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Epiphytic ferns have been found to flourish after angiosperms dominated forest communities, and they play important roles in
rainforest canopies. How do epiphytic ferns adapt to tropical rainforest canopy habitats? At present, we know little about the
molecular mechanism underlying this adaptation. Asplenium nidus is a well-known epiphytic fern that is closely related to the
terrestrial species Asplenium komarovii. Here, RNA-seq and comparative transcriptomic analyses were performed to explore the
underlying basis of the adaptation of A. nidus to extreme environments. A total of 44.04 and 44.57Mb clean reads were
obtained from A. nidus and A. komarovii, respectively, and they were assembled into 89,741 and 77,912 unigenes. Functional
annotation showed that 52,305 (58.28% of the total genes for A. nidus) and 45,938 (58.96% of the total genes for A. komarovii)
unigenes were annotated in public databases. Genes involved in stress responses and photosynthesis were found to have
undergone positive selection in A. nidus. Compared to A. komarovii, transcription factors related to stress response, leaf
development, and root development were found to be considerably expanded in A. nidus, especially in the ANR1 subclade of
MADS-box family genes which played roles in lateral root development. This study improves our understanding of the
adaptation of A. nidus to epiphytic habitats by forming unique strategies.

1. Introduction

With 20,000-25,000 species, vascular epiphytes present
widely in many families in ferns, gymnosperms, and angio-
sperms [1, 2]. Epiphytes play important ecological roles in
rainforests [3, 4]. Ferns are the second largest group of
vascular plants, of which 2,800 species are epiphytic. As a
unique group, epiphytic ferns account for one-third of the
leptosporangiate ferns, and they can endure severe drought
stress, nutrient shortage, and intense sunlight, but not frost
[1, 5]. Several epiphytic ferns, including some species in the
genera Vittaria, Pyrrosia, Polypodium, and Platycerium, have
been found to exhibit features typical of crassulacean acid

metabolism (CAM) in photosynthesis [6–8]. Epiphytic
plants utilize specialized ecological strategies to adapt to
variable environments, especially drought stress during
dry seasons.

A. nidus is a well-known C3 epiphytic fern, and phyloge-
netic analyses have revealed that it belongs to theNeottopteris
clade, which is the sister of the Phyllitis clade containing the
terrestrial species A. komarovii (A. scolopendrium L. subsp.
Japonicum) [9–11]. These two species have considerable
similarities in morphology, including the presence of lanceo-
late simple leaves spirally tightly clustered into a bird’s nest
fern. However, A. nidus usually grows to a large size on trees
or rocks within the canopy, while A. komarovii is not
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epiphytic and remains small, growing only on the forest
floor. The close relatedness but difference in habitat makes
these ferns ideal models for comparative genomics and
evolution studies of epiphytes.

Comparative genomics (transcriptomics) involves char-
acterizing the differences in gene expression, and it is com-
monly used in studies of adaptive evolution or evolutionary
developmental biology [12–14]. Moreover, transcriptomic
data are widely used to study nonmodel organisms [15–17].
In this study, we generated and annotated de novo tran-
scriptome assemblies for both A. nidus and A. komarovii.
Comparative analyses were performed to identify (1) unique
genes expressed by A. nidus, (2) gene families that have
undergone significant expansion, and (3) genes that are
under positive selection. We aim to provide new insights on
the transcriptomic mechanisms by which epiphytic ferns
adapt to canopy habitats in tropical rainforests.

2. Materials and Methods

2.1. Sample Collection and Transcriptome Sequencing. A. nidus
and A. komarovii were cultivated in a greenhouse of Shanghai
Chenshan Botanical Garden (Shanghai, China). Young sporo-
phylls of each species were collected and snap frozen in liquid
nitrogen. High-quality total RNA was extracted using TRIzol
reagent (Thermo Fisher Scientific, Waltham, MA, USA)
following the manufacturer’s instructions [18]. After cDNA
library preparation, RNA-seq was performed on the Illu-
mina HiSeq 2500 platform at the Beijing Genome Insti-
tute (Shenzhen, China). Raw reads of both A. nidus and
A. komarovii were deposited into the NCBI short read
archive under accession numbers SAMN11175064 and
SAMN11175065.

2.2. De Novo Assembly and Functional Annotation. Raw
reads were filtered using the Dynamic Trim function in
SolexaQA [19] at a quality threshold of 20. Reads shorter
than 50 bp were removed. After the filtering, 6.61 and
6.69G of clean data were obtained from A. nidus and A.
komarovii, respectively. Trinity [20] was used for de novo
transcriptome assembly with default settings except that
“min_kmer-cov=2” to reduce the number of error-
containing kmers. Thereafter, TGICL 2.1 [21] was utilized
to remove the redundant contigs.

The largest contigs were treated as candidate unigenes
and used for subsequent analyses. All unigenes were anno-
tated by searching NCBI nonredundant protein database
(Nt), the NCBI nonredundant nucleotide database (Nr), the
NCBI nonredundant nucleotide database (Nr), the Swiss
Institute of Bioinformatics (Swiss-Prot), InterPro, the Gene
Ontology database (GO), and the Kyoto Encyclopedia of
Genes and Genomes (KEGG). BLAST searches were per-
formed against the Nt, Nr and the Swiss-Prot databases
with an e value cut-off of 10-5. Thereafter, protein domains
were annotated using InterProScan5 [22]. GO annotation
was performed by Blast2GO [23]. Transcription factors
(TFs) were identified by HMM v3 [24] querying of the
PlantTFDB v3.0 database (http://plntfdb.bio.uni-potsdam
.de/v3.0/).

BUSCO v3.0.2 (Benchmarking Universal Single-Copy
Orthologs) [25] was utilized to assess the completeness of
the transcriptome assembly by using a core set of conser-
vative orthologs in eukaryotic species from the OrthoDB
database (https://busco.ezlab.org/datasets/).

2.3. Identification of Orthologous Genes, Phylogenetic
Analysis, and Analysis of Genes under Positive Selection.
OrthoFinder v2.3.3 was used to identify orthologs in four
fern species (A. nidus, A. komarovii, A. formosae, and
Goniophlebium niponicum), and transcriptome data were
downloaded from the GigaScience repository, GigaDB
[26, 27]. To identify genes under positive selection in A.
nidus, orthologroups with single-copy genes were retained
for further phylogenetic analysis. Amino acid sequences of
each orthologroups were aligned using MUSCLE v3.8.31
with default parameters [28]. Maximum likelihood trees
were constructed using RAxML v8 with the PROTGAM-
MAIJTTF model based on the identified orthologous genes
[29]. Further, we applied the improved branch-site model in
codeml of the PAML v4.8 package on each orthogroups
[30].A. niduswas set as the foreground branch, and we calcu-
lated the rates of nonsynonymous substitutions (Ka) and syn-
onymous substitutions (Ks). The likelihood ration test and
chi-square test were applied to test for significance. Ka < Ks
suggested negative (purifying) selection, and Ka > Ks indi-
cated positive selection [31]. In this study, we retained genes
with Ks > 0:005; genes with a Ka/Ks ratio greater than 1 were
considered putative positively selected genes.

2.4. Functional Enrichment. We performed GO enrichment
analysis to examine the functional genes involved in the
adaptive evolution of A. nidus. This analysis was performed
in agriGO v2.0 using the singular enrichment analysis tool
with hypergeometric’s test, as well as by clusterProfiler in R
software; Fisher’s exact tests (P < 0:05) were used to identify
genes that were enriched in A. nidus compared with A.
komarovii [32, 33].

2.5. Identification and Phylogenetic Analysis of MADS-Box
Family Genes. We identified putative MADS-box proteins
in A. nidus and A. komarovii by hidden Markov model
(HMM) analysis. Firstly, BLASTP was performed against
the protein database of A. nidus or A. komarovii using Arabi-
dopsis MADS-box proteins as queries; the cut-off e value for
these searches was 1e − 05. Secondly, proteins with SRF-TF
domains (PF00319) were obtained from the Pfam database,
and a HMM analysis was used to identify members of the
MADS-box TF family present in A. nidus or A. komarovii.
We verified the identity of the MADS-box candidate genes
using SMART (the Simple Modular Architecture Research
Tool: http://smart.embl-heidelberg.de/) and the NCBI Con-
served Domain Database. Sequences with incomplete MADS-
box domains and redundant sequences (with identities higher
than 99%) were removed.

To clarify the evolutionary relationships among the
MADS-box family genes, 107ArabidopsisMADS-box coding
sequences and 49 new candidate MADS-box genes identified
in A. nidus and A. komarovii were aligned using ClustalX
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v2.1 and a phylogenetic tree was constructed with MrBayes
v3.2 using the mixed model (the number of generations as
set to 10,000 and the sampling frequency was set to ten).
We added generations and maintained the sampling fre-
quency until the standard deviation of split frequencies was
below 0.01. The final model contained ten million genera-
tions and a tree sampling density of 10,000 generations
[34]. The top 25% of samples was discarded as the burn-in.
Thereafter, we constructed a phylogenetic tree using all
candidate MADS-box protein sequences from A. nidus, A.
komarovii, and Arabidopsis thaliana (Arabidopsis) contain-
ing a conserved MADS domain. Next, phylogeny of type II
MADS-box proteins—which contained conserved MADS-,
I, and K-domains—was analyzed.

3. Results

3.1. De Novo Assembly, Completeness Assessment, and
Annotation. We sequenced the transcriptomes of A. nidus
and A. komarovii by RNA-seq, and obtained 44.04 and
44.57Mb clean reads, respectively. Trinity was used for the
de novo assembly of 173,229 and 142,138 contigs in A. nidus
and A. komarovii transcriptomes (Table 1). After the
redundancies were removed, these transcriptome assemblies
yielded 89,741 and 77,912 unigenes inA. nidus andA. komar-
ovii, with N50 values of 1,314 bp and 1,872 bp, respectively.

We used BUSCO to assess the completeness and quality
of the transcriptome assemblies by using a eukaryotic species
database containing 429 orthologroups as the reference.
These transcriptomes showed high coverage rates of the
orthologroups—68.3% in A. nidus and 77.7% in A. komarovii
(Table 1)—indicating that the transcriptomes were relatively
complete, and that the data was of high quality and could be
used for subsequent analyses.

Functional annotation of the transcriptomes was per-
formed using data from seven public databases. A total of
52,305 (58.28% of the genes in the transcriptome) and
45,938 (58.96%) unigenes were successfully annotated in A.
nidus and A. komarovii, respectively (Table 2). Detailed
information on the functional annotation is listed in Table 2.

3.2. Comparative Analysis of Unigenes. We compared the
orthologous genes present in both A. nidus and A. komarovii.
A total of 20,064 orthologroups were shared by these species,
including 25,022 and 27,748 genes in each transcriptome.
In addition, we identified 18,160 and 8,970 A. nidus- and
A. komarovii-specific genes. Subsequently, we performed
GO enrichment analysis of genes from A. nidus

(Figure 1, Tables S1). We enriched 38 and 45 GO terms
by clusterProfiler and agriGO in A. nidus (P < 0:05),
respectively, in which 24 terms were enriched by both
methods. For instance, the regulation of the response to
stimulus GO term (GO: 0048583, 51 genes) was enriched
only in A. nidus. This GO term covered six genes related
to abscisic acid synthesis (ABA), and six genes associated
with photosynthesis (Table S2). Taken together, our
results revealed that the A. nidus-specific genes were
mainly involved in the regulation of the response to
stimulus and related to photosynthesis, stress tolerance,
and ABA signalling.

Next, we identified TFs present in A. nidus and A.
komarovii transcriptomes by querying sequences against
PlantTFDB. A total of 1,528 and 1,198 putative TF coding
unigenes were identified in A. nidus and A. komarovii,
respectively (Figure 2).

Several TFs, such as LIM, TCP, zinc finger-related
(including Zf-HD, C2C2-Dof, C2H2, and C3H), and MYB-
family TFs, were significantly more abundant in A. nidus
than in A. komarovii. These TFs are mainly involved in leaf
and root development, nitrogen assimilation, and plant stress
response; therefore, they may be related to the adaptation of
A. nidus to its epiphytic environments. Moreover, we found
that the MADS-box family TFs were less abundant in A.
nidus than in A. komarovii.

3.3. Genes under Positive Selection Were Annotated.We used
the modified branch-site model in PAML to identify genes
under positive selection from the 20,064 orthogroups. As a
result, nine genes showed significant evidence of positive

Table 1: Summary statistics of the completeness assessments of A. nidus and A. komarovii transcriptome assemblies.

ID Species
Total number of
clean reads (Mb)

Total number
of unigenes

Mean
length (bp)

N50
value (bp)

BUSCOs notation
assessment results

RS259A Asplenium nidus 44.04 89,741 770 1,314
C: 68.3% [S: 32.4% D: 35.9%],
F: 13.5%, M: 18.2%, n: 429

RS261A Asplenium komarovii 44.57 77,912 1,049 1,872
C: 77.7% [S: 42.7%, D: 35.0%],
F: 7.5%, M: 14.8%, n: 429

C: complete BUSCOs; S: complete and single-copy BUSCOs; D: complete and duplicated BUSCOs; F: fragmented BUSCOs; M: missing BUSCOs; n: total
number of BUSCO groups searched.

Table 2: Functional annotation results of A. nidus and A. komarovii
transcriptomes.

Database Asplenium nidus Asplenium komarovii

Total 89,741 100% 77,912 100%

Overall 52,305 58.28% 45,938 58.96%

Nt 25,472 28.38% 25,050 32.15%

Nr 47,800 53.26% 41,178 52.85%

COG 17,509 19.51% 16,985 21.80%

Swiss-Prot 33,121 36.91% 28,148 36.13%

InterPro 34,663 38.63% 31,923 40.97%

GO 17,871 19.91% 14,801 19.00%

KEGG 36,164 40.30% 31,253 40.11%

Note: the two columns represent the number of unigenes and the percentage
of annotated unigenes.
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selection (Table S3). These genes were mainly related to
environmental adaptability, which included environmental
responses and pressure stimulation (i.e., stress-associated
protein CL11175 and zinc finger protein CL6726, genes
involved in stress tolerance and photosynthesis (i.e.,
CL12383)).

3.4. Identification and Phylogenetic Analysis of MADS-Box
Family Genes. With extremely specialized roots, A. nidus
can readily colonize rainforest trees and maintain growth
even in very dry conditions. In this way, the roots of A. nidus
are very different from those of terrestrial ferns such as A.
komarovii. In Arabidopsis, MADS-box genes in ANR1- and
AGL12-subclades are involved in root development and
differentiation [35]. Given the difference in the copy number
of MADS-box family genes in A. nidus and A. komarovii, we
identified and characterized MADS-box family genes in these
two species. HMM analysis and manual searching identified
24 and 49MADS-box family genes in A. nidus and A. komar-
ovii, respectively. After removing the redundant sequences
and genes with incomplete MADS-box domains, a total of
24 and 25 MADS-box family genes were subjected to further

phylogenetic analyses. To clarify the evolutionary relation-
ships among the MADS-box family genes, we constructed
a phylogenetic tree using the amino acid sequences of
MADS-box family genes in A. nidus, A. komarovii, and
Arabidopsis. Phylogenetic analysis (Figure S1) revealed
that one gene from A. komarovii clustered with Mα-type
Arabidopsis genes, but we did not find any type I MADS-
box family genes in A. nidus. With respect to type II
MADS-box genes, the MIKC proteins were further divided
into 13 well-characterized subclades (Figure 3). One gene
was identified as a MIKC∗-type gene in A. komarovii. In
addition, A. komarovii was found to contain four SVP
subclade genes; however, these genes were absent in A.
nidus. Interestingly, 24 genes in the ANR1 subclade were
found to have expanded in A. nidus compared to 19 genes
in A. komarovii.

4. Discussion

Epiphytes are unique plants that grow on other plants, and
they are widely distributed in temperate and tropical rainfor-
ests [1, 5]. A. nidus, the bird’s nest fern is present in tropical
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Figure 1: GO enrichment map for A. nidus. GO terms, visualized as dots, and shared genes are linked with gray lines.
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rainforests on tree trunks or rocks, whereas A. komarovii is a
terrestrial species that thrives in temperature regions. A.
nidus is considered to be more sensitive to climate fluctua-
tions and could endure severe drought stress, nutrient short-
age, and intense sunlight [5, 36, 37]. Several epiphytic ferns
exhibit features typical of CAM photosynthesis—an adapta-
tive mechanism to dry habitats [6–8]. Previous studies have
suggested that large plants, thick fronds, and robust root
systems are the major physiological adaptations to drought,
although similar analyses of the adaptive features of pure
C3 plants have not yet been performed [38–40]. In this study,
we identified the factors affecting environmental adaptability
in epiphytic A. nidus using transcriptomic data. First, we
identified genes unique to A. nidus, including those related
to the regulation of response to stimulus (GO: 0048583,
51 genes). These genes are mainly involved in abiotic
stress tolerance, ABA, and photosynthesis; they may con-
tribute to the adaptation of A. nidus to drought stress
and intense sunlight. Second, we identified genes under
positive selection. These genes are usually associated with
adaptation [41]. We found nine genes under positive selec-
tion in A. nidus (Ka/Ks > 1; Table S3). Among these genes,
three were related to environmental adaptability, including
stress-associated protein responses, as well as photosynthesis.
Previous studies have shown that OsAKT1 plays essential
roles in the ability of K+ channels to uptake in rice; K has
crucial roles in various physiological processes, including
photosynthesis, assimilated products transport, and
tolerance to biotic or abiotic stresses [35, 42]. These genes
may also be responsible for the adaptation of A. nidus to

extreme environments and intense sunlight. Comparisons
of the TFs between these two species revealed a significant
expansion of the zinc finger-related and MYB gene families
in A. nidus (Figure 2). The zinc finger-related and MYB
gene families were previously reported to be involved in
drought tolerance via ABA signalling [43–45]. Given that
these TF gene families involved in ABA signalling and plant
responses to drought stress, it is likely that A. nidus utilizes
ABA signalling-mediated pathways to adapt to the
epiphytic lifestyle in the tropical rainforest. In addition,
genes related to photosynthesis were identified in A. nidus
by the functional annotation of specific genes and the
analysis of genes under positive selection. These genes may
contribute to the adaptation of A. nidus to intense sunlight
[46].

Compared to terrestrial species that take root in soil,
epiphytes colonize the crowns of forest trees and face chal-
lenges in obtaining water and nutrients [39]. A. nidus, a
well-known epiphytic fern, has been hypothesized to endure
dry conditions by making use of a unique root system and
large fronds [38, 47]. It possesses sponge-like roots to absorb
and store water, as well as a mass of scaly hairs to protect the
apical meristem. In addition, it utilizes its fronds to form
basket-shaped rosettes to intercept humus, generate sus-
pended organic soil, and improve nutrient availability.

Significant expansion of gene families is known to be
correlated with the adaptive evolution of closely related
species [48, 49]. To study the mechanisms that facilitate the
absorption of water, we examined genes related to root and
leaf development. Comparisons of TFs showed that members

1

3

13

41

10

15

2

4

2

6

16

62

25

34

37

24

48

24

17

19

31

12

9

3
3

9

3

35

121

84

4

42

51

9
9

14

10

5
6

78

117

8

37

175

21

18

4

2

1

2

1

110

8

23

9

7

13

24

3

1

0

−1

−5

−16

−4

−7

−1

−2

−1

−3

−8

−32

−13

−19

−21

−14

−28

−14

−10

−12

−20

−8

−6

−2
−2

−6

−2

−24

−85

−62

−3

−32

−39

−7
−7

−11

−8

−4
−5

−65

−100

−7

−33

−162

−20

−18

−4

−2

−1

−2

−1

−115

−9

−26

−11

−9

−21

−39

−6

−3

MYB
C3H

bHLH
MYB−related

Trihelix
AP2−EREBP

GRAS
G2−like

C2H2
WRKY

C2C2−Dof
Alfin−like

NAC
mTERF

bZIP
SBP
Tify

C2C2−GATA
TUB

MADS
FHA
ARF
OFP

ABI3VP1
LIM

zf−HD
BBR/BPC
RWP−RK

TCP
HSF
BSD
TAZ
LOB

E2F−DP
PLATZ

C2C2−CO−like
CSD

BES1
GeBP

ARR−B
Sigma70−like

S1Fa−like
SRS

VOZ
LFY

CAMTA
EIL

SAP
GRF

HB
TIG
CPP

C2C2−YABBY
PBF−2−like

FAR1
NOZZLE

DBP
HRT
ULT

VARL

−100 0 100
Value

G
en

e f
am

ily

Asplenium komarovii
Asplenium nidus

Asplenium komarovii Asplenium nidus

Figure 2: The distribution of TF gene families in A. nidus and A. komarovii. Blue columns represent TF genes in A. nidus, and red columns
represent TF genes in A. komarovii.

5International Journal of Genomics



of the MADS-box, LIM, and TCP TF families varied consid-
erably between A. nidus and A. komarovii. Specifically, the
ANR1 subclade exhibited a considerable expansion in A.
nidus (24 members) compared to A. komarovii (19 mem-
bers). However, this conclusion should be cautious because
of the transcriptome data used. The higher number of
ANR1 genes in A. nidus may be related with its higher
assembly completeness (52,305 and 45,938 in A. nidus and
A. komarovii, respectively). Nevertheless, BUSCO results
showed high coverage rates of the orthologroups in A. nidus.
At this point, further analyses and complete data are needed
to support our speculation. In seed plants, the ANR1 proteins
regulate lateral root development [50, 51]. The expanded
ANR1-family genes identified here may have acquired novel
root development functions via neofunctionalization. The
LIM family has been reported to be associated with primary
and lateral root development [52, 53]. In addition, class II
plant-specific TCP TFs are known to affect local patterns of
cell proliferation and to control morphological traits that
determine evolutionary success, including leaf formation
and shoot branching [54]. These observations suggested that

the expansion of gene families related to root or leaf develop-
ment in A. nidus had facilitated its adaptation to drought.
More importantly, it is apparent that the epiphytic A. nidus
has evolved specific strategies with respect to photosynthesis,
root development, and frond morphology to withstand
extreme canopy environments.

5. Conclusions

Due to its epiphytic growth habitat, A. nidus has been forced
to withstand extreme environments. In this study, we con-
structed de novo transcriptome assemblies for A. nidus and
its close relative A. komarovii. Comparative transcriptomic
analysis showed that genes unique to A. nidus were mainly
involved in stress tolerance and photosynthesis, implying
that these genes may contribute to its adaptation to drought
stress and intense sunlight. It is notable that the expansion
of TF gene families and A. nidus-specific genes was related
to ABA signalling pathway and stress responses, which
potentially reflect the adaptation of A. nidus to drought.
The expansion of TF gene families related to root or leaf
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Figure 3: Phylogenetic tree of type II MADS-box proteins in Arabidopsis, A. nidus, and A. komarovii. At, Arabidopsis; RS259, A. nidus;
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development may have also facilitated this adaptation. Over-
all, our data suggest that A. nidus has evolved specific adap-
tations related to photosynthesis, root development, and
large frond morphology to withstand the extreme epiphytic
environment. There are also important limitations to our
study. Firstly, the transcriptome represented only a portion
of all coding genes; therefore, it provided limited sequence
information due to the fact that genes are dynamically
expressed. Secondly, tissues of A. nidus and other species
should be sampled to verify these findings. Lastly, more
detailed functional experiments are needed to provide deeper
insights into the molecular mechanisms of epiphytic adapta-
tions to harsh environments.
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