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Pseudogene fms-related tyrosine kinase 1 pseudogene 1 (FLT1P1) cooperates 
with RNA binding protein dyskeratosis congenita 1 (DKC1) to restrain 
trophoblast cell proliferation and angiogenesis by targeting fms-related tyrosine 
kinase 1 (FLT1) in preeclampsia
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ABSTRACT
In preeclampsia (PE), preexistent maternal endothelial dysfunction leads to impaired placentation and 
vascular maladaptation. Long noncoding RNAs (lncRNAs) have been shown to participate in the 
placentation process. LncRNA fms-related tyrosine kinase 1 pseudogene 1 (FLT1P1) was previously 
reported to be upregulated in PE. In this study, we verified the effect of FLT1P1 and its cognate gene 
FLT1 on trophoblast cell proliferation and angiogenesis by using Cell Counting Kit-8 (CCK-8) assay, tube 
formation assay, and western blot analysis. Their binding to RNA binding protein dyskeratosis congenita 
1 (DKC1) was validated by conducting RNA immunoprecipitation (RIP) and RNA pulldown assays. In this 
study, knockdown of FLT1P1 or FLT1 was found to promote cell proliferation and angiogenesis in 
trophoblasts. In addition, FLT1P1 recruited DKC1 to stabilize FLT1. Importantly, silencing FLT1P1 or 
DKC1 decreased the stability of FLT1. Rescue assays revealed that FLT1 overexpression reversed the 
effect of silenced FLT1P1. Overall, FLT1P1 cooperates with DKC1 to restrain trophoblast cell proliferation 
and angiogenesis by targeting FLT1.
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Introduction

Preeclampsia (PE), with a global prevalence of esti-
mated 2% to 8% of all pregnancies, is one of the causes 
of maternal and fetal mortality [1]. It is related to 
abnormal placentation and maladaptation of the 
maternal cardiovascular system, in which vascular 
resistance is abnormally increased, resulting in mater-
nal hypertension [2]. Importantly, the disease is linked 
to maternal long-term cardiovascular disorders and 
systemic inflammation [3]. PE is a consequence of 
various pathophysiological processes including altered 
trophoblast proliferation, reduced invasion of extra-
villous trophoblasts, impaired differentiation of tro-
phoblastic cells, and dysregulated immunoregulation 
[4,5]. However, its pathogenesis and associated mole-
cular mechanisms are still not completely understood.

Long non-coding RNAs (lncRNAs) are defined as 
transcribed RNA molecules ranging from 200 to 
100,000 nucleotides that do not code for any protein 
[6]. It has been recognized that lncRNAs play different 
roles in many important biological processes, 

including regulation of transcriptional and posttran-
scriptional processes, epigenetic control, differentia-
tion and development, cell cycle control, apoptosis, 
and metabolic processes [7], participating in the 
pathogenesis and development of various diseases, 
including PE [8,9]. Recently, lncRNAs were identified 
to be associated with the pathogenesis of PE. For 
example, downregulation of lncRNA maternally 
expressed gene 3 (MEG3) promotes the apoptosis 
and suppresses the migration of trophoblast cells 
[10]. LncRNA metastasis associated lung adenocarci-
noma transcript-1 (MALAT-1) is expressed at a low 
level in PE and regulates JEG-3 trophoblast cell migra-
tion and invasion [11]. As a subtype of lncRNA, 
pseudogene shares high sequence homology with its 
cognate gene, which has the capacity to code protein 
[12]. It was also found that pseudogene could regulate 
its cognate gene. As reported, the pseudogene phos-
phatase and tensin homolog pseudogene 1 (PTENP1) 
modulate the level of its matched protein-coding gene 
phosphatase and tensin homolog (PTEN) [13]. Since 
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then, numerous pseudogenes have been validated to 
exert critical functions in diverse pathophysiological 
and physiological processes [14,15]. There are few 
reports concerning the roles of pseudogenes in PE. 
The pseudogene urate (hydroxyiso-) hydrolase, pseu-
dogene (URAHP), promotes proliferation and regu-
lates the pathogenesis of PE [16]. Dysfunction of 
pseudogene phosphoglycerate kinase 1, pseudogene 
2 (PGK1P2) is involved in PE by acting as 
a competing endogenous RNA of phosphoglycerate 
kinase 1 [17]. The structural similarity to lncRNA 
makes the pseudogene modulate its target gene 
expression by recruiting RNA binding proteins 
(RBPs) at the transcriptional level [18,19]. 
Dyskeratosis congenita 1 (DKC1) is a nucleolar, 
RBP, which is highly conserved in eukaryotes [20]. 
This protein is a key component of the telomerase 
complex and an essential structural subunit of the 
telomerase ribonucleoprotein and it has the ability to 
activate telomerase ribonucleoprotein activity, result-
ing in telomere shortening [21]. Previous studies have 
shown that DKC1 as a RBP is negatively regulated by 
MEG3 that has been frequently reported to promote 
trophoblast migration and decrease apoptosis in PE 
[22–24]. We found a novel lncRNA, FLT1P1 (fms- 
related tyrosine kinase 1 pseudogene 1), as the pseu-
dogene of VEGFR1 (vascular endothelial growth fac-
tor receptor-1), which is also known as FLT1 (fms- 
related tyrosine kinase 1) [25]. In addition, FLT1P1 
was reported to be overexpressed in preeclamptic 
placentas [26], but its function and molecular 
mechanism remain unclear in PE.

In this study, we focused on identifying the role of 
the pseudogene FLT1P1 in trophoblast cell prolifera-
tion and angiogenesis and mechanistically analyzing 
how FLT1P1 exerts its function in PE. We hypothe-
sized that FLT1P1 may exert its function in PE by 
interacting with the RBP DKC1 to stabilize its cog-
nate gene FLT1. Our study may provide a novel 
regulatory mechanism for exploration of the patho-
genesis of PE.

Materials and methods

Samples

Normal placentas (n = 10) were obtained from full- 
term births after the cesarean section. Age-matched 
placentas were obtained from women with severe PE 
(n = 10) after cesarean section. All placentas involved 

in this study were collected by procedures of planned 
cesarean section without the aid of artificial labor. 
Placental tissues were obtained by a certified doctor 
by making a vertical incision across a normal area at 
the center, involving fetal and maternal placental sur-
faces. Tissues having calcified deposits or clots were 
excluded. The experiments were approved by the 
Ethics Committee of the Affiliated Huaian No. 1 
People’s Hospital of Nanjing Medical University. All 
volunteers participating in this study signed written 
informed consent.

Isolation and culture of human primary 
trophoblast cells (PTBs)

Term placentas were collected from uncomplicated 
pregnancies after cesarean delivery. Isolation and cul-
ture of PTBs was done according to conventional 
methods. Specifically, we used a protocol based on the 
classic trypsin digestion and Percoll gradient centrifuga-
tion method, as previously described [27]. Briefly, the 
placental tissues were washed, sheared, weighed, and 
digested in a solution containing 0.125% trypsin and 
0.03% DNase (Sigma, USA). The supernatant was col-
lected, and the pellet was kept. This process was per-
formed in order to discard the outer syncytium and to 
keep the underlying trophoblasts. The pellet was then 
purified with 5%–65% Percoll density gradients 
(Sigma), which allowed the collection of the tropho-
blasts. Finally, the trophoblasts were cultured in 
Dulbecco’s modified Eagle’s medium (Thermo Fisher 
Scientific, USA) containing 10% fetal bovine 
serum (FBS).

Cell culture

HTR-8/SVneo (HTR8) and BeWo cell lines were 
obtained from the Type Culture Collection of the 
Chinese Academy of Sciences (Shanghai, China). Cells 
were cultured in Roswell Park Memorial Institute 
(RPMI) 1640 (HyClone, USA) supplemented with 
100 U/ml penicillin (HyClone), 10% heat-inactivated 
FBS, and 100 μg/ml streptomycin (Invitrogen, USA) 
in a humidified incubator at 37°C with 5% CO2.

Cell transfection

The short hairpin RNAs (shRNAs) against 
FLT1P1, FLT1 or DKC1 (sh-FLT1P1, sh-FLT1 or 
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sh-DKC1) and the scrambled negative control (sh- 
NC) were designed and synthesized by 
GenePharma (Shanghai, China). The plasmid vec-
tor expressing full-length FLT1 was generated by 
GenePharma to overexpress FLT1 and termed as 
pcDNA3.1/FLT1 (FLT1), and the empty vector 
(vector) was used as a negative control. Cells 
were seeded in 24-well plates at 2 × 105 cells/well 
and transfected with 40 nM shRNA vector or 
0.2 μg overexpression vector following the instruc-
tions of Lipofectamine 2000 (Invitrogen, USA) as 
described previously [28], and cells were harvested 
at 48 h for further analysis.

Reverse transcription-quantitative 
polymerase chain reaction (RT-qPCR)

TRIzol (Invitrogen, USA) was used to isolate total 
RNA from trophoblast cells. Then, the first-strand 
cDNA was generated by ImProm-II Reverse 
Transcription System (Promega, USA). RT-qPCR 
was conducted by using SYBR Green qPCR assay 
(Takara, Dalian, China) and gene-specific primers. 
The relative gene expression was calculated by the 
2−ΔΔCt method [29], and glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) was used as the internal 
control. FLT1P1, forward: 5ʹ-AAGAA 
CGCCGATTATGTGAG-3ʹ, reverse: 5ʹ-CAAGAG 
CCACCCATTTCAG-3ʹ; FLT1, forward: 5ʹ-CAAG 
ATTGACTTGAGAGTAACCAG-3ʹ, reverse: 5ʹCT 
GGAATGGCAGAAACTGG-3ʹ; DKC1, forward: 5ʹ- 
GGTATAGTAGCCAAGATCAAGAG-3ʹ, reverse: 
5ʹ-TTCTGACTTGCCTTTGGAC-3ʹ; GAP 
DH, forward: 5ʹ-TCAAGATCATCAGCAATGCC-3ʹ, 
reverse: 5ʹ-CGATACCAAAGTTGTCAT GGA-3ʹ.

Cell counting kit-8 (CCK-8) assay

The cell Counting Kit-8 (CCK-8, Dojindo 
Molecular Technologies, Kyushu, Japan) was 
used to measure the viability of stably transfected 
trophoblast cells. In brief, cells were seeded in 96- 
well plates at 4 × 103 cell/well. At 24 h, 48 h, and 
72 h, each well was added with 10 μl CCK-8 
solution for an additional 1 h of incubation at 
37°C. Finally, a microplate reader (BioRad, CA, 
USA) was used to read the absorbance value at 
450 nm [30].

Tube formation assay

For the tube formation assay, as described pre-
viously [31], 24-well plate was coated with growth 
factor reduced Matrigel (60 µl, Corning, NY, USA) 
for 1 h at 37°C. A total of 1 × 105 trophoblast cells 
in a medium containing 10% FBS were plated on 
top of presolidified Matrigel. Once seeded on 
Matrigel, capillary tubes and networks start to 
form. After 6 h of incubation, plates were exam-
ined with a microscope (Nikon, Japan), and 
images were taken. The number of branching 
points was quantified using ImageJ plug-in 
according to the protocol angiogenesis analyzer 
from Gilles Carpentier.

Western blot analysis

Western blot was performed as previously pub-
lished [32]. Total protein was extracted from cells 
using radioimmunoprecipitation assay lysis buffer 
(Life Technologies, USA) containing protease inhi-
bitors (Sigma). After that, protein concentration 
was quantified with the Bicinchoninic Acid Assay 
(Beyotime, China). Before transferring into poly-
vinylidene difluoride membranes (Millipore, 
Billerica, MA, USA), the protein samples were 
separated with 10% sodium dodecyl sulfate- 
polyacrylamide gel electrophoresis. After blocking 
with 5% skim milk, the membranes were incu-
bated with primary antibodies including vascular 
endothelial growth factor A (VEGFA; ab214424, 
1:1000, Abcam, Cambridge, USA), fibroblast 
growth factor 2 (FGF2; ab208687, 1:1000), trans-
forming growth factor beta (TGF-β; ab124894, 
1:1000), FLT1 (ab32152, 1:1000), and GAPDH 
(ab181602, 1:10,000) overnight at 4°C. After wash-
ing, the membranes were further incubated with 
secondary antibodies (ab205718, 1:3000) for 1 h at 
room temperature. The blots were detected by 
using a chemiluminescence substrate (Pierce, 
USA). Immunoblot signals were quantified using 
Image Quant software (GE Healthcare).

RNA immunoprecipitation (RIP) assay

For the RIP assay, the Magna RIP TM RNA- 
Binding Protein Immunoprecipitation Kit 
(Millipore, Billerica, USA) was used following the 
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manufacturer’s protocols [28]. The trophoblast 
cells at 80–90% confluency were scraped off and 
then lysed in a complete radioimmunoprecipita-
tion assay lysis buffer. A total of 100 μl of the cell 
extract were incubated with anti-DKC1 or control 
IgG (Millipore)-conjugated magnetic beads at 4°C 
for 6 h, and anti-IgG was used as a negative con-
trol. The beads were then washed with a washing 
buffer and the complexes were incubated with 
Proteinase K for 30 min at 55°C to remove the 
protein. Finally, immunoprecipitated RNA was 
purified and analyzed by RT-qPCR.

RNA pulldown assay

As described previously [33], biotin-labeled 
FLT1P1 and its antisense RNA were transcribed 
in vitro based on the corresponding PCR product 
using T7 RNA polymerase (Ambio Life) and 
Biotin RNA Labeling Mix (Roche, Mannheim, 
Germany). The obtained product was purified 
using RNeasy Plus Mini Kit (Qiagen). For the 
pulldown assay, 20 µl Dynabeads M-280 
Streptavidin beads (Thermo Fisher Scientific, 
MA, USA) were activated and blocked with 
10 µg/ml RNase-free BSA and yeast tRNA 
(Sigma) for 30 min at 4°C. Cell lysates were incu-
bated with the beads at room temperature for 2 h, 
followed by pulldown, RNA extraction, and sub-
sequent RT-qPCR quantification.

RNA stability assay

For detecting FLT1 mRNA stability, trophoblast 
cells were treated with 10 µg/ml actinomycin 
D (Sigma) after transfecting with sh-FLT1P1 or sh- 
DKC1 [34]. At 3 h, 6 h, and 9 h, cells were 
collected, and RNA extraction was performed by 
using TRIzol reagent (Invitrogen). RT-qPCR was 
used to measure the FLT1 mRNA level.

Statistical analysis

Statistical analysis was performed using Graphpad 
Prism 5 software (GraphPad, USA), and the results 
are presented as the mean ± standard deviation 
(SD). Each assay was repeated in triplicate. 
A comparison between groups was performed 
using Student’s t test or one-way or two-way 

analysis of variance (ANOVA). P value less than 
0.05 was considered statistically significant.

Results

In this study, we focused on identifying the role of 
the pseudogene FLT1P1 in trophoblast cell prolif-
eration and angiogenesis and mechanistically ana-
lyzing how FLT1P1 exerts its function in PE. We 
hypothesized that FLT1P1 may exert its function 
in PE by interacting with the RBP DKC1 to stabi-
lize its cognate gene FLT1. Our results showed that 
FLT1P1 and FLT1 play a vital role in PE by reg-
ulating trophoblast cell proliferation and angio-
genesis. Moreover, FLT1P1 increases FLT1 
mRNA stability via recruiting DKC1.

FLT1P1 knockdown promotes the proliferation 
and angiogenesis in trophoblast cells

Human PTBs were isolated from PE and healthy 
placentas. The results of RT-qPCR showed that 
FLT1P1 was upregulated in PTBs isolated from 
PE patients compared with healthy controls (Fig. 
S1A). Next, we investigated the biological rele-
vance of FLT1P1 in PE progression using two 
trophoblast cell line (HTR8 and BeWo). As 
shown in Figure 1a, the expression of FLT1P1 in 
HTR8 and BeWo cells was effectively knocked 
down by transfection with the specific shRNA (sh- 
FLT1P1) compared to the sh-NC. Next, the func-
tional role of FLT1P1 in trophoblast cell prolifera-
tion and angiogenesis was assessed by CCK-8 
assay, tube formation assay, and western blot ana-
lysis. According to CCK-8 assay, the proliferative 
ability of trophoblast cells was increased after 
knocking down FLT1P1 (Figure 1b). The results 
of the tube formation assay showed that FLT1P1 
downregulation significantly increased the number 
of junctions and nodes in HTR8 and BeWo cells 
(Figure 1c). Furthermore, the expression levels of 
angiogenesis-associated markers (VEGFA, FGF2 
and TGF-β) was evaluated using western blot. As 
shown in Figure 1d, the expression levels of 
VEGFA, FGF2, and TGF-β were all increased in 
the presence of sh-FLT1P1 (Figure 1d). Overall, 
these findings showed that FLT1P1 knockdown 
increases the proliferation and angiogenesis in tro-
phoblast cells.
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FLT1 knockdown promotes trophoblast cell 
proliferation and angiogenesis

As the cognate gene of FLT1P1, the biological 
role of FLT1 in trophoblast cells was investi-
gated. The results of RT-qPCR and western 
blot showed that the FLT1 mRNA and protein 

levels were upregulated in PTBs isolated from 
PE patients compared with healthy controls 
(Fig. S1B-1 C). The sh-FLT1 was transfected 
into HTR8 and BeWo cells to silence FLT1. 
The results of RT-qPCR showed that FLT1 
expression was significantly downregulated in 
the sh-FLT1-transfetced HTR8 and BeWo cells 

Figure 1. FLT1P1 knockdown promotes trophoblast cell proliferation and angiogenesis. (a) FLT1P1 expression in trophoblast 
cells transfected with sh-FLT1P1 or sh-NC was measured by RT-qPCR. (b) The proliferation of HTR8 and BeWo cells after FLT1P1 
knockdown was detected by CCK-8 assay. (c) The angiogenesis in sh-FLT1P1-transfected HTR8 and BeWo cells was assessed by tube 
formation assay. (d) Western blot analysis was performed to measure the VEGFA, FGF2 and TGF-β protein levels in HTR8 and BeWo 
cells transfected with sh-FLT1P1 or sh-NC. *p < 0.05, ***p < 0.001.
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(Figure 2a). CCK-8 assay manifested that sh- 
FLT1 transfection caused an increase in cell pro-
liferation (Figure 2b). Next, the angiogenesis 
ability after sh-FLT1 transfection was evaluated 
by tube formation assay. The results demon-
strated that the angiogenesis in HTR8 and 
BeWo cells was promoted after silencing FLT1 
(Figure 2c). Additionally, the results of the wes-
tern blot indicated that FLT1 knockdown con-
tributed to elevated protein levels of VEGFA, 
FGF2 and TGF-β in HTR8 and BeWo cells 
(Figure 2d). In conclusion, FLT1 knockdown 
increases trophoblast cell proliferation and 
angiogenesis.

DKC1 acts as an RBP for FLT1P1 and FLT1

Next, we investigated whether there is 
a regulatory mechanism between FLT1P1 and 
FLT1. Evidence has confirmed that the pseudo-
gene could recruit RBPs to modulate its target 
gene expression [18,19]. Thus, we sought to 
identify the common RBP for FLT1P1 and 
FLT1. At the starBase website (http://starbase. 
sysu.edu.cn/), DKC1 was predicted as an RBP 
that has the potential to interact with FLT1P1 
and FLT1 (Figure 3a). Then, the binding capa-
city between FLT1P1 (or FLT1) and DKC1 was 
further predicted at the RPISeq website (http:// 
pridb.gdcb.iastate.edu/). The score of RF 
Classifier is over 0.5 and the score of SVM 
Classifier is over 0.8, indicating that FLT1P1 
(or FLT1) stands a good chance of binding to 
DKC1 (Figure 3b). As predicted in starBase, the 
motif of DKC1 in FLT1P1 and FLT1 was 
obtained (Figure 3c). RIP assay showed that 
FLT1P1 and FLT1 were both enriched in the 
beads conjugated with anti-DKC1 compared to 
anti-IgG in trophoblast cells (Figure 3d). To 
further investigate the interaction between 
FLT1P1 (or FLT1) and DKC1, a biotin-labeled 
FLT1P1 (or FLT1) probe was used to perform 
RNA pulldown assay in HTR8 and BeWo cells. 
The results revealed that the DKC1 was signifi-
cantly enriched in the FLT1P1 (or FLT1) sense 
probe compared with the sense probe 

(Figure 3e). These results suggested that 
FLT1P1 (or FLT1) could bind to DKC1.

FLT1P1 increases FLT1 mRNA stability by 
recruiting DKC1

Subsequently, to test whether FLT1P1/DKC1 
exerts function on FLT1 mRNA stability, we 
tested FLT1 mRNA expression with the treat-
ment of Actinomycin D. The results showed 
that FLT1P1 knockdown decreased FLT1 
mRNA expression under Actinomycin 
D treatment (Figure 4a). We then silenced 
DKC1 expression with the transfection of sh- 
DKC1 in trophoblast cells for further analysis 
(Figure 4b). As shown, FLT1 mRNA stability 
was significantly decreased by DKC1 downregu-
lation in HTR8 and BeWo cells treated with 
actinomycin D (Figure 4c). Furthermore, we 
found that the FLT1 protein level in cells was 
also reduced by DKC1 downregulation 
(Figure 4d). Overall, FLT1P1 maintains FLT1 
mRNA stability via recruiting DKC1.

FLT1P1 regulates trophoblast cell 
proliferation and angiogenesis by mediating 
FLT1

Finally, we verified whether FLT1P1 regulates tro-
phoblast cells by FLT1, and rescue assays were 
performed. The overexpression efficiency of FLT1 
was evaluated by RT-qPCR. The results showed 
that FLT1 was effectively overexpressed with 
pcDNA3.1/FLT1 transfection in HTR8 and BeWo 
cells (Figure 5a). As shown in CCK-8 assay, FLT1 
overexpression attenuated the promotive effect of 
FLT1P1 knockdown on trophoblast cell prolifera-
tion (Figure 5b). We further discovered that angio-
genesis restored by FLT1P1 knockdown was 
inhibited by FLT1 overexpression (Figure 5c). In 
addition, the VEGFA, FGF2, and TGF-β protein 
levels increased by FLT1P1 knockdown was 
reduced after FLT1 overexpression (Figure 5d). 
Collectively, FLT1P1 upregulates FLT1 expression 
to inhibit trophoblast cell proliferation and 
angiogenesis.
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Discussion

Pseudogenes, which are fairly common (~0.7% 
of DNA sequence) in the human genome, as 
well as lncRNAs are traditionally claimed to 
not yield functional mRNAs and not translated 
into proteins consequently, thus regarded as 

garbage fragments or dark matter in the gen-
ome [35]; however, evidence in recent years has 
indicated that pseudogene regulates various 
aspects of cell biology, and there is an increas-
ing attention on its potential contribution to 
disease cause [36]. A previous study showed 
that the newly identified pseudogenes 

Figure 2. FLT1 knockdown promotes the proliferation and angiogenesis in trophoblast cells. (a) FLT1 expression in 
trophoblast cells transfected with sh-FLT1 or sh-NC was measured by RT-qPCR. (b) CCK-8 assay was performed to assess the 
proliferation in sh-FLT1-transfected HTR8 and BeWo cells. (c) The angiogenesis in HTR8 and BeWo cells after FLT1 knockdown was 
evaluated by tube formation assay. (d) The VEGFA, FGF2 and TGF-β protein levels in sh-FLT1-transfected HTR8 and BeWo cells were 
measured by western blot analysis. *p < 0.05, **p < 0.01, ***p < 0.001.
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BNIP3P1, HK2P1, and PGK1P1 that encode 
lncRNA are key PE-related genes [37]. 
Hexokinase 2 pseudogene 1 (HK2P10) expression 
is correlated with abnormal decidualization and 
might lead to the occurrence of PE [38]. However, 
the related mechanisms and the roles of abnormally 
expressed pseudogenes in PE have not been func-
tionally characterized to date. Therefore, the identi-
fication of key pseudogenes associated with PE is 
critical to identifying novel therapeutic targets. 
A study pointed out that FLT1P1 is expressed at 
a high level in preeclamptic placentas [26], implying 
that pseudogene FLT1P1 might play an important 

role in the development of PE. The biological func-
tion of FLT1P1 has not been investigated previously. 
In this study, we found that FLT1P1 was upregulated 
in PTBs isolated from PE patients compared with 
healthy controls. The functional assays suggested 
that the downregulation of FLT1P1 altered the pro-
liferative capacity of HTR8 and BeWo cells. Defects 
in decidualization cause inadequate placentation and 
angiogenesis, which could give rise to PE [39]. VEGF 
is famous as an angiogenesis factor in many tissues 
and its decreased expression has been implicated in 
the pathophysiology of PE [40,41]. Here, it was 
demonstrated that FLT1P1 knockdown promoted 

Figure 3. The interaction between DKC1 and FLT1P1 (or FLT1). (a) The predicted RBP for FLT1P1 and FLT1 was obtained in 
starBase. (b) The prediction of the interaction probabilities of FLT1P1 or FLT1 with DKC1 by RPISeq (http://pridb.gdcb.iastate.edu/ 
RPISeq/). Predictions with probabilities > 0.5 are considered ‘positive’, indicating that the corresponding RNA and protein are likely 
to interact. (c) The motif of DKC1 in FLT1P1 and FLT1. (d-e) The binding of DKC1 to FLT1P1 (or FLT1) was validated by RIP and RNA 
pull down assays. ***p < 0.001.
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the angiogenesis in the trophoblast, demonstrating 
the key role of FLT1P1 in PE.

Pseudogenes have a high sequence similarity 
to their parental protein-coding genes, which 
generates the potential for sequence-specific reg-
ulation [36]. The pseudogene FLT1P1 shares 
molecular ancestry with the cognate gene FLT1 
(VEGFR1) in humans and high primates [25]. 

The VEGF family has been implicated as an 
important regulator of blood vessel formation 
in both health and disease states, including PE, 
tumor neovascularization, and diabetic retinopa-
thy [42]. FLT1 (VEGFR1) is a type V protein- 
tyrosine kinase receptor that is crucial for cell 
proliferation and differentiation and is expressed 
in vascular endothelial cells, placental 

Figure 4. FLT1P1 increases FLT1 mRNA stability by recruiting DKC1. (a) FLT1 mRNA expression under actinomycin D treatment in the 
sh-FLT1P1 and sh-NC groups was measured by RT-qPCR. (b) The transfection efficiency of sh-DKC1 was assessed by RT-qPCR. (c) FLT1 mRNA 
expression under actinomycin D treatment in the sh-DKC1 and sh-NC groups was measured by RT-qPCR. (d) The FLT1 protein level in 
trophoblast cells transfected with sh-DKC1 was measured by western blot analysis. *p < 0.05, **p < 0.01, ***p < 0.001.
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trophoblast cells, and peripheral blood mono-
cytes. A soluble form of FLT1 is markedly 
increased during the last 2 months of gestation 
in those with PE compared with normotensive 
pregnant controls, which is involved in the 
endothelial dysfunction characterizing the preg-
nancy disorder of PE [43]. Here, our study 
demonstrated that FLT1 was upregulated in 
PTBs isolated from PE patients. FLT1 knock-
down promoted the proliferation and angiogen-
esis in the trophoblast. One of the most 
commonly described biological feature of 

processed pseudogenes is the ability to influence 
the expression of their parental coding genes. 
The high sequence similarity between these 
RNA pairs sets up a certain level of competition 
for posttranscriptional regulators, including, 
among others, RBPs [44]. Thus, we further 
explored the regulatory relationship between 
FLT1P1 and FLT1. Through bioinformatics ana-
lysis, DKC1 was predicted to be an RBP inter-
acting with both FLT1P1 and FLT1. DKC1 is 
a key RBP encoding a protein responsible for 
telomerase holoenzyme complex stability [45]. 

Figure 5. FLT1P1 increases FLT1 expression to regulate trophoblast cell proliferation and angiogenesis. (a) The over-
expression efficiency of FLT1 was confirmed by RT-qPCR analysis. (b) The proliferative ability of trophoblast cells in each group was 
measured by CCK-8 assay. (c-d) Angiogenesis and angiogenesis-relevant protein levels were evaluated by tube formation assay and 
western blot analysis. *p < 0.05, **p < 0.01, ***p < 0.001.
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In our study, we confirmed that DKC1 could 
bind to either FLT1P1 or FLT1. Moreover, the 
knockdown of FLT1P1 or DKC1 effectively 
decreased the mRNA stability and protein level 
of FLT1. Therefore, we demonstrated that 
FLT1P1 increases FLT1 mRNA stability by 
recruiting DKC1 in this study.

Conclusion

In conclusion, we demonstrated that FLT1P1 and 
FLT1 play a vital role in PE by regulating tropho-
blast cell proliferation and angiogenesis. Moreover, 
FLT1P1 increases FLT1 mRNA stability via 
recruiting DKC1. These results show that dysregu-
lated FLT1P1 and FLT1 may be related to the 
occurrence of PE, suggesting that FLT1P1 and 
FLT1 could act as useful biomarkers for the diag-
nosis of PE. The present study is not without 
limitations. First, clinical samples need to be col-
lected from PE patients to further verify the clin-
ical significance of our findings. Second, the 
related signaling pathways targeted by the 
FLT1P1/FLT1remain unclear and require further 
investigations.
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