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ABSTRACT: Despite recent advances in molecular medicine and rational drug
design, many drugs still fail because toxic effects arise at the cellular and tissue level.
In order to better understand these effects, cellular assays can generate high-
throughput measurements of gene expression changes induced by small molecules.
However, our understanding of how the chemical features of small molecules
influence gene expression is very limited. Therefore, we investigated the extent to
which chemical features of small molecules can reliably be associated with
significant changes in gene expression. Specifically, we analyzed the gene
expression response of rat liver cells to 170 different drugs and searched for
genes whose expression could be related to chemical features alone. Surprisingly,
we can predict the up-regulation of 87 genes (increased expression of at least 1.5 times compared to controls). We show an
average cross-validation predictive area under the receiver operating characteristic curve (AUROC) of 0.7 or greater for each of
these 87 genes. We applied our method to an external data set of rat liver gene expression response to a novel drug and achieved
an AUROC of 0.7. We also validated our approach by predicting up-regulation of Cytochrome P450 1A2 (CYP1A2) in three
drugs known to induce CYP1A2 that were not in our data set. Finally, a detailed analysis of the CYP1A2 predictor allowed us to
identify which fragments made significant contributions to the predictive scores.

■ INTRODUCTION

The liver response to a drug is critical in determining the
ultimate effect the drug will have on the body. It is well-known
that the first-pass effect of the cytochrome P450s, metabolizing
enzymes, and transporters can greatly reduce the bioavailability
of a drug or transform a prodrug into its active form.1

Subsequent metabolic processes often eliminate drugs from the
body either exclusively by the liver or in conjunction with the
kidney. Because the liver performs these critical roles in
processing xenobiotics, the liver response must be considered
when determining drug doses or drug combinations to ensure
that toxic levels of chemical species do not accumulate in the
body and lead to adverse drug reactions.2 Gene expression
response is a well-known way to measure and quantify the
liver’s response to xenobiotic stimulus. However, the
mechanism by which a drug will lead to a change in gene
expression is not fully understood. In this work we were
interested in determining which genes have their expression
predictably changed in the liver directly in response to small
molecules. In particular, we used publicly available data sets of
drug and liver response data to seek genes whose expression
was greatly affected by specific chemical features of small
molecules.
Molecular fingerprints provide an efficient method to

characterize a chemical as a set of molecular features
represented by unique identifiers.3 There are many varieties
of fingerprinting methods used for similarity searching or
virtual screening of large chemical libraries.4 Extended

connectivity fingerprints (ECFP) are based on chemical bond
topology and capture features relevant to molecular activity.5

They have been successfully applied for predicting chemical
activities, even among structurally diverse compounds.6,7

ECFP4 fingerprints generate unique identifiers for topological
fragments that contain up to four bonds and are among the
highest performing fingerprints for identifying similar molecules
with known activities.8

Gene expression microarrays enable the simultaneous
measurement of tens of thousands RNA expression probes in
a tissue and have been used to detect significant differences
between healthy and diseased tissues.9 Gene expression
experiments have also been used to detect significant RNA
expression responses in tissues that have been treated with
drugs.10 For example, the Connectivity Map data set contains
gene expression measurements on 1309 compounds and has
been used in drug repositioning11,12 and for elucidating the
mechanism of action of drugs.13 The DrugMatrix database
contains RNA expression data from approximately 600 different
compounds given in vivo to rats at different doses and time
points and then measured on seven different tissues. These
DrugMatrix data have been used to study drug toxicology and
liver response profiles.14−17 Others have connected drug
structure to gene expression but focused on a large database
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of predefined chemical structures and gene expression in cancer
cell lines.18

In this study, we sought to connect the molecular level
information contained in chemical fingerprints to the cellular
level measures in the drug-induced liver gene expression data
from DrugMatrix. In particular, we were interested in finding
genes in the liver that are predictably up-regulated in response
to small molecules, described using chemical fingerprints. A
model by which a drug elicits changes in gene expression is
illustrated in Figure 1. In this model a drug binds to a receptor,
such as an allosteric site on a cell surface or a cytosolic protein,
which triggers a series of signaling events. The signals reach the
nucleus and trigger nuclear responses, which lead to transcrip-
tional changes. The specific interactions and pathways that lead
to these changes in transcription are largely unknown, and the
elucidation of these pathways is an active area of research.19−21

Therefore, any attempt to predict expression changes using
existing pathways is necessarily based on incomplete
information. Our approach circumvents this problem by finding
direct relationships between chemical fingerprint features and
gene expression changes, as also illustrated in Figure 1.
The method presented here has three parts: (1) we generate

a reduced feature space to describe the drugs; (2) we use
machine learning techniques to create and validate classifiers
which predict if a gene will be up-regulated by a drug; and (3)
we analyze the features of the classifiers to describe the drugs
which are predicted to up-regulate the genes. To make our
reduced feature space, we generated an matrix of fingerprints
from a compendium of drugs in DrugBank22 and then
transformed the feature vectors into a reduced space using

the twenty largest principal components of the matrix. We then
applied machine learning algorithms to determine if any of the
genes which were up-regulated at least 1.5 fold times in the liver
could be predicted based on these features. Surprisingly, we
found 87 genes that could be reliably predicted using only
fingerprint information. We validated these predictions
internally by cross validation and in an independent data set
measuring the response to pregnenolone 16alpha-carbonitrile, a
steroid hormone that was not included in any of our data sets.
We also validated our predictive model for cytochrome P450
1A2 (CYP1A2) in three known CYP1A2 inducers that were
not present in our data set. Finally, we analyzed the CYP1A2
model to highlight those fragments that are most informative
for determining the predictive scores.

■ METHODS
Gene Expression Data Source. We downloaded the

normalized Affymetrix whole genome 230 2.0 rat GeneChip
array data liver gene expression from the DrugMatrix database14

and filtered the experiments for probes which had a significant
change in expression (p < 0.05) and at least a 1.5 fold increase
in expression for at least 20 different drugs at any dose or time
period and a 1.1 fold increase or lower for at least 20 different
drugs. We empirically chose a cutoff of 1.5 for up-regulated
genes because we wanted to make predictions on genes with
strong signals, but we also needed to keep a sufficient number
of genes in the data set. We chose a cutoff of 1.1 for down
regulated genes to reduce the possibility of using false negatives
in our training data. The resulting data set contains 170 distinct
drugs and 3830 distinct probes. We converted this data set into

Figure 1. Drugs are shown schematically on the outside of the cell with different chemical features (green square, red triangle, blue half-circle). These
features may lead to binding at one or more receptors that begin a signaling cascade ultimately leading to gene expression changes. Gene transcripts
as shown as circles, where each circle is drawn in the color (or colors) associated with the chemical features associated with its expression. The work
presented here focuses on finding the association of chemical features to the genes whose expression is directly predictable from a subset of these
chemical features alone.
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a 170 × 3830 matrix where each entry has a value of 1 for
probes having greater than 1.5 fold expression, a value of −1 for
probes with less than 1.1 fold expression, and a value of 0
otherwise.
Molecular Feature Space of Chemicals. We matched

4069 drugs from DrugBank to molecules in ChEMBL23 using
drug names and synonyms and downloaded the canonical
SMILES strings from ChEMBL. We then used these SMILES
strings to generate extended connectivity fingerprint identifiers
with a diameter of four atoms (ECFP4) using JChem Base
5.11.5, 2013, ChemAxon (www.chemaxon.com). Two-dimen-
sional ECFP4 fingerprints are effective in recalling compound
activities and are frequently used in QSAR and QSPR models.24

Each identifier represents a topological substructure feature of a
molecule. This resulted in a total of 19 810 distinct structure
identifiers used to describe 4069 DrugBank drugs. Supporting
Information Figure 3 shows a histogram of the drug counts per
ECFP4. The histogram shows that there is an exponential drop
off in the number of drugs per ECFP4 feature, with a few
features that are nearly ubiquitous and many more that occur in
only a handful of drugs. We created a binary feature matrix with
4069 rows (one for each drug) and 19 810 columns (one for
each ECFP4 identifier). An entry i, j in the binary feature matrix
was set to 1 if and only if drug i contained feature j; otherwise,
the entry was 0. We then performed principal components
analysis of this 4069 × 19 810 matrix using the prcomp
function in the stats package in R.25 We used the first 20
principal component loadings as the feature representation for
chemicals.
Feature Representation of DrugMatrix Chemicals. We

matched 170 drug names from the DrugMatrix data set to
molecules in ChEMBL by matching drug names with molecule
names and synonyms, downloaded their canonical SMILES
strings, and generated ECFP4 fingerprints for each of these
chemicals, resulting in 2372 distinct ECFP4 identifiers. We
then used these 2372 identifiers to generate a 170 × 19 810
binary feature matrix where an entry i, j is was set to 1 if and
only if the DrugMatrix drug i contained the ECFP4 identifier j,
using only the DrugBank identifiers. If an ECFP4 identifier was
present in the set of identifiers from DrugMatrix but not in the
set from DrugBank, it was not used. We then projected this 170
× 19 810 matrix onto the first 20 components of the DrugBank
PCA, resulting in a 170 × 20 feature matrix.
Correlation of Expression Similarity and Chemical

Similarity. We computed the pairwise Tanimoto similarity of
all 170 drugs using ECFP4 fingerprints and the pairwise
correlation of the expression values of the 3830 probes used for
training. We fit a linear model using the lm function in the R
base package with the similarity in gene expression as the
outcome variable and the similarity of the drugs as the predictor
variable.25

Machine Learning Approach. We generated 10 different
training and evaluation data sets by randomly choosing 80% of
the 170 drugs for training (n = 136) and 20% of the drugs for
evaluation (n = 34) for each of the 10 iterations. We then
performed machine learning on each of the 10 training data sets
with the following process:

(1) Generate a drug × PCA loading feature matrix. We
selected drugs for which there were at least 20 positives
(expression > 1.5) and 20 negatives (expression < 1.1),
in our expression data set.

(2) For each of the 3830 probes, generate 25 bootstrap
samples and use L1 constrained logistic regression
models by training on 80% of the drugs (a 109 × 20
matrix), chosen randomly for each iteration, and
measuring the area under the receiver operating
characteristic curve (AUROC) using the remaining
20% of the drugs (n = 27). These AUROC values
serve as a performance metric for how well the models
classify each of the probes as up 1.5 fold.

The L1 logistic regression models were generated using the
cv.glmnet function from the glmnet package in R.26,27 We set
the parameters of the cv.glmnet function to perform cross-
validation using 10 folds and choose a value of that minimized
the error within one standard error of the minimum, as
recommended to avoid overfitting.26 We calculated ROC
curves and AUROC values using the ROCR package in R.27

We performed an additional 10 iterations of this machine
learning approach with the positive and negative labels shuffled
on the training data, resulting in baseline performance metrics
for 100 randomly labeled training sets. The metrics from these
values indicate what performance we would expect to see at
random.

Machine Learning Evaluation. We calculated and plotted
the mean and standard deviation of the AUROC values across
the 25 iterations for all of the probe classifiers within each of
the 10 training sets. A comparison with the randomly shuffled
results indicated that any classifier with a mean AUROC ≥
0.534 had significant performance, and classifiers with a mean
AUROC ≥ 0.7 were 1 standard error above the 0.534 cutoff.
We therefore selected all classifiers which had a mean AUROC
≥ 0.7 in any of the training sets and evaluated the performance
of the models by generating an AUROC using the evaluation
drugs (n = 34) for each iteration. If a classifier had a mean
AUROC ≥ 0.7 in more than one training set, we tested it in
each of the models.

External Validation. We downloaded the GSE 4959 data
set28 from the Gene Expression Omnibus and analyzed the
pregnenolone 16alpha-carbonitrile treated versus control
samples using the GEO2R tool.29 This data set measures the
rat liver response to pregnenolone 16alpha-carbonitrile, a drug
that is not present in the original data set. We chose all gene
expression classifiers that had a mean AUROC ≥ 0.7 in four or
more of the iterations (n = 87) for external validation and
generated complete models using all 170 drugs to train the L1
constrained logistic regression. We then generated the ECFP4
features for pregnenolone 16alpha-carbonitrile and then
projected those features into the top 20 PCA components
using the PCA rotation matrix from the DrugBank data set. We
matched 62/87 of the probes from GSE4959 to probes in our
data set using Affymetrix identifiers. Finally, we scored each of
these 62 probes and normalized their scores between 0 and 1 to
generate a single ROC curve. We computed the Tanimoto
similarity of pregnenolone 16alpha-carbonitrile to all 170
molecules in the data set to determine its maximum similarity.
We also computed the Tanimoto similarity of the gene
expression signature sets consisting of all genes that were up-
regulated at least 1.5 fold in the presence of pregnenolone
16alpha-carbonitrile versus the expression signatures for all 170
molecules from the DrugMatrix data set.

Validation and Analysis of CYP1A2 Classifier. The best
performing classifier in our data set was for a transcript
encoding Cytochrome P450 1A2 (CYP1A2), an important
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enzyme involved in the metabolism of xenobiotics. We
searched the PubMed database with the terms “CYP1A2” and
“induction” and identified three small molecules that have been
shown to induce expression of CYP1A2, listed in Table 1,

which were not in our data set. We generated the ECFP4
fingerprints for these drugs and projected the resulting feature
vectors into our feature space using the top 20 principal
components of the PCA rotation matrix from the DrugBank
data set. We scored these molecules using the classifier to
determine if they were correctly predicted to induce expression
of CYP1A2.
To analyze the features used to predict up-regulation of

CYP1A2, we took the complete model for CYP1A2 and
computed a weight vector ⇀w , using the following equation:

∑ β⇀ = ·⎯ ⇀⎯⎯⎯⎯

∈

w PCA
i

i i
{CYP1A2 PCs}

where {CYP1A2 PCs} is the set of principal components
chosen by the L1 constrained logistic regression to have

nonzero beta coefficients and each βi is the beta coefficient for
the corresponding principal component. The resulting vector
⇀w is a vector of 19 810 real values, {w1, ..., w19 810} where each
value wj represents the contribution that the presence of
ECFP4j makes to the score of any given molecule. We tested
for enrichment of each of the ECFP4s in the true positives or
true negatives using Fisher’s Exact test with multiple hypothesis
testing correction using the false discovery rate.30 We checked
for the presence of the ECFP4 fragments with the largest
positive and negative weights using ChemAxon’s “jcsearch”
program and generated visualizations of the fragments with
ChemAxon’s “mview” program.

■ RESULTS

Gene Expression. The Affymetrix Rat 230 2.0 GeneChip
data set we used contains multiple time points and multiple
doses for some drugs (657 distinct drug-dose combinations in
rat liver tissue with measurements on 31 042 probes). For the
purpose of this work we were interested in building classifiers,
which requires choosing cutoffs to determine which genes were
true positives (up-regulated) and which were true negatives
(not up-regulated). In order to avoid potential mislabeling of
probes we focused on the more extreme signals by labeling
probes with fold changes of 1.5 or greater as true positives (up-
regulated) and probes with fold changes of 1.1 or less as true
negatives (not up-regulated). Any gene measurements in
between these two values were not considered in this analysis.
In order to ensure the data set had a sufficient number of
positive and negative examples we filtered for probes that were
up-regulated at least 1.5 fold in the presence of at least 20
distinct drugs and 1.1 fold or less for at least 20 distinct drugs.
After this filtering we were left with 3830 probes. The
distribution of fold change values is shown in Figure 2.

Table 1. Three Drugs Known to Induce Expression of
CYP1A2 and Their Predicted Score Using the CYP1A2
Classifiera

drug name reference
max Tanimoto

similarity score

omeprazole Rost et al. (1992)33 0.46 1.59
3,3-
diindolylmethane

Lake et al. (1998)34 0.29 1.28

RO4938581 Bundgaard et al.
(2013)35

0.14 0.31

aAlso shown is the maximum Tanimoto similarity to any of the 170
drugs in the data set. The similarity score was calculated using ECFP4
fingerprints.

Figure 2. Distribution of fold change values for transcripts up-regulated by drugs. The area highlighted in cyan shows the expression values which are
at least 1.5 fold and were used as positive examples (n = 126 040); the area highlighted in orange shows expression values less than or equal to 1.1
times and were used as negative examples (n = 41 185). The gray area shows probes with expression between 1.1 and 1.5 (n = 198 266), which were
not used.
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Molecular Descriptors for Drugs. The principal
components analysis of the DrugBank ECFP4 matrix (4069
drugs × 19 810 ECFP4 identifiers) resulted in a projection of
the drugs into a reduced feature space that describes most of
medically relevant chemical space. A scree plot of the first 100
components for this projection (Figure 3) shows that there is a

considerable drop in variance explained after the first few
components, followed by a gradual drop off. We projected the
ECPF4 features into the top 20 principle components and used
those 20 principal component loadings as the features to
describe the drugs. Taken together these 20 components

explain 30% of the variance in the extended connectivity
fingerprints for 4069 drugs taken from DrugBank. This is a
considerable reduction in feature space and leaves a significant
proportion of the variance unexplained. However, it focuses our
search on molecular fragments that occur in multiple drugs and
greatly reduces the chance of over fitting our classifiers. Using
this projection we were able to reduce our feature set from
2372 distinct ECFP4 identifiers to 20 loadings on the top 20
principal components, resulting in a 170 drug by 20 principal
component loading matrix.

Correlation of Expression Similarity and Chemical
Similarity. Interestingly, the Tanimoto similarity of the drugs
was not correlated with similarity in gene expression. The
correlation of between similarity in structure and similarity in
expression was 0.10.

Performance of Classifiers. Figure 4A plots the mean
AUROC of each gene in one training set and shows that most
genes did not perform well and have a mean AUROC at or near
0.5, which indicates that their performance is no better than
random. However, some classifiers performed well in many
iterations and have performance considerably greater than 0.5.
The results of our permutation analysis are shown in Figure

4B. A mean AUROC > 0.534 would occur by chance only 5%
of the time, giving an estimated p-value, p ̂ ≤ 0.05. These genes
are highlighted in purple in Figure 4A and B. With this
estimated p-value there are 1198 probe classifiers in Figure 4A
with significant performance. To identify the strongest signals,
we focused on the probes with an even greater mean AUROC
≥ 0.7, and in the case of the data shown in Figure 4A, there 171
of these genes. All 10 of the summary plots for the data sets are
provided in Supporting Information Figure 1.
The performance of the probe classifiers also varied

depending upon which of the 10 training and evaluation sets
we used. Some probe classifiers had performance ≥0.7 in just
one of the 10 iterations and some performed well in all 10
iterations. Figure 5 shows box plots summarizing the mean

Figure 3. Scree plot of first 100 principal components of extended
connectivity fingerprint identifiers for 4069 drugs from DrugBank.
Taken together these components essentially describe all current
pharmacologically relevant chemical fingerprint space. We chose the
first 20 components, delimited by the vertical line, to represent the
features of drugs, which accounts for 30% of the variance in the
DrugBank ECFP4 (4069 drug × 19 810 ECFP4) matrix.

Figure 4. Plot of the mean area under receiver operating characteristic curve (AUROC) for classifiers for each of 3830 genes sorted in increasing
order for real data (A) and randomized labels (B). The dotted red line indicates 0.5, where performance is equivalent to random chance. The solid
red line indicates a mean AUROC of 0.7. Classifiers above the red line will rank a randomly chosen true positive greater than a randomly chosen true
negative 70% of the time. (A) Larger number of high scoring genes. (B) Only 5% of genes with randomly permuted labels have a mean AUROC >
0.534, indicated by the purple line.
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AUROCs for probe classifiers that have mean AUROC ≥ 0.7 in
one or more of the 10 training data sets. As expected, the mean
performance of the probe classifiers increases as they occur in
the top results of more data sets. The mean performance of
probe classifiers which performed well in only one or two data
sets is near 0.5, but if a probe classifier performed well in four
or more data sets then the mean AUROC > 0.6 across all 10
data sets. To account for this variation we chose to use the 87
probe classifiers that were consistently up in four or more data
sets for external validation.
External Validation. The maximum Tanimoto similarity of

pregnenolone 16alpha-carbonitrile to any of the 170 drugs from
DrugMatrix was 0.3286. The maximum Tanimoto similarity of
the expression profile of genes up-regulated at least 1.5 fold was
0.389. The ROC curve for predicting the rat liver gene
expression response to pregnenolone 16alpha-carbonitrile in
the 62 chosen classifiers is shown in Figure 6 and shows an
AUROC of 0.7. The list of 62 probes used to generate this
ROC curve is shown in Supporting Information Table 1.
Validation and Analysis of CYP1A2 Classifier. The

probe with the best predictive classifier performance was
1387243_at, which is a transcript encoding Cytochrome P450
1A2 (CYP1A2). The classifier for this probe had a mean
AUROC of 0.86 with a standard error of 0.09 across all 10 of
the training and evaluation sets. We scored three molecules,
shown in Table 1, which are known to induce the expression on
CYP1A2 using this classifier and were not present in our data
set. None of molecules were significantly similar to any other
molecules in our data set, the maximum Tanimoto similarity of
the molecules to any of the 170 drugs ranged from 0.14 to 0.46.
The three known CYP1A2 inducing molecules that we
identified, omeprazole , 3 ,3-di indolylmethane, and
RO4938581, scored within the range of scores for the true

positive drugs, as shown in Figure 8. Using the weight vector
⇀w , as described in the methods, we identified the ECFP4
identifiers that contributed the five largest positive and five
largest negative weights to each of the CYP1A2 validation
drugs. Supporting Information Figure 2 shows each of the
drugs and highlights the positive and negative features
associated with the ECFP4 identifiers.

■ DISCUSSION
We have shown that there is a subset of genes in the liver that
can reliably be predicted to be up-regulated based on the
chemical information found in ECFP4s. Because there is
minimal correlation between the ECFP4 fingerprint similarities
of the drugs and the gene expression that the drugs induce (ρ =
0.10) the connections between ECFP4 and gene expression
must be made through the presence of coordinated subsets of
ECFP4 identifiers rather than overall chemical similarity. We
created our classifiers using a drastically reduced set of features
generated by projecting our data into the first 20 principal
components from an ECFP4 matrix consisting of all the ECFP4
identifiers generated from the drugs in DrugBank. These 20
principal components only capture 30% of the variance in the
DrugBank ECFP4 matrix and many ECFP4 fragments in the
DrugMatrix data set are not represented in the feature vectors.
By using this reduced feature space the classifiers were forced to
find combinations of principal components that best predict
up-regulation of the genes. For the majority of the genes the
classifiers were unable to make accurate predictions. However,
87 genes were reliably predictable across multiple bootstrap
samples including CYP1A2, which we were able to validate in
three drugs known to induce CYP1A2. Using a deeper analysis
of the CYP1A2 classifier we identified which ECFP4 features of
these drugs made the largest contributions to their positive and
negative scores.

Strengths and Weaknesses. There are many concerns
when evaluating a machine learning experiment with large
feature sets, such as overfitting, validation, and interpretation.
In this study we addressed these concerns at each stage of our
experiment: (1) generation of our drug feature space; (2)
machine learning and validation; and (3) analysis of features.

Figure 5. Box plots summarizing results from 10 randomly sampled
training (n = 136) and test (n = 34) data sets from DrugMatrix. Scores
of all probe classifiers with an AUROC ≥ 0.7 in at least one of the 10
data sets is included. As the number of data sets in which probe
performs well increases the mean AUROC increases. We chose the
probes that had a mean AUROC ≥ 0.7 in four or more data sets for
external validation.

Figure 6. Receiver operating characteristic (ROC) curve for 62 probes
from GSE4959, measuring the rat liver response to pregnenolone
16alpha-carbonitrile. We matched 62 of the 87 probe classifiers to
probes in GSE4959. We normalized the scores generated by the
classifiers between 0 and 1 and then used the true positive labels to
generate the ROC curve. With a false positive rate of 0.2 the true
positive rate is 0.67, indicated by the red circle. The area under this
ROC curve is 0.7, which is in alignment with the results from our
cross-validation.
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Generation of Feature Space. Rather than generate a
feature space based on the only drugs in the training data set we
used 4069 drugs from DrugBank, which resulted in 19 810
ECFP4s. Given that DrugBank contains FDA approved drugs,
experimental drugs, and nutraceuticals, this set of ECFP4s

describes nearly all known features relevant to known drug
based medical therapy. Even so, the ECFP4s in the training
data included 501 ECFP4s that were not in the DrugBank set
because not all drugs and drug variants in the training data are
present in DrugBank. We then transformed the 170 feature

Figure 7. Histogram showing the frequency of ECFP4 identifiers that are enriched in either the true positive drugs, which up-regulate CYP1A2 (in
cyan) and true negative drugs, which do not up-regulate CYP1A2 (in orange). A fragment is considered significantly enriched if the adjusted p-value
for enrichment in the set using Fisher’s exact test was less than 0.1. The weight for each ECFP4 is shown above each fragment, indicating how much
the presence of each identifier contributes to the score for a given drug.

Figure 8. Histogram showing scores of true negative drugs that do not up-regulate CYP1A2 at least 1.5 fold (in orange) and scores for true positive
drugs (in cyan) that do up-regulate CYP1A2. The scores of three known CYP1A2 inducers (from Table 1) are annotated on the histogram. The
three drugs score well within the range of the true positives.
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vectors for the training drugs into the top 20 PCA components
of the DrugBank ECFP4 feature matrix. These top 20 features
describe 30% of the variance in the DrugBank features. Given
this vast reduction in feature space and by using the additional
feature selection embedded in L1-regularized regression, we
eliminated any concerns of over fitting. With larger high-quality
expression data sets for more drugs it would be possible to use
more PCA components that would explain more of the
variance.
Machine Learning. In order to address statistical

significance in our machine learning approach we used repeated
bootstrap sampling in order to find predictive models that were
useful in repeated data sets. Randomized labels resulted in a
mean AUROC greater than 0.534 in only the top 5% of cases
(Figure 4B), indicating that a mean AUROC > 0.534 will occur
by chance only 5% of the time. By only considering classifiers
with a mean AUROC > 0.7 in several bootstrap samples, we
ensure that we are not selecting classifiers which are effective
only due to chance or which are only effective on the training
data. The validation of these classifiers in the external
pregnenolone 16alpha-carbonitrile data set (Figure 6) further
affirms the reliability of the models.
Analysis of Features. A benefit of this approach is that it

allows for interpretation of the significant features used for
prediction. Figure 7 shows the most significant ECFP4s for
predicting if CYP1A2 is up-regulated, the frequency in which
they appear in the true positives and true negatives, and the
weight that each ECFP4 identifier contributes to the score. Five
ECFP4 identifiers were enriched in the true positive drugs and
four ECFP4 identifiers were enriched in the true negative drugs,
using Fisher’s exact test (p < 0.1). It is important to recognize
that even if an individual feature is enriched in the true positives
or true negatives, that feature alone does not determine the
score. As seen in Figure 7, there may be similarities and even
overlap between the features as well as correlations between the
ECFP4s that tend to appear together in drugs. The total score
for a given drug comes from the sum of all the weights for the
features present in the drug, including the overlapping and
correlated features. Despite the limitations in looking at just a
few chemical features, it is informative to look at the features
that make the largest contributions to the score for a drug. The
three validation drugs, known to induce expression of CYP1A2,
are shown in Supporting Information Figure 2 in three panels
that highlight the features that have the largest positive and
largest negative weights. It is interesting to note how the
features tend to overlap over common regions of the molecular
graphs so that a given portion of a molecule may contribute
both positive and negative weights. However, the net
contribution of those overlapping features results in either a
positive or negative change to the score due to the differences
in the size of the values.
Relationship to Previous Work. Others have shown that

chemical structure can be related to gene expression. For
example, Blower et al. calculated correlations between the
structure of cancer drugs and gene expression in NCI-60 cell
lines.18 In that work the authors were able to successfully
construct substructure queries for chemical classes that induced
similar gene expression sets. However, that work was focused
on cancer cell lines and entire expression signatures, instead of
individual gene classifiers based on structural features. ECFPs
have been used to predict activity classes; Heikamp et al.
showed that feature selection on ECFPs with gain-ratio analysis
could be used to create reduced fingerprint feature sets for

searching activity classes, suggesting that such feature sets could
be used for scaffold hopping.6,31 Similarly, the work presented
here uses machine learning and feature selection in order to
find sets of features that are predictive of an increase in gene
expression. Bender et al. used chemical structure to predict
ligand binding in a selection of targets associated with adverse
events to successfully develop predictive models for adverse
events.32 We anticipate that additional training data would
further increase the number of genes that could be reliably
predicted to have increased expression. Given a large enough
set of genes, there would be intriguing drug development
applications such as identifying drugs or combinations of drugs
with increased likelihood of adverse or toxic effects.
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