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Abstract: Accurate determination of the physicochemical characteristics of ionic liquids (ILs), espe-
cially viscosity, at widespread operating conditions is of a vital role for various fields. In this study,
the viscosity of pure ILs is modeled using three approaches: (I) a simple group contribution method
based on temperature, pressure, boiling temperature, acentric factor, molecular weight, critical tem-
perature, critical pressure, and critical volume; (II) a model based on thermodynamic properties,
pressure, and temperature; and (III) a model based on chemical structure, pressure, and temperature.
Furthermore, Eyring’s absolute rate theory is used to predict viscosity based on boiling temperature
and temperature. To develop Model (I), a simple correlation was applied, while for Models (II) and
(III), smart approaches such as multilayer perceptron networks optimized by a Levenberg–Marquardt
algorithm (MLP-LMA) and Bayesian Regularization (MLP-BR), decision tree (DT), and least square
support vector machine optimized by bat algorithm (BAT-LSSVM) were utilized to establish robust
and accurate predictive paradigms. These approaches were implemented using a large database
consisting of 2813 experimental viscosity points from 45 different ILs under an extensive range of
pressure and temperature. Afterward, the four most accurate models were selected to construct
a committee machine intelligent system (CMIS). Eyring’s theory’s results to predict the viscosity
demonstrated that although the theory is not precise, its simplicity is still beneficial. The proposed
CMIS model provides the most precise responses with an absolute average relative deviation (AARD)
of less than 4% for predicting the viscosity of ILs based on Model (II) and (III). Lastly, the applicability
domain of the CMIS model and the quality of experimental data were assessed through the Leverage
statistical method. It is concluded that intelligent-based predictive models are powerful alternatives
for time-consuming and expensive experimental processes of the ILs viscosity measurement.

Keywords: ionic liquids; viscosity; Eyring’s theory; artificial neural networks; machine intelligent
system; CMIS modeling; artificial intelligence; machine learning

1. Introduction

The attention in green chemical technologies has resulted in the growth of a new
class of highly tunable and special compounds named ionic liquids (ILs) [1]. Ionic liquids
(ILs) were first introduced in 1914 by having to report the physical characteristics of ethyl-
ammonium nitrate ([NHHH2][NO3]) [2]. Basically, ILs are formed by the combination
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of organic cations and organic or inorganic anions [3]. The wide types of cations are
pyridinium, phosphonium, imidazolium, and ammonium. Moreover, the commonly
applied class of anions includes phosphates, halides, and sulfates [2,4]. These types of
liquids can preserve their state at room temperature—which results in molten salts—and,
thus, are very useful in a number of temperature-sensitive processes such as biocatalysts,
etc. [5].

The features of ILs depend on a number of factors, such as the extent of the cation
and anion parts, cation and anion types, and the number of branches in the elements [6].
One of the most critical properties of ILs is tuneability that allows them to acquire many
of their desired features by a proper combination of anions and/or cations, side chains,
and task-specific groups [6]. Ionic liquids also exhibit incredibly low volatility, hence
reducing air pollution once implemented [7]. Some of the other individual features of ILs
are thermal and chemical stability, nonflammability, high heat capacity, unique permittivity,
high ion conductivity, and good electrical, high viscosity, electrochemical stability, ease
of recycling, high solubility, and high solvability capacity for both polar and nonpolar
compounds [4,7–10]. Some of the primary industrial utilization of ILs include applica-
tions in lithium batteries as eco-friendly electrolytes and dissolving various compounds of
organometallic. Other broad usages of ILs touch different fields such as chemical synthesis,
absorption, nanomaterials synthesis, catalytic reactions, enhanced oil recovery, bioremedia-
tion, biotechnology, and electrolytes in batteries, bio-enzyme/catalysis stabilization, and
membrane separation technology [11–19].

The study of the chemical and physical characteristics of ILs is crucial due to their high
sensitivity to the addition of small quantities of impurities such as halides or water [20,21].
These characteristics include density, speed of sound, surface tension, refractive index,
electrical conductivity, and viscosity. To judge their purity, the exact measurements of
these properties can always be applied [20,21]. Among the properties described above
is viscosity as one of the most crucial physicochemical properties that help measure the
purity of ILs [21–23] and help understand fluid dynamics or measuring intermolecular
forces [24–28]. Acquiring high viscosity is required in applications such as lubricants
and supported membrane separation processes, while low viscosity values are typically
acceptable to increase mass transfer rates and minimize pumping costs [29,30].

In general, ILs show a wide range of viscosity from 10-105 CP, while the viscosity
of ILs is two to three times higher than that of traditional organic compounds [31]. For
instance, the viscosity of 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide
([C6mim][Tf2N]) is 70 CP, while the toluene viscosity at room temperature is 0.6 CP [32].
Therefore, high viscosity ILs are suitable to be used as the stationary phase of gas and
liquid chromatography, lubricants, and so on. [32]. Overall, experimental measurements of
thermodynamic characteristics, chemical, and physical properties of ILs, such as viscosity
in an extensive range of temperature and pressure, is more important. It is also not
always feasible to calculate the proprieties of ILs because they are usually costly and
time-consuming [33]. Therefore, it is necessary to develop modern and reliable predictive
approaches to predict the physicochemical properties of ILs [34].

Various computational methods such as group contribution methods (GCM), quantita-
tive structure−property relationships (QSPR), and intelligent approaches (IA) can be used
to predict the viscosity of ILs [35,36]. To this end, Gardas and Coutinho [37] performed a
modeling investigation of viscosity of ILs by applying GCM for 500 data points from 29 ILs
(based on imidazolium, pyrrolidinium, and pyridinium) in a wide range of temperature
(293–393 K). The result denotes that the absolute average relative deviation (AARD) for
predicting the viscosity of ILs is equal to 7.7%. Gharagheizi et al. [38] performed another
study to estimate the ILs viscosity by creating a group contribution model for 443 different
ILs (1672 data points) at atmospheric and a wide range of temperature from 253.15 to
433.15 K where they obtained AARD of about 6.32%. Lazzús et al. have obtained a linear
model to forecast the ILs viscosity based on GCM at the temperature range of 253–395 K
where AARD of the model obtained was about 4.5% [39]. A group contribution method
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(GCM) based on feed-forward neural network (FF-NN) to estimate the viscosity of ILs has
been proposed by Paduszynski et al. [40] for 13,000 data points (1484 ILs) where pressure
and temperature ranged from 0.06–350 MPa and 253–573 K, respectively, and AARD was
about 11.4%. Zhao et al. [41] proposed nonlinear (support vector machine) and linear
(multiple linear regression) QSPR models to model 1502 experimental data points (89 ILs)
in a wide range of temperature (253.15–395.2 K) and pressure (0.1–300 MPa), where AARD
for linear and nonlinear models were obtained 10.68% and 6.58%, respectively. Therefore,
proposing new, accurate models to predict the viscosity of ILs yet to be accomplished.

In this paper, 2813 experimentally obtained viscosity values for 45 ILs were gathered
to establish three kinds of predictive models. The first approach includes obtaining a simple
correlation (Model (I)) based on temperature, pressure, molecular weight, critical volume,
boiling temperature, critical temperature, critical pressure, and acentric factor. On the other
hand, five advanced models with higher accuracies were developed to forecast the viscosity
at different pressures and temperatures based on Model (II) (thermodynamic properties)
and Model (III) (chemical structure) by using intelligent models comprising multilayer
perceptron networks optimized by Levenberg–Marquardt algorithm (MLP-LMA) and
Bayesian Regularization (MLP-BR), decision tree (DT), least-square support vector machine
optimized by bat algorithm (BAT-LSSVM), and committee machine intelligent system
(CMIS). Furthermore, Eyring’s theory (ET) was used for estimating the viscosity of ILs
containing pure systems based on temperature and boiling temperature. It should be noted
that various graphical and statistical criteria were considered to investigate the reliability
of the proposed approaches in order to obtain the most accurate approach.

2. Viscosity Data of Ionic Liquids

The generalization and accuracy of a model highly depend on the variety and the
number of data points involved in its development. For this aim, a databank—including
2813 experimental viscosity data from 45 ILs of different bases in a broad range of pressures,
0.06–298.9 (MPa), temperatures, 253.15–573 (K), and viscosities of pure ILs, 1.13–9667.6
(MPa.s)—was used to build the models [11,42–61]. The ILs cations consist of pyrrolidinium
[Pyr]+, imidazolium [Im]+, ammonium [Am]+, phosphonium [Ph]+, and pyridinium
[Py]+. Moreover, anions include hexafluorophosphate [PF6]

−, tetrafluoroborate [BF4]
−,

bis[(trifluoromethyl) sulfonyl]imide [Tf2N]−, ethyl sulfate [EtSO2]
−, trifluoromethane-

sulfonate [CF3 SO3]
−, tris(pentafluoroethyl)trifluorophosphate [FAP]−, hydrogensulfate

[HSO4]
−, trifluoromethanesulfonate [TFO]−, iodid [I]−, nitrate [NO3]

−, diethylphosphate
[DEP]−, dimethylphosphate [DPO4]

−, and methanesulfonate [Mesy]−. The chemical struc-
tures of designated ILs are presented in Figure 1. The ionic liquids (cations and anions),
pressure, temperature, and abbreviations of ILs are provided in Table 1. In addition, the
full characteristics (name, unit, min, max, and mean) of the databank used for modeling in
this study are shown in Table 2. In this study, the viscosity is predicted by three approaches:
Model I) a simple correlation model, Model II) intelligent models based on thermodynamic
properties, pressure, and temperature (Equation (1)), and Model III) intelligent models
based on chemical structure, pressure, and temperature (Equation (2)).

η = f (T, P, Mw, Tc, Tb, Pc, ω, Vc) (1)

η = f (T, P, Chemical structure) (2)
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Table 1. The selected ionic liquids in the present study.

Component of ionic liquid Abbreviation n T
(K) P (MPa)

1-butyl-3-methylimidazolium hexafluorophosphate [C4mim] [PF6] 238 273.15–413.15 0.1–249.3
1-octyl-3-methylimidazolium hexafluorophosphate [C8mim] [PF6] 132 273.15–363.15 0.1–175.9
1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM] [PF6] 179 273.15–238.5 0.1–238.5

1-octyl-3-methylimidazolium tetrafluoroborate [C8mim] [BF4] 141 273.15–363.15 0.1–224.2
1-hexyl-3-methylimidazolium tetrafluoroborate [C6mim] [BF4] 183 283.15–368.15 0.1–121.8

1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide [C4mim] [Tf2N] 344 273.15–573 0.1–298.9
1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide [C2mim] [Tf2N] 225 263.15–388.19 0.1–125.5
1-octyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide [C8mim] [Tf2N] 25 278–363.15 0.1
1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide [C6mim] [Tf2N] 236 258.15–433.15 0.1–124

1-butyl-3-methylimidazolium trifluoromethanesulfonate [C4mim] [CF3SO3] 25 283.15–363.15 0.1
1-ethyl-3-methylimidazolium ethylsulfate [C2mim] [EtSO4] 137 253.15–388.19 0.1–75

1-hexylpyridinium bis[(trifluoromethyl)sulfonyl] imide [HPy] [Tf2N] 8 283–343 0–1
1-butylpyridinium bis[(trifluoromethyl)sulfonyl] imide [BPy] [Tf2N] 9 283.15–353.15 0.1

1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl) sulfonyl]imide [C4MPyr] [Tf2N] 148 273.15–573 0.1–102.9
1-ethylpyridinium ethylsulfate [EPy] [ESO4] 8 283–343 0.1

trimethylhexylammonium bis[(trifluoromethyl)sulfonyl]imide [N1116] [Tf2N] 1 293.15 0.1
Trimethylbuthlammonium bis[(trifluoromethyl)sulfonyl]imide [N1114] [Tf2N] 17 293.15–388.51 0.1

1-butyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [C4mim] [FAP] 1 293.15 0.1
1,2-dimethylimidasolium bis[(trifluoromethyl)sulfonyl] imide [DMIM] [Tf2N] 1 298.15 0.1

trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)
trifluorophosphate [P6,6,6,14] [FAP] 181 268.15–373.15 0.1

1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate [C4mpyrr] [FAP] 67 283.15–373.15 0.1–150
1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate [BMPyr] [TfO] 67 293.15–373.15 0.1–150

1-ethyl-3-methylimidazolium hydrogensulfate [C2mim] [HSO4] 22 268.15–373.15 0.1

trimethylpropylammonium bis[(trifluoromethyl)sulfonyl] imide [N1113] [Tf2N] 6 293–318 0.1
1-heptyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide [C7mim] [Tf2N] 1 293 0.1

1-undecyl-3-methylimidazolium tetrafluoroborate [C11MIM] [BF4] 8 293–363 0.1
1-butyl-3-methylimidazolium iodid [C4mim] [I] 35 289.15–388.15 0.1

1-butyl-3-methylimidazolium nitrate [C4mim] [NO3] 27 283.15–363.15 0.1
1-dodecyl-3-methylimidazolium hexafluorophosphate [C12MIM] [PF6] 4 333.15–363.15 0.1

1-octyl-3-methylimidazolium nitrate [C8mim] [NO3] 16 283.15–363.15 0.1
1-hexyl-3-methylimidazolium nitrate [C6mim] [NO3] 14 283.15–363.15 0.1
1-butylpyridinum tetrafluoroborate [BPy] [BF4] 70 278.15–338.15 0.1–65.9

1-hexylpyridinium bis[(trifluoromethyl)sulfonyl] imide [C6Py] [Tf2N] 9 298.15–398.15 0.1
1-heptyl-3-methylimidazolium hexafluorophosphate [C7mim] [PF6] 13 293.15–263.15 0.1

1-ethyl-3-methylimidazolium diethylphosphate [C2mim] [DEP] 17 292.15–373.15 0.1
1-pentyl-3-methylimidazolium hexafluorophosphate [C5mim] [PF6] 13 293.15–263.15 0.1
1-nonyl-3-methylimidazolium hexafluorophosphate [C9mim] [PF6] 12 303.15–363.15 0.1
1,2-dimethyl-3-propylimidazolium tetrafluoroborate [M1,2P3im] [BF4] 8 289.15–343.15 0.1

1-butyl-4-methylpyridinium tetrafluoroborate [mbpy] [BF4] 48 283.15–333.15 0.1–65
1,3-dimethylimidazolium dimethylphosphate [C1mim] [DPO4] 7 293.15–323.15 0.1

1,2-dimethyl-3-propylimidazolium bis[(trifluoromethyl)sulfonyl] imide [M1,2P3im] [Tf2N] 16 290–365 0.1
1-ethyl-3-methylimidazolium methylsulfate [C2mim] [MSO4] 27 283.15–373.15 0.1

1-ethyl-3-methylimidazolium methanesulfonate [C2mim] [mesy] 45 278.15–363.15 0.1
1-butyl-3-methylimidazolium perchlorate [C4mim] [CLO4] 15 283.15–383.15 0.1

1-butyl-2,3-dimethylimidazolium tetrafluoroborate [BDmim] [BF4] 7 298.15–353.15 0.1

Table 2. Statistical details about gathered databank in the present work.

Parameter Symbol Unit Min Max Mean

Temperature T K 253.15 573 325.63
Pressure P MPa 0.06 298.90 24.45

Molecular Weight Mw g/mole 201.22 515.13 346.65
Critical Temperature Tc K 520.06 1534.63 1005.87

Critical Pressure Pc bar 2.63 57.60 22.29
Critical Volume Vc cm3/mol 550.65 2573.60 992.83
Acentric factor Ω - 0.21 1.10 0.59

Boiling Temperature Tb K 410.77 1130.30 723.93
Experimental viscosity η exp MPa.s 1.13 9667.62 191.91
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3. Model Development
3.1. Calculation of Pure Viscosity Based on Eyring’s Theory-ET

Kirkwood and co-workers [62] have established a robust kinetic theory about monatomic
liquids’ transport characteristics. However, this theory does not lead to quick and easy
results to apply. Henry Eyring and co-workers proposed the absolute rate theory [63–65].
The individual molecules are in constant motion in a pure liquid at rest. However, the
motion is largely confined to vibration of each molecule formed by its nearest neighbors
because of the close packing inside a “cage”. This “cage” is demonstrated by an energy

barrier of height ∆Ĝ+
0

NA
. Where NA stands for the Avogadro number (molecules/g-mol). To

“escape” from the cage in the stationary fluid, a molar free energy of activation is needed
that is denoted by ∆Ĝ+

0 here (see Figure 2).
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Figure 2. Illustration of an escape process in the flow of a liquid. Molecule 1 must pass through a
“bottleneck” to reach the vacant site.

Based on Eyring’s theory (ET), a molecule escapes from its “cage” into an attached
“hole” in a resting liquid. Thus, the molecules move in each of the direction in jumps of
length “ά” at a frequency “ f ” per molecule. The rate expression determines the frequency:

f =
KT
p

exp

(
−

∆Ĝ+
0

TR

)
(3)

where K denotes the Boltzmann constant (J/K), P is the Planck constant (J·s), while R
is the gas constant (J/mole·k). T and ∆Ĝ+

0 are the absolute temperature (K) and the
molar activation energy in the fluid at rest, respectively. The frequency of molecular
reconfigurations is increased in a fluid flowing in the x-direction with a gradient of velocity
( dvx

dy ). Figure 2 shows the potential energy barrier as distorted under the applied stress τyx

that represents as following equation:

− ∆Ĝ+ = ∆Ĝ+
0 ± (γ/ά)

(
τyx Q̃

2

)
(4)

in which ±(γ/ά)

(
τyx Q̃

2

)
shows the estimation of the work done on the molecules. Q̃

denotes the volume of a mole of liquid. The frequency of forward jumps and backward
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jumps are “ f+” and “ f−”, respectively. Then, the combination of Equations (3) and (4), is
given as follows:

f =
KT
p

exp

(
−

∆Ĝ+
0

TR

)
exp

(
±γτyx Q̃

2ά TR

)
(5)

The net velocity that determines how far the molecules in layer “A” goes of those in
layer “B” (Figure 2) is the distance traveled in each jump (ά) times the net frequency of
advancing jumps ( f+ − f−). The following equation is applied:

fxA − fxB =( f+ − f− ) ω (6)

A linear velocity profile can be seen over a very short distance “ά” between the two
layers, so that:

− dvx

dy
= (γ/ά)(− f− + f+) (7)

Finally, Equations (5) and (7) are combined as follows:

− dvx
dy = (γ/ά)

(
KT
p exp

(
−∆Ĝ+

0
TR

))
(exp

(
+γτyx Q̃

2ά TR

)
− exp

(
−γτyx Q̃

2ά TR

)
==

( γ
ά

)(KT
p exp

(
−∆Ĝ+

0
TR

))(
2sinh γτyx Q̃

2ά TR

) (8)

Additionally, if γτyx Q̃
2ά TR � 1, then the Taylor series can be used. Eventually, the viscosity

can be obtained using the following equation:

η =
(γ

ά

)2
NAh/Q exp

(
∆Ĝ+

0
TR

)
(9)

The unity factor, ( ά
γ ), is a simplification that involves no loss of accuracy, as ∆Ĝ+

0
is obtained empirically to make sure that the equation provides consistent values with
experimental values. On the other hand, the calculated ∆Ĝ+

0 (free energies of activation)
through fitting Equation (9) to experimental viscosity data versus temperature are found
to be nearly constant for a specific fluid and are corresponded to the internal energy of
vaporization (∆Ûvap = ∆Hvap-RT∆Zvap) at the normal boiling point, as follows [63]:

∆Ĝ+
0 ≈ 0.408 ∆Ûvap (10)

By using this empiricism and setting ά
γ = 1, Equation (9) becomes:

η = NA p/Q exp

(
0.408∆Ûvap

TR

)
(11)

The Trouton’s rule provides an accurate estimation of the energy of vaporization at
the normal boiling point, as follows:

∆Ûvap ≈ ∆Ĥvap − TbR ∼= 9.4TbR (12)

According to this approximation, Equation (11) becomes:

η = NA p/Q exp
(

λ Tb
T

)
(13)

In this work, in Equation (13), a “λ” term was added for each ILs based on GRG in
Excel software. This term is not constant, while changing with each ionic liquid. Equa-
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tions (11) and (13) show good consistency with the apparently successful and long-used
empiricism η = A exp(B/T). The theory shows a decrease in viscosity with temperature.

3.2. Generalized Reduced Gradient

The generalized reduced gradient (GRG) approach is frequently used as a solver
for multivariable problems. This scheme is designed to integrate and solve linear and
non-linear problems based on the concept of the reduced gradients [66]. It controls the
component in such a way that when the process transitions from one stage to another, the
active constraints remain to be satisfied. In fact, at a given point x, GRG provides a linear
estimation for the gradient. The constraints and objective gradient are simultaneously
solved, and the gradient of the objective function can be represented as constraint gradients.
Then, the search area becomes smaller by moving in a practical path. Following expressions
denote an objective function f(z) that is subjected to h(z) [67]:

Minimize: f(z) = z (14)

Subjected to : hk(z) = 0 (15)

In the following form, GRG can be adjusted [67]:

d f
dzk

= ∇zt
k f −∇zt

i f
(

∂h
∂zi

)−1 ∂h
∂zk

(16)

Basically, f(z) will be minimum under two simple conditions that are df(z) = 0 or
d f (z)
dzk

[68,69].

3.3. Decision Tree-DT

The first decision tree (DT) was the model first developed by Morgan and Sonquist [70],
Automatic Interaction Detection (AID) that was introduced by Morgan and Sonquist [70].
This approach is a non-parametric supervised learning method that is applicable to both
classification and regression problems. The first algorithm for the tree classification was
THAID which Messenger and Mandell have suggested [71]. Learning and classification are
two steps in the DT approaches. During the learning phase, the algorithm generates a tree
from a set of training samples that have been classified. In the following step, unclassified
data are classified using the tree developed in the learning phase [72]. The decision tree
(DT) is successfully applied in many different fields such as speech recognition, remote
sensing, radar signal classification, expert system, character recognition, and medical
diagnosis. They are relatively inexpensive in terms of computing and appropriate accuracy.
The decision tree is capable of breaking down a complicated decision-making process into
a collection of simple decisions, thereby simplifying the decision [73]. A flow chart-like
structure for the decision tree consists of branches, internal nodes, and root nodes. The
whole of the sample space was shown via the top node with no income branch that is called
the root node. The nodes with one incoming branch and more outgoing edges are classified
as the internal nodes or test. The leaves or terminal nodes are identified as the other
nodes that indicate the final results. The decision tree has made with three parts: pruning,
stopping and splitting [74]. Splitting means that the data are divided into a number of
subsets based on the most significant attribute testing that is also applicable to training
instances. For the variance reduction, standard deviation reduction, and classification
tree, the various criteria may be handled including the Gini index, information gain,
classification error, gain ratio, and towing [75].

3.4. Multilayer Perceptron Neural Network—MLPNN

Artificial Neural Network (ANN) is modeling technique which is inspired from the
human brain network as a smart computing plan. The simplest element of ANN processing
is known as neurons in which connections interrelate and are organized into various
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layers. Neural networks are used in many aspects, including identification, estimation of
functions, recognition of patterns, clustering etc. [76]. ANN has been applied in various
fields, including electronics, medical, aerospace, petroleum and chemical industries [77,78].
The most popular ANN model is the multilayer perceptron (MLP). In an MLP model, there
are several layers between the input and output layers, which are called hidden layers [79].
The hidden layers are specific connections between the inputs and outputs of the models.
In addition, the number of neurons should be specified through a trial and error process in
the hidden layer. The number of neurons in the first and last layers is regulated with input
and output parameters. The use of two hidden layers in more complex problems is more
appropriate than one hidden layer, but one hidden layer in the MLP model should usually
be used in simple problems [80]. The value of each hidden/output neuron is calculated
through the multiply and summation of the previous neurons to the neurons’ weights, and
ultimately, a bias term is added to this summing-up [79]. This result is passed through the
activation functions that are defined as follows:

Tangsig = Tanh : f(n) =
en − e−n

en + e−n =
2

1 + e−2n − 1 (17)

ArcTan : f(a) = tan−1(a) (18)

Logsig = Sigmoid : f(y) =
1

1 + e−y (19)

Linear = Pureline : f(z) = z (20)

Sinusid : f(z) = sin(z) (21)

In hidden layers, logsig and tansig are the frequently applied activation functions,
while pureline is usually considered the output layer’s activation function. To illustrate
how the outcomes are gained from an MLP model, consider an illustrative model with two
hidden layers having logsig and tansig as transfer functions, respectively, and an output
layer with pureline as the transfer function. The output of the models is achieved by:

Output = pureline(w3 × (logsig(w2 × (tansig(x) + b1)) + b2) + b3) (22)

In the above-mentioned equation, pureline, logsig, and tansig are activation functions,
respectively, b1 denotes bias vectors of the first hidden layer and b2, b3 are bias vectors
of the second hidden layer and the output layer, respectively. Additionally, w1, w2, and
w3 are the matrix weight of the first layer, the matrix weight of the second layer, and the
matrix weight of the output layer, respectively [80].

The optimization algorithm is one of the most key roles in the performance of the MLP
model which are used for training the model. Thus, two main optimization algorithms
have been used in this study, including LMA, Levenberg-Marquardt, and BR, Bayesian
Regularization. Additional information on developing LMA and BR in the MLP training
phase can be found elsewhere [81–84]. A scheme of the MLP network that was used in this
study is represented in Figure S1 (in the Supplementary File).

3.5. Least Square Support Vector Machine—LSSVM

A support vector machine (SVM) is a supervised and powerful, intelligent tool applied
on known input/output data for various purposes such as pattern recognition, problem
classification, and regression analysis [85,86]. The least-square SVM (LSSVM) was proposed
by Vandewalle and Suykens [87] as a newer version of the support vector machine. Further,
the LSSVM has emerged to improve and prevail the typical shortcomings of the SVM
approach and simplify its solution [85]. The LSSVM updates the optimization constraints
and mathematically determines the regression error. In reality, regression error in SVM
algorithms during the learning process is optimized, and it is numerically defined and
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resolved in LSSVM approaches [85]. The penalized function of the least square SVM
(LSSVM) method is described as shown below [85,88–90]:

QLSSVM = λ×
N

∑
k=1

e2
k +

wT

2
(23)

where λ is the summation of regression errors, while T shows the transpose matrix. Equa-
tion (23) is subjected to the following constraint [85]:

yk = ek + b + wT ϕ(xk), k = 1, 2 . . . N (24)

where ek denotes the regression error of N training objects, y shows the output vector of
the model, b is the intercept or the bias of linear regression. Additionally, T expresses the
transposed matrix, and w represents linear regression slope. The weight function (w) is
expressed as follows [85]:

w =
N

∑
k=1

xk × ak, where, ak = 2× ek × λ (25)

Where ak denotes the Lagrangian multiplier. λ corresponds to the relation of specific
weights and also the weight of all regression errors, while ek represents regression error
related to whole databank. Using least square SVM (LSSVM) method, another form of
Equation (25) is represented as follows [85,87–90]:

y = b +
N

∑
k=1

xT
k × x× ak (26)

Consequently, the Lagrange multipliers are described as the following equation [85]:

ak =
(yk − b)

(2λ) + x× xT
k

(27)

Using the following Kernel function, the aforementioned equation for linear regression
can be rewritten as [85]:

f (x) = b +
N

∑
k=1

ak × k(x, xk) (28)

In which k(x, xk) shows the Kernel function. k(x, xk) denotes the dot product of Φ(xk)

and Φ(x)T as follows [85]:
K(x, xk) = Φ(xk)×Φ(x)T (29)

In the present study, one of the most well-known Kernel functions, i.e., the radial basis
Kernel function, was applied. This latter is defined as follows:

K(x, xk) = exp

(
−||xk − x||2

σ2

)
(30)

In the above equation, σ2 is a regulation parameter that is to be obtained by an opti-
mization algorithm. Briefly, there are two adjustable parameters in the LSSVM technique,
namely λ and σ2, which should be optimized during training step. The parameters for tun-
ing were optimized using the bat (BAT) algorithm. This approach was named BAT-LSSVM.
In this approach, σ2 and λ are optimized using BAT algorithm for determining viscosity of
ILs. The schematic representation of this approach for predicting viscosity of ILs is showed
in Figure S2 (in the Supplementary File).
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3.6. Committee Machine Intelligent System (CMIS)

In an extensive number of studies, various artificial intelligence modelling technique
are employed, and after selecting the most accurate model, the other approaches are left
out. The better choice is to utilize these models to build a more precise model. Many
years ago, Nilsson presented a Committee Machine Intelligent System (CMIS) as a kind
of artificial neural network. Through this process, the basic goal is to divide and conquer
until resolving a problem. In addition, the outputs of each approach have been mixed and
the benefits of all work with little extra calculation have been achieved. Afterward, the
model can outperform the best single network [91,92]. As a matter of fact, in this technique,
different predictive models are combined in order to form a more efficient and accurate
model. Different methods have emerged for merging several models in a single model.
The categories of committee machines can be divided into the two following types [93]:

(1) Static structure
(2) Dynamic structure

An appropriate approach based on simple averaging or weighted averaging is em-
ployed to linearly combine the resolutions and getting the best model [94]. Herein, an
improved weighted averaging approach was used and a bias factor was added to the
linear equation. Each model’s contribution extent in a CMIS corresponds to the absolute
coefficient of that model in the CMIS linear equation. Figure 3 shows a scheme of the CMIS
approach in this study.
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3.7. Optimization Technique
Bat Algorithm (BAT)

In 2010, Yang Xinshe introduced the bat algorithm (BA) by analyzing the behaviors
and the features of the microbat [95]. In the rest of this section, we shed light on the
echolocation and details of this nature-inspired algorithm. Yang and Deb [96] used the
idealized and approximate rules in the BA approaches with the following steps:

1. All the species of the bat utilize echolocation to sense distance, and bats ‘know’ the
discrepancy among food/prey and background obstacles in some magical techniques.

2. In order to search prey, the bats can fly fortuitously with the velocity vi at position
xi with a frequency fmin, loudness A0, and a variable wavelength λ. Bats can spon-
taneously adjust the wavelength and/or frequency of their generated pulses and
regulate the level of pulse emission r in the range of [0,1], reliant on the nearness of
their goal.

3. Although there are various methods to regulate the loudness, it is usually assumed
that the loudness is between a positive A0 and a minimum constant amount, which is
represented by Amin.
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The following equations show the motion of a virtual bat by Yang’s method [97]:

fi = fmin − ( fmin − fmax).β (31)

vt
i = vt−1

i −
(

xbest − xt
i
)
. fi (32)

xt
i = vt

i + xt−1
i (33)

where β is between 0 and 1 and denotes a random obtained from monotonic, min and max
are the suffixes that are shown minimum and maximum value, respectively. The velocity
of the bat is vi, the current iteration is indicated as “t”. The global close-best solution
discovered so far over the whole population is denoted xbest. The location of the ith bat in
the solution space is xi and f denotes the frequency used by the bat to seek for its hunt.
Furthermore, one of the roles in the system is also assumed to be the rate of pulse emission
from the bat. The symbol ri ∈ [0, 1] is the pulse emission rate, also, the suffix i denotes
the ith bat. A random number is created in each iteration and compared with ri. The
random walk is denoted a local search strategy, if ri is smaller than a random walk. The
below-shown equation represents a new solution for the bat:

xnew = rand.At + xold (34)

where the average loudness of all bats at the current time step is At〈At
i
〉
, while rand

∈ [−1, 1]. The loudness Ai and pulse emission rate ri are also updated after updating the
positions of the bat, only when the close-best global solution is updated and Ai is bigger
than the random number. Equations (35) and (36) state the update of ri and Ai [97]:

At+1
i = At

i .β (35)

rt+1
i = [− exp(−αt) + 1]r0

i (36)

where β and α are constants. As a result, 0 < β < 1 and α > 0 [97].
The above-described steps are reiterated until reaching a stopping condition.

4. Model Assessment
4.1. Statistical Criteria

In order to evaluate the validity of the obtained models, the mathematical formula for
statistical assessment parameters including average relative deviation (ARD%), determina-
tion coefficient (R2), standard deviation (SD), root mean square error (RMSE), and average
absolute relative deviation (AARD%) were used. These statistical parameters are detailed
as follows:

4.1.1. Determination Coefficient (R2)

Regression determination is a measure of fitting quality revealing the accuracy of the
model. Accordingly, if its value is close to 1, the model matches the data more accurately.
The mathematical formula of R2 is given below:

R2 =
∑NP

i=1

(
η

exp
i − η

)2
−∑NP

i=1

(
ηcal

i − η
exp
i

)2

∑NP
i=1

(
η

exp
i − η

)2 (37)

4.1.2. Average Relative Deviation (ARD%)

The relative deviation of the estimated data from the experimental is measured by the
percentage of ARD with the following equation:

ARD% =
100
NP

∑
j=1

(
η

exp
j − ηest

j

η
exp
j

)
(38)
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Positive and negative ARD (%) denote underestimation and overestimation of a model,
respectively.

4.1.3. Standard Deviation (SD)

It is a measure of the scattering of data around the mean. It is defined as:

SD =

 1
N − 1

NP

∑
j=1

(
η

exp
j − ηest

j

λ
exp
j

)2
1
2

(39)

4.1.4. Average Absolute Relative Deviation (AARD%)

The AARD value is a measure of the relative absolute deviation of the predicted/represented
data from the actual/real data. It is represented by:

AARD(%) : 100×
∑NP

j=1

∣∣∣∣ η
exp
j −ηest

j

η
exp
j

∣∣∣∣
NP

(40)

4.1.5. Root Mean Square Error (RMSE)

The root-mean-square error (RMSE) is a widely used calculation of the differences
between values (sample or population values) expected by a model or estimator and the
observed values. It is denoted by:

RMSD =

√√√√ 1
NP

NP

∑
j=1

(η
exp
j − ηest

j )
2

(41)

where NP points out the numbers of data points and η is the experimental/real values of
viscosity of ILs, while η, superscripts “est”, and “exp” are the average of viscosity of ILs
obtained by experiments/real data, the estimated value, and the experimental/real value,
respectively.

4.2. Graphical Evaluation of the Models

To better assess the proposed models and analyze their predictive accuracy, several
graphical plots were employed in this study. The plots include cross-plot, cumulative
frequency diagram, and error distribution diagram. In the error distribution, the percent
relative deviation is plotted versus the target/real values to measure the distribution of
error around the zero-error line and to show whether the model has an error trend or not.
Cross-plot includes sketching the estimated/represented value obtained by the model ver-
sus the experimental data. Then, between the experimental data and predicted/represented
values, a straight line of a 45◦ (unit slope line) is drawn. Eventually, the closer the plotted
data to this line, the higher is the model accuracy. For a cumulative frequency diagram, the
larger part of the approximations will be in a standard error range where the cumulative
frequency is calculated from the absolute relative error.

5. Result and Discussion
5.1. Development of Models

In this study, models were developed based on 2813 data points (45 ionic liquids)
that were gathered from the literature. The random databank division was conducted to
attain two subsets, the test (20% of the whole dataset) and training sets (80% of the whole
dataset). In fact, the validity of the constructed models and over-fitting problems were
monitored based on the “testing” subset (563 data points). The models’ structure and the
adjustment of their tuning parameters were performed based on the “training” subset
(2250 data points) [98].
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As it was mentioned early, T, P, Mw, Vc, Tb, Tc, Pc, ω, and chemical structure were
considered as the input parameters, while the output was the viscosity of ILs (MPa·s).
Firstly, a new empirical correlation was established based on the GRG approach. The
following relation was obtained for viscosity of ILs:

log(η) =

(
aTi + bPj + cMk

w + dV l
C + eTm

b + f Tn
c + gPo

c + hωp
)

Tq (42)

where Tc and Pc denote the critical temperature and the critical pressure of ionic liquids,
respectively. Additionally, ω, T, and P are the acentric factor, temperature, and pressure,
respectively, while Mw is the molecular weight of ILs, Vc is the critical volume of ILs, and
Tb is the boiling temperature of the ILs. Moreover, the other parameters are the adjustable
coefficients of the correlation which are shown in Table S1 (in the Supplementary File).
The ARD%, AARD%, SD, RMSE, and R2 for the proposed correlation are 13.44%, 28.34%,
0.368, 394.12, and 0.207, respectively. The cross-plots between the logarithm of predicted
data were plotted against the logarithm of experimental viscosity data for the presented
correlation (Equation (42)) is shown in Figure S3 (in the Supplementary File). This plot
depicts a medium-uniform distribution of the predictions around the unit-slope line. On
the other hand, Eyring’s theory (ET) was applied to estimate the viscosity of ILs based
on boiling temperature (Tb) and temperature (T) for the gathered database. The achieved
correlation is expressed as follows:

η = NA p/Q exp
(

λ Tb
T

)
(43)

where η is the predicted viscosity of pure ILs (MPa·s). NA and p are the Avogadro number
(mole−1) and the Plank constant (J·s), respectively. Q denotes the volume of a mole of
liquid (m3/mole), Tb and T represent the boiling temperature (K) and temperature (K),
respectively, while λ is a factor that was obtained based on GRG and for each ILs is not
constant. The average absolute relative deviation (AARD) is 21.86%. Additionally, Figure 4
represents a cross-plot between the logarithm of predicted of ILs viscosity versus the
logarithm of experimental of ILs viscosity. As seen, a moderate conformity was noticed
as the data points were not very close to the diagonal line. The theory of Eyring is not
sufficient in this study, because Arrhenius dependency does not match the experimental
transport features of ILs. Viscosity values reduce significantly with temperature rises, as
generally reported for all ILs measured. Furthermore, the thermally enabled transport
features of ILs are generally defined by the Vogel–Tamman–Fulcher (VTF) development
because of the development of an underlying complex energy landscape with a multiplicity
of local potential energy minimums and a broad dispersion of energy barriers [99–102].

Further, DT, MLP and LSSVM-BAT modelling techniques were employed to predict
the viscosity of ILs based on Model (II) and Model (III). In the first stage based on Model
(II), the MLP training phase was performed utilizing two learning techniques, namely, BR
and LMA. For the best architecture of the MLP network with BR and LMA optimizers,
using three hidden layers were determined to be the most appropriate for predicting the
viscosity of ILs. Therefore, each layer for MLP-LMA and MLP-BR encompasses 11-11-9
and 13-11-9 neurons, respectively. The best transfer functions for all of three layers of
MLP-LMA and MLP-BR models were found as tansig. The optimum values of the main
parameters of the developed LSSVM model, i.e., σ2 and λ, were investigated using the BAT
algorithm. For Model (II), the obtained values for σ2 and λ are 25.4817 and 5,793,328.591,
respectively. Table 3 reports the statistical assessment of the constructed schemes.
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Figure 4. Cross plot of the proposed Eyring’s theory for viscosity of ILs.

Table 3. Statistical parameters of the developed models for prediction of the viscosity of ILs based on
Model (II).

DT LSSVM–BAT MLP–LMA MLP–BR CMIS

Training set
ARD% −3.273 −0.402 −0.326 −0.170 0.011

AARD% 13.366 7.899 4.647 3.553 3.256
RMSE 152.767 11.534 8.465 8.517 9.533

SD 0.219 0.162 0.102 0.064 0.084
R2 0.880 0.999 0.999 0.999 0.999

Number of Data point 2250 2250 2250 2250 2250

Test set
ARD% −4.139 −0.190 −0.171 −1.140 0.258

AARD% 17.454 8.151 4.929 5.004 3.117
RMSE 223.793 25.356 22.368 20.044 9.035

SD 0.244 0.140 0.089 0.232 0.050
R2 0.751 0.994 0.997 0.997 0.999

Number of Data point 563 563 563 563 563

Total
ARD% −3.447 −0.345 −0.260 −0.348 −0.207

AARD% 14.184 7.941 4.707 3.841 3.293
RMSE 169.383 15.331 12.548 11.770 11.812

SD 0.225 0.158 0.099 0.118 0.083
R2 0.853 0.998 0.999 0.999 0.999

Number of Data point 2813 2813 2813 2813 2813

According to the results presented in the Table 3, the MLP-BR model is the most
reliable technique compared to the other models since it provides accurate predictions
for the whole dataset. The proposed models including MLP-LMA, MLP-BR, LSSVM-BAT,
and DT were combined into a CMIS. The coefficients of the constructed CMIS model were
optimized through a multiple linear regression and the following equation was obtained
for this latter:

ηi
ILs = a + byi

DT + cyi
LSSVM−BAT + dyi

MLP−BR + eyi
MLP−LMA (44)

where a, b, c, d, and e were determined to be 0, 8.77× 10−5, 0.049344, 0.619175, and 0.330275,
respectively.

In the other procedure based on Model (III) (chemical structure, pressure, and tem-
perature) the MLP models with two optimization algorithms, including LMA and BR
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were developed. The hidden layers for MLP-LMA and MLP-BR were chosen 12-11-9 and
11-11-9, respectively, where the first, second, and third numbers correspond to the number
of neurons of the first, second, and third hidden layer, respectively. Additionally, tansig
was found to be the best activation function for the three hidden layers of MLP-LMA
and MLP-BR models. The tuning parameters (namely λ and σ2 ) are the most important
in the LSSVM-BAT model. The parameters of the LSSVM method were determined as
6,635,314.0686 and 27.3672 for λ and σ2, respectively, using BAT optimization algorithm.
Table 4 shows the statistical parameters for predicting the viscosity of ILs based on Model
(III). Accordingly, MLP with BR optimization is a better choice for viscosity estimation
based on Model (III). Therefore, a CMIS method that combines the proposed paradigms, i.e.,
MLP-LMA, MLP-BR, LSSVM -BAT, and DT, was implemented. The appropriate coefficients
of the CMIS model were specified employing a multiple linear regression. For this goal,
the following correlation is provided:

ηi
ILs = q + myi

DT + nyi
LSSVM−BAT + dyi

MLP−BR + eyi
MLP−LMA (45)

where the coefficients q to e are as shown below:

q = 0.052; m = 0.0001; n = 0.151; d = 0.466; e = 0.379.

Table 4. Statistical parameters of the developed models for prediction of the viscosity of ILs based on
Model (III).

DT LSSVM−BAT MLP−LMA MLP−BR CMIS

Training set
ARD% −1.108 0.357 0.020 −0.219 −0.161

AARD% 13.589 5.552 4.522 3.768 3.422
RMSE 15.444 9.027 9.441 7.923 8.894

SD 0.292 0.129 0.114 0.076 0.073
R2 0.998 0.999 0.999 0.999 0.999

Number of Data point 2250 2250 2250 2250 2250

Test set
ARD% 5.384 −0.991 −0.464 −0.977 −0.412

AARD% 24.345 6.604 4.624 4.949 3.454
RMSE 24.309 28.984 22.673 10.056 6.844

SD 1.960 0.161 0.092 0.150 0.064
R2 0.995 0.991 0.998 0.999 0.999

Number of Data point 563 563 563 563 563

Total
ARD% 0.190 0.087 −0.076 −0.371 −0.172

AARD% 15.742 5.763 4.453 4.004 3.426
RMSE 17.580 15.275 13.197 8.393 9.505

SD 0.916 0.136 0.110 0.095 0.073
R2 0.998 0.998 0.999 0.999 0.999

Number of Data point 2813 2813 2813 2813 2813

5.2. Statistical Evaluation

In order to indicate the error margin, various statistical indexes, including ARD,
AARD, RMSE, SD, and R2 were computed for each of the developed model. As reported in
Table 3, the computed AARD, ARD, SD, and RMSE for the CMIS are small values for both
test and training sets, as well as the whole dataset. The value of AARD for CMIS model
based on Model (II) is 3.24%, which shows the higher accuracy of this model compared
to the four ANN-based models. Briefly, Table 3 depicted that the models are ranked as
follows in terms of accuracy:

CMIS > MLP-BR > MLP-LM > LSSVM-BAT > DT
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In the other hand, based on Model (III), the same statistical parameters comprising
ARD, AARD, RMSE, SD, and R2 are also presented for MLP-BR, MLP-LMA, LSSVM-BAT,
DT, and CMIS which are summarized in Table 4. The models are categorized according to
their precision as follows: DT < LSSVM-BAT < MLP-LMA < MLP-BR < CMIS. As can be
deduced, the CMIS model could provide more accurate predictions compared to the other
established models.

5.3. Graphical Error Analysis

Various graphical error evaluations based on Models (II) and (III) were investigated to
give a more transparent view of the performance of the models. To assess the accuracy of
Model (II), the logarithm of predicted viscosity data was plotted against the logarithm of
corresponding experimental values in Figure 5. Therefore, Figure 5 shows comparative
cross-plots for test and training sets for CMIS model (cross-plot for other models such as:
MLP-BR, MLP-LMA, DT, and LSSVM-BAT are presented in Figure S4 in the supplementary
File). A high-dense accumulation of the points can be seen around the unit slop for
both test and training datasets. On the other hand, higher accuracy of the constructed
CMIS compared to the other models for approach (II) is clearly shown in these figures.
Accordingly, the CMIS paradigm is introduced as the best predictive method. Figure
6 represents the relative deviation (RD) against the experimental viscosity of ILs for the
CMIS model. Additionally, Figure S5 (in the Supplementary File) reveals the experimental
viscosity of ILs against the relative deviation for MLP-BR, MLP-LMA, LSSVM-BAT, and DT.
As shown in these figures, for LSSVM-BAT and DT, the data distribution near the zero line
is larger than the developed CMIS model. This observation confirms the results reported
in Table 3. The implementation of the CMIS results in the minimum total relative deviation
guiding to the narrowest error margin.
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CMIS model in this study.
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Figure 6. Relative deviation of prediction of CMIS model versus logarithm of experimental data
based on Model (II).

Furthermore, Figure 7 is plotted to assess the capability of the models with respect
to the AARD (%) of the proposed empirical correlation (Equation (42)), smart models
developed based on Model (II), Eyring’s theory in this study, and also other models form
the literature. Clearly, the CMIS model and then the MLP-BR approach are more accurate,
have a higher flexibility, and are more suitable to be used for the viscosity prediction of ILs
approach. Figure 8 depicts the data cumulative frequency versus the ARD for the MLP-
LMA, MLP-BR, LSSVM-BAT, DT, and CMIS models. As shown in this figure, the CMIS
approach is more appropriate than other models and has a high accuracy in predicting
viscosity of ILs. The figure implies that employing the CMIS model about 80% of the ILs
viscosity data were predicted with an ARD of less than 4.5% and more than 72% of them
were predicted with an ARD of less than 2.3%.
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Figure 8. Cumulative frequency of absolute relative deviation for different models based on Model
(II).

Furthermore, the so-called Taylor diagram [103] is represented in Figures 9 and 10
based on Model (II) to provide a more comprehensive presentation. This diagram considers
various statistical parameters. As shown in Figures 9 and 10, standard deviations and
correlation coefficients of each model (DT, LSSVM-BAT, MLP-LMA, MLP-BR, and CMIS)
are employed to quantify the variance between the predicted and measure viscosities of
the ILs. RMSE is another measure considered as red circles in this diagram. An ideal
predictive model is a model that has an R2 equal to 1 in the Taylor diagram. The CMIS
model exhibited the outperformance with RMSE values of 9.553 and 9.035 for the training
and testing phases, respectively, while the other models showed RMSE values of more
than 10. Thus, the Taylor diagram approves the outperformance of the CMIS once again
as its predictions are the closest to the experimental measurements. In conclusion, the
proposed model is very advantageous since it is developed based on a large dataset and
the employment of various models enhances its exactness and consistency.
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On the other hand, graphical evaluation was conducted for the proposed paradigms
based on Model (III) to investigate their accuracy and effectiveness. Figure 11 and Figure S6
(in the supplementary File) illustrate the logarithm of measured viscosity values versus
the logarithm of estimated ones for CMIS approach and other smart models, respectively.
These figures reflect that data points have formed a compact zone in the proximity of
the unit slope line (45◦ line). In other words, the figures reveal that all intelligent models
could provide consistent responses with target values. Furthermore, despite the high
performance of all developed models, the constructed CMIS model could provide more
reliable results thank to the satisfactory statistical criteria. Figure 12 and Figure S7 (in the
Supplementary file) represent a comparison between the developed models in the regard
of the relative deviations of models. Obviously, the dense concentration of points around
the zero line reflects that the CMIS model is able to predict the viscosity of ILs with the
lowest possible relative errors. Cumulative frequency plots are comparative plots, which
are usually represented to simply clarify the competency of the models. This convenient
plot has been sketched in Figure 13. As shown in this diagram, the CMIS shows the largest
cumulative frequency at a specific absolute relative deviation (ARD). To clarify this, about
95% of data points were predicted by the CMIS model when we approach to the ARD of
10%, while the corresponding values for MLP-BR, MLP-LMA, LSSVM-BAT, and DT models
were 88%, 83%, 80%, and 60%, respectively. Therefore, the superiority of the CMIS is once
again demonstrated. In addition to the aforementioned point of Figure 13, this figure also
demonstrates that the CMIS model could predict about 100% of data with lower ARD
compared to the other models. Figure 14 shows the visual comparison between AARD
(%) for different approaches including DT, MLP-LMA, MLP-BR, LSSVM-BAT, and CMIS
for estimating the viscosity of ILs based on Model (III). As can be seen, the accuracy of
CMIS-based models is generally more than other smart models.
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Figure 11. Cross plot of the proposed developed model based on Model (III) for CMIS approach.
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Figure 14. Comparison among AARD (%) of different models for prediction of viscosity of ILs based
on Model (III).

In order to investigate the strength and reliability of the proposed models with
regard to temperature alterations, Model (II) and Model (III) were used. Figure 15a,b
show the effect of temperature variations at a constant pressure (75 MPa) on 1-ethyl-3-
methylimidazolium ethylsulfate based Model (II) and (III), respectively. Obviously, the
predicted viscosity of ILs by all of the smart models (MLP-BR, MLP-LMA, LSSVM-BAT,
and CMIS) except the DT model is in agreement to the experimental dataset. According to
Figure 15, the DT approaches could not provide consistent estimations for the viscosity of
ILs and the predicted values are associated with significant errors. When the temperature
varies, the CMIS, MLP-BR, MLP-LMA, and LSSVM-BAT paradigms show similar physical
trends. Figure 15a,b indicate a reduction in the viscosity of ILs when the temperature
rises denoting an inverse relationship between the viscosity and temperature. The dis-
cussed results confirm the expected trend as well as the common knowledge of chemical
thermodynamics.
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Figure 15. Effect of temperature on 1-ethyl-3-methylimidazolium ethylsulfate. (a): Model (II); (b):
Model (III).

As shown in Tables 3 and 4, among the best CMIS models for Model (II) and Model
(III), the CMIS Model (II) has the lowest AARD value of 3.293%; hence, it was kept for
further evaluations.

5.4. Identifying Outliers in Experimental Data and Applicability Domain of CMIS Model

The objective of outlier (or aberrant) detection is found for groups of data (or in-
dividual data) which deviate a lot from the bulk data in a database [104]. For this aim,
the Leverage approach is one of the well-established strategies [35,104,105]. In this tech-
nique, the Hat matrix (H) and standardized residuals (R) are two main concepts [105]. The
standardized residual (R) is calculated for each data point based on following equation:

Ri =
zi

(MSE(1− Hii))
1
2

(46)

where MSE denotes the model mean square error, while zi and Hii represent the error and
the Hat indices (Leverage) of the ith data point [106]. In addition, Hat index (or Leverage)
can be determined as below:

H = X
(
XtX

)−1 Xt (47)

where Xt points out the transpose matrix, X represents a two-dimensional q × w matrix
(where, “q” and “w” are the quantity of data points and the dimension of the model,
respectively).
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The Williams plot was applied in order to investigate the outliers after the measure-
ment of the R and Hat index (H) [107,108]. In this diagram, the standardized residuals are
sketched against Hats. The Leverage limit (H∗) is a parameter defined as 3a

b , where b stands
for the quantity of data points and a is the number of model parameters plus one [109].
Standardized residual (R = 3) is an acceptable data point within the range of [−3,+3] of
standard deviations from the average to cover 99% of normally distributed data [35,105].
The model is statistically applicable if the large percentage of data points are within the
H∗ ≥ H ≥ 0 and 3 ≥ R ≥ −3 [35]. Usually, data points within the range of −3 ≤ R ≤ 3
and H∗ ≤ H are regarded as “Good High Leverage” points, and are not in the applicability
domain but are predicted well. By contrast, the data points with R values of higher than 3
or lower than −3 are considered as “Bad High Leverage”. These are the points predicted
with large uncertainty and are located outside of the model applicability domain. These
are the experimentally suspected data points.

In the present study, it is clear that the performance of the CMIS as the best model
based on Model (II) (thermodynamic properties, pressure, and temperature) can be signifi-
cantly influenced by the consistency of the employed data. The proposed model showed
a H∗ value of 0.0095. The Williams plot of the CMIS model is depicted in Figure 16. Ac-
cordingly, nearly all data points appear to be within 0 ≤ H ≤ 0.0095 and −3 ≤ R ≤ 3
reflecting that the developed CMIS system is statistically applicable. Commonly, the less
standardized residual values of experimental data, the more reliable they are. Nevertheless,
with respect to Figure 16, 0.63% of all data (18 suspected data points) are in the ranges of R
< −3 or R > 3 and consequently, they are regarded as outliers that are associated with large
uncertainty. Furthermore, 2.73% of all data (77 data points) have H > 0.0095. These are the
points that are out of Leverage, no matter what their Hat’s (Leverage) value is, all of them
are located in the range of −3 ≤ R ≤ 3, and consequently, they are Good High Leverage.
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Figure 16. The Williams plot of the whole dataset for the CMIS model based on Model (II).

5.5. Relative Importance of Input Variables

Sensitivity analysis was performed to determine the magnitude of the impact of all
input variables on the viscosity of ILs using the CMIS model. The input parameters are
based on Model (II). Figure 17 shows the relative importance of the inputs. The relevancy
factor (r) is a measure that determines the extent of the impact of each input parameter on
the pure viscosity of ILs as the model output. Positive values in this technique demonstrate
a direct relationship between the output and the corresponding input parameter, while
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negative values reveal an inverse one. The values of the relevancy factor (or r) are evaluated
as the following equation:

r(Ii, η) =
∑n

j=1
(

Iij − Ii
)(

ηj − η
)

(
∑n

j=1
(

Ii,j − I j
)2

∑n
j=1
(
ηj − η

)2
)0.5 (48)

where n, Ii,j, and Ii are the number of datasets, the jth value, and mean of the i-th input
variable, respectively. η denotes the average value of the estimated/represented viscosity of
ILs, while ηj expresses the jth value of the represented/predicted viscosity of ILs. Figure 17
depicts each parameter’s relative effect based on Model (II) on the pure viscosity of ionic
liquids (as the output). As can be seen, the input parameters, namely, acentric factor and
pressure, positively affect the output model. Any increase in pressure and acentric factor
cause to an increase in the viscosity of pure ionic liquids. As is obvious in Figure 17,
other parameters such as T, Mw, Vc, Tb, Tc, and Pc show a decreasing trend due to their
negative relevancy factors, which means that increasing these parameters would decrease
in viscosity of ILs. Obviously, the viscosity of ILs is mainly influenced by temperature.
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Figure 17. Relevancy factor of the CMIS model inputs based on Model (II).

6. Conclusions

In this study, 2813 experimental data from 45 ILs were initially modeled with the
aim of obtaining a simple correlation based on temperature, pressure, molecular weight,
critical volume, boiling temperature, critical temperature, critical pressure, and acentric
factor of ILs. In addition, Eyring’s theory was applied based on temperature and boiling
temperature to estimate the viscosity of ILs. In another scheme, the proposed models were
linked to a univalent model as CMIS. To study the efficiency of the model, a comparison
between the results of CMIS and experimental data was made using both statistical and
graphical methods. The model showed a stable performance and high accuracy based on
R2, RMSE, AARD, and ARD definitions. The effects of input parameters on model outputs
were also analyzed using the relevancy factor. Finally, the leverage statistical approach
was used to assess the reliability and validity of the employed dataset. In this regard, the
Williams’s plot was employed to investigate the applicability domain of the constructed
paradigm and find the recorded data. The results indicate that just a few data points were
outside the applicability domain. It can be concluded that the developed CMIS can be used
as a valuable tool to predict the viscosity of ILs with high accuracy as well as acquiring
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accurate knowledge of IL’s physicochemical properties in various chemical engineering
processes where needed.

Supplementary Materials: The following are available online, Figure S1: The structure of MLPNN
used in this study, Figure S2: Schematic of procedure for development of BAT-LSSVM model,
Figure S3: Cross plot of the proposed correlation for viscosity of ILs, Figure S4: Logarithm of
experimental viscosity data against predicted values based on Model (II), Figure S5: Relative deviation
of predictions of various models versus logarithm of experimental data based on Model (II), Figure
S6: Cross plot of the proposed developed models based on Artificial Neural Network based on Model
(III), Figure S7: Relative deviation distribution for developed models in this study for estimation of
the viscosity of ILs based on Model (III). Table S1: The adjustable parameters to proposed correlation
in this study.
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et al. Temperature-dependent structure-property modeling of viscosity for ionic liquids. Fluid Phase Equilibria 2016, 427, 9–17.
[CrossRef]

37. Gardas, R.L.; Coutinho, J.A. A group contribution method for viscosity estimation of ionic liquids. Fluid Phase Equilibria 2008,
266, 195–201. [CrossRef]

38. Gharagheizi, F.; Ilani-Kashkouli, P.; Mohammadi, A.H.; Ramjugernath, D.; Richon, D. Development of a group contribution
method for determination of viscosity of ionic liquids at atmospheric pressure. Chem. Eng. Sci. 2012, 80, 326–333. [CrossRef]

39. Lazzús, J.A.; Pulgar-Villarroel, G. A group contribution method to estimate the viscosity of ionic liquids at different temperatures.
J. Mol. Liq. 2015, 209, 161–168. [CrossRef]

http://doi.org/10.1021/jp2012254
http://www.ncbi.nlm.nih.gov/pubmed/21517046
http://doi.org/10.1016/j.molliq.2013.05.007
http://doi.org/10.1002/ceat.201100319
http://doi.org/10.1016/j.tca.2011.11.009
http://doi.org/10.1016/j.colsurfa.2012.12.008
http://doi.org/10.1021/je101206u
http://doi.org/10.1016/j.talanta.2013.04.047
http://doi.org/10.1016/j.talanta.2013.03.060
http://doi.org/10.1021/je8000766
http://doi.org/10.1021/ic801448w
http://www.ncbi.nlm.nih.gov/pubmed/19128157
http://doi.org/10.1021/je050387r
http://doi.org/10.1016/j.jct.2010.12.027
http://doi.org/10.1021/je200600p
http://doi.org/10.1016/j.fluid.2012.04.017
http://doi.org/10.1039/b507845h
http://doi.org/10.1021/nl048965u
http://doi.org/10.1002/aic.12786
http://doi.org/10.1021/je700329a
http://doi.org/10.1039/b921432a
http://www.ncbi.nlm.nih.gov/pubmed/20126771
http://doi.org/10.1007/s11814-016-0271-7
http://doi.org/10.1016/j.molliq.2014.10.033
http://doi.org/10.1016/j.fluid.2016.06.043
http://doi.org/10.1016/j.fluid.2008.01.021
http://doi.org/10.1016/j.ces.2012.06.045
http://doi.org/10.1016/j.molliq.2015.05.030


Molecules 2021, 26, 156 30 of 32
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