis in the animal model (42). Macrophages
within the metastatic lung niche were altered to pro-tumor M2
(MHC-II−/CD206+) phenotype and enhanced metastatic
progression after the removal of the primary osteosarcoma
tumor (83).

TAMs facilitate metastatic processes of osteosarcoma via
several mechanisms. Su et al. found that CCL18 predominantly
secreted by M2-type TAMs promotes proliferation and
metastasis of osteosarcoma. Moreover, these effects were
attributed to the upregulation of the lncRNA UCA1/Wnt/b-
catenin pathway that mediated the tumor-promoting role in
different types of tumors (47). Zhou et al. reported that M2
macrophages promoted the metastasis of osteosarcoma through
secretion of matrix metalloproteinase 12 (MMP-12), which have
been recognized as a metastasis-related factor and participate in
degrading extracellular matrix (84). TAMs facilitated the
expression of cyclooxygenase 2 (COX-2) of osteosarcoma cells
and activate the COX-2/STAT3 axis and epithelial-mesenchymal
transition (EMT) to promote osteosarcoma invasion and lung
metastasis. Furthermore, blocking STAT3 or COX-2 could
prevent the promoting-tumor effects of TAMs (39).

From clinical observations and preclinical studies, we can
infer that TAMs, particularly M2-type macrophages, play a vital
role in osteosarcoma invasion and metastasis.

Crosstalk Within the Microenvironment
In tumor microenvironments, the interaction between macrophages
and other cells in osteosarcoma TME participates in the disease
progress of osteosarcoma. As a part of their survival strategies, tumor
cells often resort to cunning mechanisms to manipulate the
macrophages and create an immunosuppressive, tumor-promoting
microenvironment (85). Some studies demonstrated that
osteosarcoma cells enhanced the recruitment of macrophages by
secretion of cytokine. The increasing chemokine ligand 5 (CCL5)
production by human osteosarcoma cells was reported to promote
macrophages recruitment (86). Monocyte chemoattractant protein-1
(MCP-1, also called CCL2) expressed by osteosarcoma participated in
the regulation of macrophage recruitment and infiltration via the
MCP-1/CCR2 axis (87). IL-34 was released by osteosarcoma cells and
promoted the recruitment of M2-TAMs into the tumor tissue, thus
promote tumor growth and metastasis (22).

Interestingly, metastatic osteosarcoma cells display a more
malignant phenotype via exosomal communication with
macrophages. These exosomes significantly increased M2
Frontiers in Oncology | www.frontiersin.org 6
macrophage-related cytokines such as IL10 and transforming
growth factor-beta 2 (TGFB2), and modulate macrophages to a
tumor-promoting M2 phenotype. This conversion contributed
to the inhibition of macrophage-mediated tumoricidal functions
like decreased phagocytosis, efferocytosis and direct tumor cell
killing effects (88).

Macrophages may also influence the function of T cells. Han
et al. revealed that the presence of M2-type (CD163+) macrophages
was correlated with the frequency of TIM-3+ PD-1+T cells
representing the exhausted and immunosuppressive T cell subset.
And these macrophages contributed to the impairment of T cell
proliferation and production of pro-inflammatory cytokine and
hence aggravated immunosuppression. Additionally, selective
depletion of CD163(+) macrophages revive T cell function (38).

The initiation and progression of osteosarcoma result from a
complex interaction of the integral microenvironment
constructed by several types of cells and matrix (89). Further
intensive studies would provide a better understanding of the
interplay between macrophages and other cells.

Macrophage Targeting Therapeutics
in Osteosarcoma
Macrophage Depletion and Recruitment Targeting
One of the macrophage-targeting treatments is to reduce the
number of infiltrating TAMs. The main therapeutic strategies
include direct depletion of macrophages and reduction of
monocyte/macrophage recruitment. After being engulfed,
clodronate liposomes can eliminate macrophages via the
induction of apoptosis (90). Regarding the preclinical studies
of osteosarcoma, researchers have confirmed that the clodronate
liposomes treated mice demonstrated reduced lung metastasis of
osteosarcoma (42, 84) and decreased tumor growth (41).

Several cytokines and chemokines were confirmed to be
involved in the recruitment of macrophages (91). For example,
CCL2 is a member of the C-C type chemokine family secreted by
tumor cells or TAMs to promote TAMs recruitment (92, 93). It
has been reported that Bindarit, a specific inhibitor of CCL2,
efficiently reduced the infiltration of macrophages and inhibited
the growth of the osteosarcoma tumor (87).

Due to the pro-tumor effects of TAMs in osteosarcoma,
decreasing TAMs present in the tumor by macrophage-
eliminating agents or some specific inhibitors may achieve an
excellent therapeutic effect.

Macrophage-Related Immune Checkpoint:
CD47/SIRPa
The regulation of macrophages affects tumor development, and
the application of immunomodulatory therapy to enhance anti-
tumor effects is getting more and more attention (94). Specific
blocking of receptor-ligand binding between macrophages and
the tumor cells can enhance macrophage phagocytosis and anti-
tumor activity, thus appears to be a promising strategy for cancer
therapy (95, 96). CD47 is recognized as a ‘don’t eat me’ signal,
which binds to signal regulatory protein a (SIRPa) in the surface
of macrophages resulting in the escape of phagocytosis and cell
death (97, 98). As previously reported, CD47 is expressed in a
variety of solid tumors and hematologic tumors (99). It was
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reported that CD47 was overexpressed in human osteosarcoma
samples of different types than normal bone tissue or osteoma
samples (100, 101). Similar to the preclinical studies in other
tumors, CD47 can represent a useful therapeutic target in
osteosarcoma. It has been confirmed that CD47 blockade by
specific antibodies promotes the phagocytic effects of
macrophages on osteosarcoma cells (101, 102). CD47 mAb
treatment combined with chemotherapy increased the number
of macrophages and further enhanced their phagocytic
capabilities in osteosarcoma, thus produced a better outcome
in the osteosarcoma-bearing mice model (103). Another study
showed that SIRP-a knockout macrophages boost phagocytosis
of osteosarcoma tumor cells (104).

Based on the preclinical evidence, several clinical trials are
performed with CD47/SIRPa blocking using mAbs or Fc fusion
proteins either alone or in combination with other therapies to treat
different tumors (105–107). Those clinical trials are ongoing on
multiple hematologic malignancies, including acute myeloid
leukemia and myelodysplastic syndrome, and some advanced
solid tumors such as liver cancer, non-small cell lung cancer,
ovarian cancer, et al. (http://www.clinicaltrials.gov). However,
there are no registered clinical trials on osteosarcoma patients so
far. Compared with the first generation of CD47 targeting drugs
terminated in trials due to their considerable side effects, the newly
developed antibodies now being tested exhibit minimal binding to
CD47-expressing red blood cells, minimizing their potential toxicity
related to hemolytic anemia (108). For instance, Hu5F9-G4 (5F9),
an anti-CD47 monoclonal antibody, was well tolerated in patients
with advanced cancers and generated objective responses in the
phase I trial (NCT02216409) (109). Moreover, 5F9 combined with
rituximab (a CD20 antibody that targets B cells) exhibited
promising activity in the treatment of B-cell lymphomas
(NCT02953509) (110).

Although there are limited studies on anti-CD47/SIRPa
therapy in osteosarcoma, these suggested strategies targeting
CD47/SIRP-a that turn the ‘don’t eat me’ signal off may be an
efficient therapy in osteosarcoma.

L-MTP-PE: Macrophages Activator
Mifamurtide, as an immunostimulatory agent, is one of the most
critical advances in macrophage targeted therapy of osteosarcoma
(111). Liposomal muramyl tripeptide phosphatidyl ethanolamine
(L-MTP-PE or mifamurtide) is derived from muramyl dipeptide
(MDP), which is a component of bacterial cell walls (112). L-MTP-
PEmay serve as an immunomodulator to activate macrophages and
monocytes, and potentiate tumoricidal activity, causing the
suppression of tumor growth and metastasis. L-MTP-PE is far
more efficient than MDP in activating macrophages (113).
Macrophages activated with L-MTP-PE resulted in tumor cell
destruction without leading to resistance of tumor cells (114).
Mifamurtide can upregulate the markers of M1 and M2 thus
modulate macrophages into an M1/M2 intermediate phenotype,
which achieved a dual role in anti-tumor and immunomodulatory
functions (115).

Induction of soluble cytokines such as TNF-a and IL1-b plays
a role in the mechanism of action of L-MTP-PE on macrophages
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(116). Moreover, these cytokines may contribute to the functions
of other immune cells (58). L-MTP-PE administration
stimulated the production of cytokines such as TNF-a and IL-
6 in patients with osteosarcoma (60).

Several studies also determined the efficacy of combination
treatment with L-MTP-PE. Pahl et al. reported that in
combination with interferon-g, L-MTP-PE activated macrophages
to inhibit the growth of osteosarcoma cells (116). L-MTP-PE alone
or in combination with doxorubicin (DOX) was found to enhance
the cytotoxic activity of macrophages against osteosarcoma in a
canine model (117). In a clinical trial of patients with osteosarcoma,
MTP combined with chemotherapy resulted in better clinical
outcomes (118), including improved overall survival and a trend
toward better event-free survival (119).

Existing evidence proves that L-MTP-PE acts as a potent
activator of the immune response of macrophages and can be
used in anti-osteosarcoma therapy.

Regulation of Macrophage Polarization
One of the critical characteristics of macrophages is their
plasticity; thus, macrophages can respond to various stimuli in
the TME, leading to a broad spectrum of activation phenotypes.
As described above, the M2-like polarization of macrophages
contributes to the pulmonary metastasis of osteosarcoma.
Therefore, re-educating TAMs from immunosuppressive and
pro-tumoral macrophages to the anti-tumor phenotype is a
promising tumor treatment strategy, compared to depletion
therapies targeting all macrophages.

Several approaches have been attempted to reprogram the
TAMs, include cytokines, Toll-like receptors (TLRs) agonists,
monoclonal antibodies (120). Many factors are known to
repolarize TAMs towards an M1-like phenotype, such as IFN-g,
IL-12, leading to the activation of the STAT signaling pathway
(121). TLRs are essential pathogen recognition receptors expressed
by antigen-presenting cells, including macrophages. TLRs agonists
induce the conversion of M2 to M1 phenotype to elicit anti-tumor
effects (122, 123). For instance, Vidyarthi et al. reported the
administration of TLR-3 ligand [poly (I: C)] in the murine colon
tumor skewed the M2-macrophages to M1-phenotype and
regressed the tumor growth in the IFN-ab signaling pathway-
dependent manner (124). In addition to cytokines and TLR
agonists, antibodies like anti-CSF1 and anti-CD40 were also
applied to skew TAM polarization (120, 121).

In osteosarcoma, several drugs were elucidated to repolarize
the macrophages and showed promising results. M1-like
macrophages activated by LPS plus IFN-g showed suppression
on osteosarcoma cell growth, and those effects were mediated by
soluble factors secreted by macrophage in a TNF-a/IL-1-
independent manner (116). All-trans retinoic acid (ATRA)
inhibited osteosarcoma invasion and metastasis by suppressing
M2 polarization and secretion of MMP12 (84). Furthermore,
this research team reported that ATRA could prevent M2-
type macrophage-mediated enhancement of osteosarcoma
initiation and tumor cell stemness (35). Metformin, which was
previously reported to elicit anti-tumor and anti-angiogenic
effects by repolarization of macrophages, also contributes to
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osteosarcoma’s growth inhibition via redirecting the metabolism
polarization of macrophages (125, 126).

Intriguingly, gefitinib, an epidermal growth factor receptor
(EGFR) inhibitor, altered pulmonary macrophage phenotype to
block osteosarcoma invasion and reduce metastatic burden via
inhibition of macrophage receptor-interacting protein kinase 2
(RIPK2) (42). Moreover, gefitinib altered macrophage phenotype
and relieved surgery-accelerated metastasis and prolonged
overall survival in mice model (83).

Fujiwara et al. identified a series of compounds screened from
natural substances, namely, Onionin A1 (derived from Allium
Sulfides) (127), epimedokoreanin B (a compound from Epimedii
Herba) (127), and corosolic acid (CA)/oleanolic acid (OA) (both
are triterpenoid compounds) (128). Those compounds possessed
an inhibitory effect on the M2-macrophage polarization by
suppressing STAT3 activation and preventing osteosarcoma
progression and metastasis in osteosarcoma mice model.

Another research team also concentrated on the development
of M2-type macrophage inhibitors/modulators, including
wogonin (isolated from Scutellaria baicalensis roots) (129),
dihydroxycoumarins (esculetin or fraxetin) (130), xanthoangelol
and 4-hydroxyderricin (derived from Angelica keiskei roots)
(131), resveratrol (132) and synthetic hydroxystilbenes (133).
They examined that these substances effectively inhibit
osteosarcoma growth and metastasis via suppression activation
and differentiation of M2 macrophages.

Therefore, targeting the regulation of TAM polarization is a
potential strategy for anti-osteosarcoma therapy.

PD-1/PD-L1 Inhibitors
PD-1/PD-L1 inhibitors as a means of tumor immunotherapeutics
have been successfully applied clinically in treating a variety of
tumors (134, 135). Their interaction withmacrophages in the tumor
microenvironment has also attracted increasing attention (136).

Several studies have revealed that PD-L1 expression was
observed in primary and metastatic tumors of osteosarcoma
patients (46, 137). PD-L1 positive tumors compared to PD-L1
negative tumors was significantly correlated with the presence of
macrophages (137), particularly CD68+ cells (46, 138),
implicating the potential role of macrophages in the anti-PD1/
PD-L1 treatment. TAMs also expressed PD-1 to participate in
immune escape and inhibit phagocytosis and anti-tumor
immunity (139). Moreover, the infiltrating macrophages were
largely PD-L1 positive (up to 45%) in osteosarcoma (137). This
evidence suggests that targeting tumor-associated macrophages
may represent an additional means to improve PD1/PD-L1
blockage therapy.

Additionally, some studies showed the effects of anti-PD1/
PD-L1 therapies by acting on macrophages. Anti-PD1 treatment
decreased lung metastases of osteosarcoma through activating
CD86+ M1 and reduced CD16+ M2 macrophages. Moreover, it
was confirmed that macrophage depletion significantly
compromised anti-PD1 efficacy (140). Similarly, it has been
reported that anti-PD-L1 treatment blocks the PD-L1 signaling
pathway, promoting macrophage proliferation and activation,
leading to pro-inflammatory macrophage phenotypes (141). In
an osteosarcoma mice model, the PD-L1 inhibitor also promoted
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monocyte maturation and returned macrophage M1/M2 marker
expression to nearly normal status (36).

These studies suggest a new theoretical application of anti-
PD-1/PD-L1 antibodies alone or combination therapy to
treat osteosarcoma.
CONCLUSIONS

In summary, macrophages are associated with clinical prognosis
and possess clinically applicable potential in osteosarcoma
treatment. As described above, macrophages, predominantly M2-
type TAMs, promote the osteosarcoma metastasis and exert pro-
tumor effects. Biomarkers, such as CD163, CD209, CCL18, et al.,
have been correlated with tumor progression in preclinical models
of osteosarcoma. Furthermore, based on the immunoscore
combined with a series of macrophages markers (not a single
indicator), an algorithm can be constructed to differentiate
patients and support diagnosis and the corresponding treatments
and prognosis. For instance, Gomez and his colleagues (45)
proposed a systematic analysis of CD68, CD163, CD8, PD1 and
PDL-1 expression performed in osteosarcoma biopsies to stratify
patients regarding their respective TME and suggested a therapeutic
strategy targeting macrophages and other immunological factors.
Development and validation of a TAM-based immune signature
will afford a valuable clinical decision-making tool to screen
subpopulations that respond and benefit most from the
current therapies.

The current studies demonstrate that macrophages are involved
in the local inflammation modulation, invasion, metastasis, and
chemotherapy resistance of osteosarcoma and further interacted
with other cells in TME. However, the distinct TAM subtypes may
differentially react to osteosarcoma disease. Selective targeting the
TAMs (such as CD163(+) TAMs (38, 142)) rather than pan-
depletion demonstrated improved T-cell cytotoxic function tumor
regression. Such information might prompt researchers to define
specific TAM signatures and subsets in human biopsies for effective
TAM targeting therapies. In fact, specific TAM subset(s) features
and signals continuously evolve along with the disease history,
regulating either pro- or anti-tumor activity. As such, the complex
roles and detailed mechanisms of macrophages in osteosarcoma still
need further exploration.

Based on present studies, the phenotypes or polarization
states of macrophages of osteosarcoma were not well
recognized. These results might appear to be contradictory due
to the inconsistent definitions of M1/M2 markers and different
specimens. Notably, the already described multiple biological
functions of TAMs engaged in different in many types of tumors
suggested that such definitions are insufficient and limiting and
can hardly represent the whole dynamic process of TAMs in the
TME. A thorough characterization of macrophages based on
pathophysiological function rather than merely preexisting
nomenclature is also needed.

Recently researchers, encouraged by successes in treatments with
immune checkpoint blocking in some other types of malignancies,
made efforts to capitalize on advances by extending those regimens to
December 2020 | Volume 10 | Article 586580

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Luo et al. Macrophages in Osteosarcoma Immune Microenvironment
osteosarcoma patients. However, osteosarcoma is characterized by
relatively low immunogenicity, which may partly explain the low
objective response to PD-1 Ab monotherapy treatment in the clinical
trial (143, 144). A better understanding of macrophages allows the
development of novel macrophage targets, and combines TAM-
targeting approaches with other therapeutic approaches, which is of
great significance to provoke immunotherapeutic responses in
osteosarcoma patients. The primary clarified function and targeting
therapeutics of macrophages in osteosarcoma were summarized by
the schematic diagram shown in Figure 2.
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