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Summary

Engineering multicellular patterning may help in the
understanding of some fundamental laws of pattern
formation and thus may contribute to the field of
developmental biology. Furthermore, advanced spa-
tial control over gene expression may revolutionize
fields such as medicine, through organoid or tissue
engineering. To date, foundational advances in spatial
synthetic biology have often been made in prokary-
otes, using artificial gene circuits. In this review, engi-
neered patterns are classified into four levels of
increasing complexity, ranging from spatial systems
with no diffusible signals to systems with complex
multi-diffusor interactions. This classification high-
lights how the field was held back by a lack of diffus-
ible components. Consequently, we provide a
summary of both previously characterized and some
new potential candidate small-molecule signals that
can regulate gene expression in Escherichia coli.
These diffusive signals will help synthetic biologists
to successfully engineer increasingly intricate, robust
and tuneable spatial structures.

Introduction

Biological patterning can be defined as the organized
arrangement of an organism’s features (Davies, 2017),
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where an initially uniform field of cells gains complexity
and heterogeneity in the spatial domain (Murray, 2013;
Davies and Glykofrydis, 2020). This structure is crucial
for function in multicellular organisms (Blest, 1957; Ste-
vens et al., 2006; Strauss et al., 2020).

Understanding the mechanisms behind patterning is
difficult due to the tangled nature of biology. The study
of developmental biology largely consists in observing
embryos or tissues and in perturbing the systems to vali-
date different hypotheses (Murray et al., 2011; Raspopo-
vic et al., 2014). This approach leads to insights into the
complexity of a particular biological system. In contrast,
in synthetic biology a system is built from first principles,
making it simpler, more controllable and insulated from
the natural genetic context (Nielsen et al., 2016; Meyer
et al., 2019). Building the desired patterns with a syn-
thetic system is one step towards showing that these
basic principles can potentially occur in biology (Davies,
2017; Luo et al.,, 2019; Santos-Moreno and Schaerli,
2019). However, it is important to acknowledge that suc-
cessful engineering does not necessarily imply the
occurrence of specific mechanisms in natural systems.
Synthetic patterning systems nonetheless provide power-
ful tools for bioengineering and offer a proof that these
mechanisms could potentially occur in development.

In addition to expanding our knowledge of develop-
mental biology, building a simple and programmable sys-
tem is necessary for the synthesis of patterned tissues,
organoids or biofiims for downstream biotechnology
applications (Scholes and Isalan, 2017; Davies and Gly-
kofrydis, 2020). To work towards this goal, bacteria pro-
vide a relatively simple chassis, where spatial systems
can be built in a controlled manner from first principles,
using modelling to guide engineering (Elowitz and Lei-
bler, 2000; Gardner et al., 2000; Salis et al., 2009).

This review outlines the progress in synthetic pattern-
ing using Escherichia coli and focuses on how the field
was historically held back by a lack of diffusible compo-
nents. It then highlights recently characterized compo-
nents that can be used to build more complex, multi-
diffusor systems. While interesting patterning systems
were also engineered in other cellular systems (Cachat
et al., 2017; Sekine et al., 2018; Tordoff et al., 2021),
this review focuses on E. coli.
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Engineered circuits for spatial patterning

To consider the problem of synthetic patterning systems
systematically, here we suggest grouping them into four
levels according to their design characteristics (Fig. 1).
Level O circuits do not contain any synthetic signals that
diffuse through normal Fickian diffusion; instead, spatial
structure emerges by other processes, such as cellular
growth. Level 1 systems rely on one or more diffusing
components whose production is not dynamically regu-
lated by the circuit. Level 2 systems incorporate a single
diffusible component, which is dynamically regulated by
the circuit components. Level 3 systems use multiple
dynamically regulated diffusible components.

Spatial systems where the diffusing components are
not dynamically regulated by the circuit (Level 1) were
the first to be engineered in E. coli (Basu et al., 2005).
Stripe patterning systems are the most prominent
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example among Level 1 circuits. Initially, diffusor gradi-
ents were interpreted by intracellular incoherent feedfor-
ward circuits, to form rings of gene expression at
intermediate distances from their source (Basu et al.,
2005; Schaerli et al., 2014; Kong et al., 2017). Bistable
mutually inhibitory circuits were also used to interpret
morphogen gradients, forming systems that can robustly
generate sharp boundaries between two or more spatial
regions of gene expression (Barbier et al., 2020; Grant
et al., 2020).

Hierarchical patterning is a scalable Level 1 system,
implemented in a recently engineered circuit in E. coli
(Boehm et al.,, 2018). Two diffusor sources at the edges
of a spatial domain are interpreted by an AND gate cir-
cuit to lead to three distinct spatial partitions. In theory,
additional diffusing species and AND gates could be
introduced to generate increasingly complex structures:
for example (2n-1) spatial domains could be generated
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Fig. 1. Four levels of regulatory complexity in engineered spatial patterning systems. Each level is divided into an example circuit, and the
resulting pattern upon implementation. Diffusing components of the circuit are labelled with a “D”, non-diffusing nodes are unlabelled. The colour
of each node corresponds to the colour of the reporter in the respective implementation. Level 0: synchronized repressilator circuit implemented
in a growing bacterial colony (Potvin-Trottier et al., 2016). The plot shows the circuit oscillations in single cells or stirred liquid culture. Level 1:
incoherent feedforward circuit, where the diffusor-producing sender cells (cyan) are placed in the middle of a bacterial lawn (Basu et al., 2005).
The plot shows the concentration gradient of the diffusor away from the centre of the lawn. Level 2: self-activation and feedback inhibition circuit
with one dynamically regulated diffusor creates spatial propagating waves and spatially synchronized oscillations (not shown) (Danino et al.,
2010). The plot shows the oscillations of the circuit in single cells, or in a cell population. Level 3: self-activation and lateral-inhibition circuit with
two dynamically regulated diffusors creates stationary Turing patterns in the TulS chemical system (Horvath et al., 2009). The plot shows the
localized, self-activating positive feedback of the slow-diffusing species D, (blue curve) and the lateral inhibition of the fast-diffusing species D,
(yellow curve).
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from n orthogonal diffusing signals in a one-dimensional
space. While this type of patterning can explain some
developmental patterning programs, such as that of the
vertebrate neural tube (Briscoe and Small, 2015), it fails
to capture self-organizing periodic structures, such as
digit patterning in the chick limb bud (Sheth et al., 2012;
Raspopovic et al., 2014).

Spatial patterns are often shaped by the complex
interaction of the circuit components with cellular growth
and other biological and physical properties of the sys-
tem. This interplay is highlighted in some recently engi-
neered Level 0 systems, where a synchronized circuit
of the repressilator (Elowitz and Leibler, 2000) was
used to produce periodic concentric ring patterns in
growing colonies of cells, in the absence of diffusing
signals (Potvin-Trottier et al., 2016; Riglar et al., 2019).
The mechanism that provides spatial structure consists
of a combination of growth at the edge of the bacterial
colony, and of the arrest of circuit activity at the colony
interior.

Reaction—diffusion systems, where the diffusor is
dynamically regulated by the circuit components (Level
2), have also been engineered successfully (Danino
et al., 2010; Payne et al., 2013). Unlike Level 1, Level 2
systems generally do not rely on pre-patterns or posi-
tional information. For this group, engineering was
mainly focused on circuits with a self-activating and a
laterally inhibiting component. A prominent example is
the oscillator with a diffusible positive feedback,
observed to generate spatially synchronized oscillations
and propagating waves (Danino et al., 2010). A further
example with a diffusible inhibiting component, but lack-
ing a diffusible positive feedback, was shown to produce
a ring pattern in growing colonies of cells, which is not
reliant on diffusor gradients (Payne et al., 2013; Cao et
al., 2016). All the systems mentioned above rely on a
single diffusive component; the engineering of these sys-
tems becomes increasingly challenging for more diffus-
ing species.

While numerous successes were achieved with Level
1 and 2 spatial circuits, successfully engineering Level 3
systems, consisting of multiple dynamically regulated dif-
fusors, is still in its infancy. Turing patterns are the most
prominent example of Level 3 systems; they are formed
by reaction—diffusion circuits of at least two diffusors,
where generally the first is self-activating, whereas the
second performs a lateral inhibition (Turing, 1952; Gierer
and Meinhardt, 1972; Scholes et al, 2019). Classical,
deterministic Turing patterns self-organize into periodic
spot, stripe or labyrinthine spatial structures (Horvath et
al., 2009; Asakura et al., 2011; Murray, 2013). Originally,
they were formulated mathematically with little regard to
biological context (Turing, 1952). Computationally, many
biological candidate networks were found to produce
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Turing patterns (Marcon et al., 2016; Zheng et al., 2016;
Scholes et al, 2019). However, engineering them
remains difficult mainly because of their high sensitivity
to changes in system parameters (Maini et al., 2012;
Scholes et al., 2019). The issue of fine-tuning is exacer-
bated by the lack of appropriately tuneable components
to achieve the narrow parameter space in which classi-
cal Turing patterns occur.

Greater success was seen with stochastic Turing pat-
terns because their fine-tuning requirements are more
relaxed (Butler and Goldenfeld, 2011). Stochastic Turing
patterns were recently engineered in E. coli with a circuit
implemented according to the self-activation and lateral
inhibition topology, with two diffusible quorum-sensing
signals (Karig et al., 2018). While easier to engineer, sto-
chastic Turing patterns display more irregularity in their
periodic spatial structure (Butler and Goldenfeld, 2011;
Karig et al., 2018). Solitary structures are another possi-
ble mechanism for periodic patterning due to their close
resemblance to some natural patterns (Sekine et al.,
2018). They can also be formed by activator-inhibitor
reaction—diffusion systems; however, their fine-tuning
requirements are more relaxed compared to Turing pat-
terns, and might therefore be easier to build (Koga and
Kuramoto, 1980; Purwins et al., 2010). Even though they
are still an unsolved engineering problem, solitary pat-
terns were recently observed in a refactored Nodal-Lefty
system in HEK cells (Sekine et al., 2018).

While elusive in synthetic biology, regular-repeat
Turing patterns were more readily observed in chemical
reaction systems, where they were first detected in the
early 1990s in the chlorite—iodide—malonic acid (CIMA)
reaction (Castets et al, 1990; Lengyel et al, 1993).
Turing patterns were then also discovered in the
thiourea—iodate—sulfite (TulS) reaction with a rational
design approach (Horvéath et al., 2009). Unlike biological
systems, chemical reactions are reliably described by
the simpler laws of mass action, and system parameters
can often be identified (Turanyi, 1994; Kigler et al.,
2009; Pusnik et al., 2019; Yeoh et al., 2019; Tica et al.,
2020). Furthermore, the tuning of these systems by
changing initial reactant concentration or temperature is
easily achieved and has predictable effects on the
dynamics of the system (Horvath et al, 2009;
Carballido-Landeira et al., 2010; Asakura et al., 2011).
Lastly, the systems are easily isolated from external
interacting components; this is difficult to achieve with
biological systems where cross-talk between synthetic
parts and with the cellular chassis is inevitable (Ceroni
et al, 2015; Nielsen et al., 2016; Butzin and Mather,
2018; Miiller et al., 2019; Du et al., 2020). These and
other related factors made chemical reaction systems
suited to support such a fine-tuned phenomenon as
Turing patterns. However, recent advances with the
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parametrization of synthetic genetic circuits may open
new possibilities also in the field of synthetic biology
(Espah Borujeni et al., 2020).

Multi-diffusor systems were historically held back by
the lack of a diverse palette of well-characterized diffus-
ible components. Studies tried to circumvent this short-
age, for example, by considering the E. coli cell chassis
to be one of the diffusors (Duran-Nebreda et al., 2021).
However, cell growth within a bacterial colony differs sig-
nificantly from classical diffusion because it is not direc-
tionally unbiased. The movement of cells in space is
limited within a colony and mainly happens outwards, in
the direction of growth. Due to developments in directed
evolution, genome mining and metabolic engineering,
more well-characterized diffusible components have
recently become available (Meyer et al., 2019; Du et al.,
2020). We expect these advances to be pivotal in the
further development of spatial patterning systems, partic-
ularly of multi-diffusor circuits.

The same diffusible synthetic components were also
used in the engineering of spatially distributed computing
systems, where neighbouring bacterial colonies contain-
ing simple logic gate circuits communicate by secreting
diffusible signals (Tamsir et al., 2011; Du et al., 2020).
Spatially distributed systems enable complex biological
computation ranging from basic logic operations (Du et
al., 2020) to more complex neural-like computing (Li et
al., 2021). These systems do not fall in any of the circuit
categories introduced in this study due to their spatially
distributed nature. Even though outside the scope of this
article, these types of systems would also directly benefit
from the development of novel well-characterized signal-
ling modules.

Novel diffusible components

Historically, the biggest hindrance to the development of
spatial systems with two or more dynamically regulated
diffusors is the lack of well-characterized, robust and
tuneable diffusing components for E. coli (Scholes and
Isalan, 2017). The basic criteria that synthetic signalling
modules need to satisfy are: (i) diffusion and bidirectional
passage across cellular boundaries; (i) ability to regulate
gene expression; (iii) simple synthesis pathways in
E. coli, to avoid metabolic burden and issues with refac-
toring overly complex systems; (iv) orthogonality to other
synthetic components and endogenous E. coli chemistry;
(v) it is also desirable that the signals are well-
characterized and optimized for model-based rational
engineering.

Among potential diffusible components, quorum-
sensing homoserine lactones (HSLs) are most widely
used in E. coli synthetic biology (Basu et al, 2005;
Danino et al., 2010; Karig et al., 2018). HSLs are well-

studied and were recently reviewed in the context of
synthetic biology and pattern engineering (Papenfort and
Bassler, 2016; Boo et al., 2021). While being versatile
and easy to implement, they also possess limitations,
which mainly stem from their similar chemistry. First,
even though orthogonal HSLs exist, cross-talk between
them is common (Boedicker and Nealson, 2016; Silva et
al., 2017; Tekel et al., 2019; Du et al., 2020). In addition,
engineering differential diffusion with pairs of HSLs can
be challenging; this is of particular interest for Turing pat-
tern engineering and could also be of interest with other
spatiotemporal systems where space scale separation is
needed (Lengyel and Epstein, 1992; Szalai and De Kep-
per, 2008; Horvath et al., 2009). While quorum sensing
is a highly effective solution to implement cell-cell com-
munication in prokaryotes, this article aims to move
beyond it and focus on novel non-quorum-sensing
signals.

Recently, 12 different small molecule inducible genetic
systems were optimized for use in E. coli synthetic biol-
ogy (Meyer et al., 2019). These were incorporated in the
"Marionette’ strain, which provides the capability of regu-
lating 12 genes simultaneously and independently. How-
ever, to use these inducible systems in a Level 2 or 3
spatial circuit, the small molecules must be produced
endogenously from freely available precursors. Among
the Marionette components, at least six could potentially
be easily produced by E. coli with enzymes ported from
other microorganisms: excluding quorum-sensing sys-
tems, these are DAPG, salicylate, protocatechuate, nar-
ingenin, vanillate, acrylate).

These avenues were further explored in a recent study
where six novel, orthogonal, small-molecule inducers
were developed for use in E. coli synthetic biology (Du
et al., 2020). Both their inducible genetic components
and synthesis mechanisms were developed and opti-
mized for synthetic cell-cell communication. A screen of
the literature shows that many more diffusible signals
could be ported to E. coli, as candidates for well-
behaving signalling modules. Table 1 provides a list of
the recently discovered signals and of the potential can-
didates. Although this review focuses on E. coli, some
studies indicate that these diffusors may be ported to
other prokaryotes as well as some eukaryotes for a
wider range of applications. For instance, three of the
molecules in Table 1 have successfully been engineered
in E. coli, S. cerevisiae and mammalian cells (HEK-
293T) (Du et al., 2020).

For the successful implementation of these signals, it
is important to optimize both the synthetic and the sens-
ing components, where the efficiency in the endogenous
synthetic system should meet the sensitivity of the sens-
ing component. For example, it could easily happen that
the endogenous synthetic mechanisms do not produce
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Table 1. Novel diffusible signals for E. coli synthetic biology.

Diffusion
Synthesis Max fold Molecular rate
Component Pubchem ID mechanism Degradation  Receptor induction weight (Da) (mm?h~") References

Novel diffusible signals optimized for synthetic biology

DAPG 16547 phlIACBD phiG phIF 1380 210.18 2.66 Bottiglieri and Keel
(2006), Meyer et al.
(2019), Du et al. (2020)

Salicylate 338 pchBA/ip9/ nahG nahR 47 138.121 3.22 Du et al. (2020)
ybts
p-Coumaroyl-HSL 71311837 rpal, 4cl, tal aiiA rpaR 170 247.25 2.47 Liao et al. (2018),
Du et al. (2020)
Isovaleryl-HSL 71627311 bjal, bkdFGH, aiiA bjaR 350 185.22 2.82 Liao et al. (2018),
ipdA1 Du et al. (2020)
MMF N/A mmfLHP N/A mmfR 26 198.22 2.73 Du et al. (2020)
Naringenin 932 chs, chi, 4cl, fns fdeR 16 272.25 2.37 Lee et al. (2015),
tal Du et al. (2020)
C4-HSL 10130163 rhll aiiA rhiR 124 171.2 2.92 Du et al. (2020)
30Ce-HSL 119133 lux! aiiA luxR 185 213.23 2.64 Du et al. (2020)
Cg-HSL 6914579 cepl aiiA cepR 150 227.3 2.57 Du et al. (2020)
30C-HSL 3246941 las! aiiA lasR 82 297.194 2.28 Du et al. (2020)
Cumate 10820 N/A N/A cymR 860 164.2 2.97 Meyer et al. (2019)
Vanillate 8468 tal, c3h, comt, ligM vanR 1250 168.15 2.94 Ni et al. (2015), Wu et al.
fcs, ech, (2018), Meyer et al.
ligV (2019)
IPTG 656894 N/A N/A lacl 688 238.3 2.51 Meyer et al. (2019)
ATC 54675758 N/A N/A tetR 490 426.4 1.95 Meyer et al. (2019)
L-arabinose 439195 N/A N/A araC/araé 500 150.13 3.10 Meyer et al. (2019)
Choline 6209 N/A NA betl 306 139.62 3.20 Meyer et al. (2019)
Protocatechuate 19 aroZ / pobA aroY pcal 356 154.12 3.06 Martin et al. (2013),

Wang et al. (2017a),
Meyer et al. (2019)

30HC,4-HSL 11681427 cinl aiiA cinR 500 327.46 2.19 Meyer et al. (2019)

Acrylate 6581 aspA, panD, NA acuR 84 72.06 4.39 Meyer et al. (2019),
act, acl2, Ko et al. (2020)
YCIA

Erythromycin 12560 N/A NA mphR,ery 37 733.9 1.56 Zhang et al. (2010),

Meyer et al. (2019)
Potential diffusible signals for synthetic biology

Kynurenine 846 kynAB kynU kynR 208.21 2.67 Kurnasov et al. (2003),
Hanko et al. (2020)
Itaconate 811 cadA ripABC itcR 215 130.1 3.31 Okamoto et al. (2014),

Hanko et al. (2018,
2020), Barbier et al.
(2020)

Acetoin 179 budAB pc-acoABCL  acoR 88.11 4.00 Huang et al. (1999),
Ali et al. (2001),
Delamarre and Batt
(2006), Silbersack
et al. (2006), Vivijs
et al. (2014), Hanko et
al. (2020)

Trigonelline 5570 ctgS1/ctgS2 tgnAB nodD 137.14 3.23 Schmidt et al. (1986),
Ashihara (2008),
Mizuno et al. (2014),
Wang et al. (2017b),
Perchat et al. (2018)

Benzoate 242 pal, 4cl, benABCD benM 3700 121.11 3.42 Neidle et al. (1987),
phdBCE Otto et al. (2020)

cis,cis-Muconate 5280518 PObA, aroY, catBC catR/benM 14211 3.18 (Parsek et al., 1992,
catA Sengupta et al., 2015,

Skjoedt et al., 2016,
Choi et al., 2020)
Luteolin 5280445 tal, 4cl, chs, spnK nodD 286.24 2.32 Schmidt et al. (1986),
chi, fns, f3h Suominen et al. (2003),
Peck et al. (2006),
Marin et al. (2017),
Bashyal et al. (2019),
De Paepe et al. (2019)
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Table 1. (Continued)

Diffusion
Synthesis Max fold Molecular rate
Component Pubchem ID mechanism Degradation  Receptor induction weight (Da) (mm?h~") References
Apigenin 5280443 tal, 4cl, chs, pomt7 /f3h  nodD 270.24 2.38 Lee et al. (2015), Marin
fns et al. (2017), De Paepe
et al. (2019)
Kaempferol 5280863 tal, 4cl, chs, N/A qdoR 286.24 2.32 Siedler et al. (2014),
chi, f3h, fls Stahlhut et al. (2015)
Quercetin 5280343 tal, 4cl, chs, yhhW gdoR 302.23 2.26 Adams and Jia (2005),
chi, 13h, fls, Stahlhut et al. (2015),
fmo An et al. (2016), Marin
et al. (2018)
Ectoine 126041 ectABC ectD ehuB 142.16 3.18 (Jebbar et al., 2005, He
et al., 2015, Richter et
al., 2019)
Nicotinate 938 pncA nnmt nicS 123.11 3.39 (Joshi and Handler, 1960,
Shats et al., 2020)
Phloretin 4788 tal, er, 4cl, phy pmeR 274.26 2.36 Schoefer et al. (2004),
chs Vargas et al. (2011),
Liu et al. (2022)
Phenylglyoxylate =~ 1548898 dmdh mdIC phgR 150.13 3.10 Gunsalus et al. (1953),

Tang et al. (2018),
Hanko et al. (2020)

The table shows some recently optimized diffusible signals collected from Meyer et al. (2019) and Du et al. (2020), and potential diffusible sig-
nals that were not yet optimized for synthetic gene circuit engineering. Synthesis and degradation pathways are suggested for each of the mole-
cules where available. The transcription factors regulated by each of the molecules are also shown; some basic parameters of their genetic
response systems are shown where available. The molecular weights are used to predict their diffusion coefficients in D,O (Evans et al., 2018).
DAPG, diacetylphloroglucinol; MMF, methylenomycin furan; N/A, not available to date.

enough inducer to fully activate the sensors, leading to a
poor dynamic range in their response. For this purpose,
endogenous metabolic pathways may need to be tuned
to increase precursor availability (Ni et al., 2015) or to
avoid diffusor degradation (Adams and Jia, 2005). The
development of robust diffusible signals and of bacterial
strains that can reliably support this signalling is pivotal
for the field of spatial pattern engineering and will poten-
tially benefit synthetic biology in general.

Conclusion

The engineering of biological patterns could help untan-
gle the complex mechanisms of development (Davies,
2017) and revolutionize organoid engineering and mate-
rials science. While many interesting patterns have
already been built, the potential for innovation is still
great. This is particularly true for multi-diffusor circuits,
which could potentially show more diverse and complex
spatiotemporal behaviours (Boehm et al., 2018; Barbier
et al., 2020; Grant et al., 2020). We argue that the recent
development of novel small-molecule diffusible signals
will contribute to a development of spatial circuits, partic-
ularly of those with multiple diffusible components. We
anticipate that recently discovered diffusive signals will
enable synthetic biologists to engineer increasingly intri-
cate, robust and tuneable spatial structures.
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