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Head motion induced by impacts has been deemed as one of the most important

measures in brain injury prediction, given that the vast majority of brain injury metrics use

head kinematics as input. Recently, researchers have focused on using fast approaches,

such as machine learning, to approximate brain deformation in real time for early brain

injury diagnosis. However, training such models requires large number of kinematic

measurements, and therefore data augmentation is required given the limited on-field

measured data available. In this study we present a principal component analysis-based

method that emulates an empirical low-rank substitution for head impact kinematics,

while requiring low computational cost. In characterizing our existing data set of 537 head

impacts, each consisting of 6 degrees of freedom measurements, we found that only a

fewmodes, e.g., 15 in the case of angular velocity, is sufficient for accurate reconstruction

of the entire data set. Furthermore, these modes are predominantly low frequency

since over 70% of the angular velocity response can be captured by modes that have

frequencies under 40 Hz. We compared our proposed method against existing impact

parametrization methods and showed significantly better performance in injury prediction

using a range of kinematic-based metrics—such as head injury criterion (HIC), rotational

injury criterion (RIC), and brain injury metric (BrIC)—and brain tissue deformation-based

metrics—such as brain angle metric (BAM), maximum principal strain (MPS), and axonal

fiber strains (FS). In all cases, our approach reproduced injury metrics similar to the

ground truth measurements with no significant difference, whereas the existing methods

obtained significantly different (p < 0.01) values as well as substantial differences in

injury classification sensitivity and specificity. This emulator will enable us to provide the

necessary data augmentation to build a head impact kinematic data set of any size. The

emulator and corresponding examples are available on our website1.

Keywords: traumatic brain injury, concussion, head impact kinematics, injury biomechanics, data-driven emulator,

injury metrics
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INTRODUCTION

Traumatic brain injury (TBI) is one of the most debilitating

health problems in our society today, with nearly two million
new cases in the US every year (Taylor et al., 2017). The
majority of these cases are considered mild, also known as

concussion (Defense and Veterans Brain Injury Center, 2018).
The substantial increase in reported concussions in contact
sports (Selassie et al., 2013), together with the recent findings of
increased long-term pathological changes (DeKosky et al., 2013),

has sparked a public discussion and raised awareness about TBI.
An important requirement is an accurate and objective diagnosis
of concussions, which in turn could inform better protective
equipment design and safer activities (Manoogian et al., 2006;
Wu et al., 2014; Kuo et al., 2017; Kurt et al., 2017; Siegkas et al.,
2019).

Head motion kinematics, including the rate, frequency, and
direction of head’s movement during collision, has been deemed
as one of the most consequential metric in predicting brain
injury. Historically, kinematic-based metrics such as head injury
criterion (HIC) (NTSA, 1972), rotational injury criterion (RIC)
(Kimpara and Iwamoto, 2012), and brain injury criterion (BrIC)
(Takhounts et al., 2013) have been used to detect injury.
These metrics are still widely used among researchers and are
endorsed by safety regulating organizations such as the National
Highway Traffic Safety Administration (NHTSA) (Laituri et al.,
2016) and the National Operating Committee on Standards for
Athletic Equipment (NOCSAE) (National Operating Committee
on Standards for Athletic, 2012). More recently, brain tissue
deformation-based metrics have been introduced that use
head kinematics as input to computational models that can
approximate the effect of headmotion on brain displacement and
deformation. These metrics either use simple discrete mechanical
elements in lumped-parameter models, i.e., mass-spring-damper
combinations, to give a rigid-body estimate of brain’s relative
motion with respect to the skull (Kornhauser, 1954; Low and
Stalnaker, 1987; Laksari et al., 2015; Gabler et al., 2018b), or more
complex finite element (FE) models with detailed geometry of the
brain anatomy, which can simulate the local brain deformation
and interaction with the stiff bony or membranous structures
(Kleiven, 2013; Ji et al., 2014; Zhao et al., 2016). In the case
of lumped models, brain angle metric (BAM), developed based
on a data set of concussive and sub-concussive head impacts
(Laksari et al., 2019), and in the case of FE models, maximum
principal strain (MPS) and axonal fiber strain (FS) along the
white matter axon fibers have been proposed as effective injury
diagnosis metrics (Wu et al., 2019b).

Evidently, both for the kinematic-based and the brain
deformation-based metrics, head impact kinematics play a
major role. With the advent of wearable sensor technology,
several groups have been collecting on-field head kinematic
measurements during contact sports events (Hernandez et al.,
2014; Laksari et al., 2018; Miller et al., 2018, 2019; Wu
et al., 2018). However, despite these pioneering efforts, on-field
head kinematic measurements are not widely available. As a
result, researchers have resorted to simplifying parameterizations
of head collisions as idealized biphasic acceleration impulses

(Yoganandan et al., 2008; Ji and Zhao, 2014; Abderezaei et al.,
2019). These biphasic impulses are commonly represented either
by a triangle or half-sine and defined by two parameters:
height and width constitute the magnitude and duration of a
head impact impulse. The simplification of kinematic impulses
serves the objective of emulating on-field kinematic data of a
head impact with a few and manageable number of parameters
to populate an otherwise infinite-dimensional loading space
to investigate and establish a relation between head motion
and brain injury. However, a potential disadvantage of these
simplifications is overlooking valuable information that could
prove detrimental in developing injury metrics. Therefore, it
is paramount to understand the characteristics of real-world
head impacts and whether we can accurately capture them
through simplified approximations. Furthermore, advances in
computational methods, including machine learning algorithms,
have provided new and exciting avenues for fast and reliable
prediction and diagnosis of brain injury. As a result, given the
prohibitively high computational cost of current FE models,
the biomechanics community has been trying to utilize such
interpolative and machine learning techniques (Ji and Zhao,
2014; Cai et al., 2018;Wu et al., 2019a,b). However, a limitation of
those techniques is the large number of kinematic data required
to train these algorithms (in the order of thousands of head
impacts; Wu et al., 2019a). Currently such a data set is not widely
available. Thus, artificial augmentation of kinematic samples has
been utilized as an alternative to satisfy that training data set
requirements of such algorithms.

In this paper, we present a formal method to extract the
most dominant features of on-field head impact kinematics
from an existing data in the context of contact sports. We
subsequently use the extracted features in order to construct an
augmented data set that resembles the on-field measurements.
We hypothesize that by using our method, based on principal
component analysis (PCA), we will acquire more accurate injury
predictions than current biphasic impulse approximations when
compared against the ground truth measurements. Furthermore,
we present a modal reconstruction technique that, despite
using relatively few modes, can emulate a desired number of
augmented head impacts that are statistically similar to the
ground truth impact measurements.

MATERIALS AND METHODS

In order to study the characteristics of head impact kinematics
and the efficacy of simplified approximations, we used a
previously-collected data set of 537 head impact kinematics
measured during contact sports, including American football,
boxing, and mixed martial arts (Hernandez et al., 2014; Laksari
et al., 2018). For each impact, 6 degrees of freedom (DoF)
kinematics—linear acceleration and angular velocity in the three
anatomical directions—were collected at 1,000 Hz for 100 ms
using a mouthguard instrumented with a triaxial accelerometer
and a triaxial gyroscope (Hernandez et al., 2014). We construct
three different reduced kinematics data sets to approximate the
measured kinematics: (1) using principal component analysis
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(PCA), we decrease the dimensionality of the measured head
impact kinematics to construct a low-rank kinematics data set,
and (2–3) using previously proposed biphasic assumptions for
acceleration impulses with acceleration magnitude and duration
as the two variables, we construct biphasic data sets once for
triangle (Tri) and once for half-sine (HS) approximations. We
investigate the efficacy of each approximation by comparing
its performance in detecting brain motion/deformation and
injury prediction using three types of metrics: (1) kinematics-
based injury metrics, including HIC, RIC, and BrIC, (2) brain
angle metric (BAM), and (3) tissue deformation-based finite
element injury metrics, including maximum principal strain
(MPS) and axonal fiber strain (FS) in the whole brain (WB) and
corpus callosum (CC). We compare the performance of each
approximation against the ground truth (GT) data described
above. We perform power spectral density (PSD) analysis on the
derived temporalmodes to obtain their predominant frequencies.
These values are given by the maximum power spectral density
(PSD) values of each mode. Finally, we present a modal
reconstruction method for emulating augmented head impacts.

Dimension Reduction Through Principal
Component Analysis
Our goal is to exploit the correlations between different
measurements and find a reduced representation for three
quantities of interest (QoIs), including: linear acceleration,
angular velocity, and angular acceleration in each anatomical
direction. In the case of linear kinematics, anterior-posterior,
inferior-superior, and lateral directions are considered and in the
case of angular kinematics, axial, coronal, and sagittal directions
are considered as separate QoIs. To this end, we apply principal
component analysis (PCA) to our data set. For each QoI, we form
a data matrix Xm×n, where n = 537 is the number of measured
head impacts and m = 100 is the number of time steps, and
X = [x1|x2| . . . |xn], where each column represents the measured
QoI for a particular head impact and each row represents the
time instance of the measurement. To perform PCA, we compute
the singular value decomposition (SVD) of the data matrix: X =

U6YT , where U = [u1|u2| . . . |un] are a set of orthonormal
modes, i.e., uTi uj = δij, 6 = diag(σ1, σ2, . . . , σn) is a diagonal
matrix, where σ1 ≥ σ2 ≥ · · · ≥ σn are the singular values,
and Y = [y1|y2| . . . |yn] are the uncorrelated linear components,
i.e., yTi yj = δij with the joint probability distribution function
(PDF) of p(y1, y2, . . . , yn). This gives an ordered array of the
modal contributions inherent to head impacts response. Finally,
we perform power spectral density (PSD) analysis on the derived
modes ui to obtain their predominant frequencies. These values
are given by the maximum PSD values of each mode.

A reduced representation of the impact data is obtained by:

X ≃
∑k

i=1 σiuiy
T
i . To quantify the performance of the reduction,

we introduce:

η(k) =
(
∑k

i=1 σi)

(
∑n

i=1 σi)
, (1)

Data-Driven Emulator
Once we extract the modal characteristics of the head impact data
set, a reduced emulator of the head impact kinematics is obtained
by truncating to k PCA modes:

x∗ =

k
∑

i=1

σiy
∗
i ui, (2)

where (y∗1 , y
∗
2 , . . . , y

∗
k
) is a random point with k components

drawn from the marginal PDF of p(y1, y2, . . . , yk). Equation (2)
can be used as an emulator for producing new time series (x∗)
for each of the QoIs that are nearly indistinguishable from
the ground truth head impact kinematics measurements. Our
approach can be interpreted as a stochastic dimension reduction
technique and it is a special case of dimension reduction with
time-dependent modes (Sapsis and Lermusiaux, 2009; Babaee
and Sapsis, 2016; Babaee et al., 2017; Babaee, 2019; Patil and
Babaee, 2020), in which the loading is a random input and
the QoIs are random output. In order to ensure high quality
augmented data, we establish features to statistically compare
new time series with the GT, including parameters such as
impact time, peak, and duration of impacts, and orthonormal
projections of PCA modes. We will provide this emulator as a
stand-alone program that allow users to build low-rank head
kinematics data sets with various approximation levels (k) and
emulate a pre-defined number of impacts.

Parameterizing Biphasic Impulse Profiles
In order to compare the performance of previously proposed
biphasic models for angular and linear acceleration impulses (Ji
and Zhao, 2014; Abderezaei et al., 2019) against our low-rank
PCA approximation, we reconstruct biphasic triangle (tri) and
half-sine (hs) representations of the 537 head impacts described
above. First, the maximum absolute value of the angular
acceleration profile (αM)—computed by differentiating angular
velocity measurements using a first-order forward divided
difference method (two points)—was identified, including the
time of peak (tM). The impact duration (1t) is defined as
the time interval on either side of tM . The boundary of this
interval is defined as where the sign or the convexity of the
acceleration profile (whichever comes first) changes. Convexity
changes are computed based on the second derivative test using
a common three-point stencil central finite difference derivative.
This process is described in Figure 1, where the impact duration
(1t = t1 − t0) is the time elapsed between the initiation time
(t0 < tM) and the completion time (t1 > tM) of impact. In the
cases where tM → 0 ms or tM → 100 ms, since it is not possible
to define t0 or t1 correctly, only half of the simplified pulse was
created. Finally, the change in velocity (1ω) was computed as the

area under the acceleration impulse (1ω =
∫ t1
t0

α(t)dt), and the
corresponding acceleration magnitudes for the triangle (αtri) and
half-sine (αhs) approximations were calculated through:

αtri = 2
1ω

1t
, αhs =

π1ω

21t
. (3)

Angular velocity pulses were then computed through direct
temporal integration of low-rank angular acceleration pulses.
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FIGURE 1 | Constructing triangular and half-sine biphasic impulses (Ji and Zhao, 2014; Abderezaei et al., 2019): a representative angular acceleration trace in the

coronal plane, magnified to better represent initiation time (t0), completion time (t1), time of peak (tM ), and peak acceleration (αTri and αHS).

Accuracy of Injury Prediction Metrics
Kinematics-Based Injury Metrics

We used HIC15, RIC36, and BrIC to compare the performance
of our proposed PCA reduction against the triangle and half-sine
biphasic signals, i.e., triangle and half-sine approximations. To
this end, we used previously published injury threshold values:
(1) for HIC15, values of 240 and 667 have been reported as
50% risk of concussion (Newman and Shewchenko, 2000) and
skull fracture (Marjoux et al., 2008), respectively; (2) for RIC36,
a value of 10.3 × 106 is reported as 50% risk of concussion
(Kimpara and Iwamoto, 2012); and (3) for BrIC, a value of 0.5
constitutes a 50% concussion risk (Takhounts et al., 2013). We
used these thresholds to assess the performance of each reduction
approach in providing injury predictions in terms of sensitivity
and specificity with respect to the ground truth measurements.

Injury thresholds were used as indicators, defining true
positives (above the threshold) and negatives (below the
threshold), while the predictive value of each impulse
approximation was compared against the GT measurement.

Brain Angle Injury Metric

We further compared the performance of each approximation
using injury criterion based on lumped-parameter models of the
head. These models generally consider simplifying assumptions:
skull and brain are considered rigid bodies and relative motion
between the two represents a form of deformation and injury,
and the compliance of the brain-skull interface such as the
effect of bridging veins, dura and pia maters is represented by
linear spring and damper elements (Kornhauser, 1954; Low and
Stalnaker, 1987; Gabler et al., 2018a). Given the head kinematics
as the base excitation input, thesemodels can estimate the relative
motion of brain and skull, particularly the angular motion since
that has been seen as the more consequential type of motion
(Sullivan et al., 2015). Recently, brain angle metric (BAM) was
developed based on the characteristics of human brain and skull
in finite element simulations, and validated against observed

concussive and sub-concussive head impacts (Laksari et al.,
2019). We compute BAM for each kinematic approximation
(PCA, triangle, and half-sine).

Tissue Deformation-Based Injury Metrics

As a final step in studying the efficacy of the different
kinematic approximations, we compared the performance of
each approximation in predicting the tissue-level deformation
metrics using finite element simulations, including maximum
principal strain (MPS) in the whole brain (WB) and in the corpus
callosum (CC) region, as well as axonal fiber strains (FS) in
the corpus callosum region, which have all been proposed as
predictive tissue-level metrics for injury classification (Kleiven,
2007; Ji et al., 2014; Laksari et al., 2018) (Figure 2). Recently a
convolutional neural network (CNN) was developed based on
pre-trained FE simulations based on the Worcester Head Injury
Model (WHIM) (Zhao et al., 2017). This CNN method uses
angular velocity data as input to approximate the regional brain
deformations, i.e., maximum principal and axonal fiber strain
(Wu et al., 2019a).

Injury Metric Error Analysis

Having simulated the injury metrics for each head impact
measurement, we calculated the corresponding injury metric
(metricGT) and the injury metric estimated by the kinematics
approximation (metricapprox) using the equation below:

error =

∣

∣

∣

∣

metricapprox −metricGT

metricGT

∣

∣

∣

∣

× 100. (4)

Subsequently, we performed Friedman test (Daniel, 1990) with
a p-value of 0.01 (MATLAB, friedman) to show significant
differences between each approximated impulse and the ground
truth. We also performed sensitivity and specificity analysis
to provide an estimate for the efficacy of approximating the
metrics for injury diagnosis. For this purpose, we used previously
published values for 50% risk of concussion, includingMPSWB =
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FIGURE 2 | Representation of strains metrics with highlighted regions: (A) maximum principal strain (MPS) in the whole brain (WB), (B) maximum principal strain

(MPS) in the corpus callosum (CC), (C) fiber strain (FS) in the corpus callosum (CC). Fiber colors represents directions: inferior–superior (blue), lateral (red), and

anterior–posterior (green). Images were generated using 3DSlicer from ATLAS-based anatomical representation in FreeSurfer (Zhang et al., 2018).

FIGURE 3 | (Top) Low-rank reconstruction of angular velocity using k = 3, 5, 15 PCA modes. (Bottom) Individual and cumulative contribution of PCA modes for

angular velocity reconstruction. Columns from left to right show results for coronal, sagittal, and axial directions, respectively.

0.2 (Patton et al., 2012), MPSCC = 0.2 (Kleiven, 2007), and
FSCC = 0.074 (Giordano and Kleiven, 2014).

RESULTS

Dimension Reduction Through PCA
We performed PCA on the measured kinematics data for
the QoIs, i.e., linear acceleration, angular velocity and angular
acceleration in each anatomical direction. We used the reduction
criterion of η = 0.90, as defined in Equation (1), for all these

cases. In the case of angular velocity, the minimum number
of modes that satisfies this reduction criterion is k = 13,
15, and 10 modes for coronal, sagittal, and axial directions,
respectively. In Figure 3 (top row), the PCA reconstruction of
angular velocity in three anatomical directions for a sample
case is shown. The sample case was chosen randomly from
the 537 cases and it is represented by a column of the data
matrix X. The ground truth measurement for the sample case
as well as the reconstructed impulses with different levels of
reduction are shown. It is clear that the 15-mode reduction
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yields a satisfactory reconstruction. In Figure 3 (bottom row), the
individual and cumulative contribution of PCAmodes are shown
for the entire kinematics data set. These results demonstrate
that with a relatively small number of PCA modes an accurate
approximation of the head kinematic measurements can be
achieved. As an additional analysis, in order to determine the
convergence of this method, we performed PCA with several
randomly selected subsets of the 537 ground truth measurements
(with 100, 200, 300, 400, and 500 samples) and investigated the
number of modes required to satisfy the η > 0.90 criterion. The
results show that the minimum number of modes slightly grows
with subsets size but levels off below 500 cases, indicating that
our data set of 537 could be sufficient to reliably reconstruct a
head impact data set (see Supplementary Figure 8).

Data-Driven Emulator
The first three temporal modes show a classic modal behavior
with 1, 2, and 3 peaks in all three anatomical directions
(Figure 4). Together, these first three modes capture nearly
half of the total angular velocity response, and with each
additional mode, we can reconstruct a closer approximation
with the ground truth. For more analysis of the modes (see
Supplementary Figures 2, 4). To further study the distribution
of these modal approximations, we show the orthonormal
projection of the first five PCA modes (y2, ..., y5) against the first
and most energetic mode (y1) of the PCA data (black circles and
bars in Figure 5). It is clear that the modes follow a Gaussian
distribution, which would be an important consideration for
emulating more data points.

To show the performance of our data-driven emulator, we
reproduced an additional k = 537 head impact cases by
randomizing the y∗

k
columns each with the same mean and

variance as the original Y matrix (Equation 2). Projection of
the orthonormal vectors y∗i on y∗1 for an augmented data set
(red circles and bars in Figure 5) shows similar distribution as
the ground truth data. In addition, features of the augmented
data generated on our emulator, such as duration and peak
distributions, have not significant differences with respect those
of GT (see Supplementary Figures 5–7). Thus, our emulator
is able to successfully generate reliable kinematics sets of data
based on real on-field measurements. A copy of the head impact
kinematics emulator will be available on our website (Arrué,
2020).

Natural Frequencies
The contribution of the most dominant frequencies, obtained
through PSD criterion, are displayed in Figure 6. In general, low
frequencies interval such from 10 to 40 Hz have the highest
predominance for each parameter. Notably, the cumulative
contribution for rotational velocity is progressively decreasing
with increasing frequency.

Parameterizing Biphasic Impulse Profiles
Using the criteria described above, we fitted triangle and half-
sine analog pulses to the ground truth kinematics measurements
in order to parameterize the rotational acceleration magnitude
and duration for each head impact. As a result, we derived

537 analog impulses in the three anatomical directions for both
triangle and half-sine approximations. The results are presented
in Table 1, where the rotational acceleration magnitude and
duration average and standard errors of the mean are given for
the ground truth and the impulses approximations.

Accuracy for Injury Prediction Metrics
Kinematic-Based Injury Metrics

The injury metrics HIC15, RIC36, and BrIC were computed
for every model and the ground truth. Figure 7 shows the
distribution of all samples and the corresponding concussion and
skull fracture thresholds. The PCA predictions showed similar
mean and standard deviations for HIC and RIC (38.20 ± 139.55
and 1.89 × 106 ± 7.66 × 106, respectively) as the ground truth
(38.49 ± 140.13 and 2.26 × 106 ± 9.04 × 106); however, there
is a significant difference between the ground truth predictions
and the triangle (15.74± 41.71 and 3.98× 105 ± 1.06× 107) and
half-sine (14.80± 39.31 and 3.86× 105 ± 1.02× 106) impulses.

Additionally, whereas the PCA-based impulses showed
accurate predictions compared to the ground truth, we observed
that the biphasic approximations either under-predicted injury
(higher number of false negatives) in terms of HIC and RIC, or
over-predicted injury (higher number of false positives) in terms
of BrIC (Figure 7).

To better illustrate this, we performed sensitivity and
specificity analysis for injury classification with respect to
the ground truth, where the PCA-based signals showed high
predictive performance compared to the biphasic impulses
(Table 2).

Brain Angle Injury Metric

We computed 3DoF relative brain angles using the lumped
model proposed in Laksari et al. (2019) to obtain the maximum
resultant relative brain angle as a result of each head impact
based on the ground truth kinematics and each of the three
approximations. In coronal and axial directions, triangular and
half-sine approximations gave significantly lower predictions
for the brain angle metric, whereas the PCA modes showed
no statistically significant difference from the ground truth
(Figure 8). We observed substantially smaller approximation
errors (Equation 4) for the PCA approach (∼3%) compared to
the two biphasic approximations (∼25%) (Figure 8).

Tissue Deformation-Based Injury Metrics

Similar to brain angle metric, we calculated the errors between
the ground truth strain metrics and those of low-rank
approximations. As can be seen in Figure 9, the PCA approach
closely follows the ground truth simulation results in all three
strain metrics: maximum principal strain (MPS) in the whole
brain (WB) and corpus callosum (CC), as well as axonal fiber
strain (FS) in the corpus callosum. The strains computed for
the biphasic impulses significantly differ from the ground truth
values and successively provide higher errors as we include
region-specific and morphological information. Furthermore,
based on the 50% concussion risk thresholds mentioned above,
the PCA approach provides substantially higher sensitivity and
specificity for injury classification (Table 3).
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FIGURE 4 | The three most energetic temporal modes for angular velocity for the entire 537 head impact data set.

FIGURE 5 | Distribution graphs for second to fifth principal components (y2, ..., y5 ) projected on to the first principal component (y1 ) for angular velocity in the sagittal

direction. PCA data (in black) follows a Gaussian distribution. Emulated data (red) is generated performing a Gaussian random number generator based on mean and

variances from the PCA modes.

FIGURE 6 | Natural frequencies and their contribution to head motion kinematics.

DISCUSSION

In this study we provide a formal approach for reducing the
dimensionality of head impact kinematics in contact sports

settings. We first derived the most important modes contributing
to the head kinematics through principal component analysis
and then compared those to existing methods that approximate
head kinematics with simple biphasic impulses. We show that
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TABLE 1 | Mean and standard error of acceleration magnitude and duration for ground truth and three approximations (PCA, triangle, half-sine).

Coronal direction Sagittal direction Axial direction

Ground truth magnitude (rad/s2) 818.89 ± 937.12 1498.10 ± 1753.40 655.16 ± 535.03

PCA magnitude (rad/s2) 801.41 ± 922.08 1460.50 ± 1736.10 641.52 ± 523.06

Triangle magnitude (rad/s2) 871.53 ± 1011.8 1625.40 ± 1923.20 697.04 ± 553.95

Half-sine magnitude (rad/s2) 681.25 ± 790.38 1269.30 ± 1500.40 545.64 ± 433.40

Duration (ms) 15.20 ± 6.75 15.00 ± 8.03 17.90 ± 8.45

The PCA magnitudes were obtained by decomposing the ground truth angular accelerations for the criterion η = 0.90, which constituted of 21 modes for coronal and sagittal directions

and 20 modes for axial direction (see Supplementary Figure 3).

FIGURE 7 | Computed HIC15, RIC36, and BrIC for each of the ground truth (GT) and the three approximated data sets: PCA, triangle (Tri), and half-sine (HS). The

circles represent each sample, the solid red line represents the mean, and the blue and red regions show the standard deviation and standard error, respectively. The

solid blue and dashed red lines represent 50% risk of concussion and skull fracture, respectively. Significant differences are indicated with (*) for p < 0.01. HIC and

RIC graphs are on log-scale.

TABLE 2 | Sensitivity and specificity of kinematics-based injury metrics for HIC15, RIC36, and BrIC for the three approximations: PCA-based method, triangles (Tri), and

half-sine (HS) compared to the ground truth, considering thresholds of 50% risk of injuries.

HIC HIC RIC BrIC

(50% risk–skull fracture) (50% risk–concussion) (50% risk–concussion) (50% risk–concussion)

PCA Tri HS PCA Tri HS PCA Tri HS PCA Tri HS

Sensitivity 1.00 0.00 0.00 0.91 0.27 0.27 0.79 0.04 0.04 0.9 0.77 0.77

Specificity 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.97

FIGURE 8 | Computed brain angle metric (BAM) values for each impact case based on ground truth and the corresponding PCA and biphasic approximations. The

significant differences are indicated with (*) for p < 0.01. The error comparison between models with means and SEM of each data set is shown on the right.

the modal decomposition approach can capture the kinematic
behavior of the head with better accuracy and provide better
approximations of brain deformation and injury classification.
This analysis confirms that although head kinematics during

head collisions span a wide range of magnitudes and frequencies
(Laksari et al., 2018), we can accurately capture the impact head
kinematics by using only a relatively small number of modes. The
low-rank database constructed based on PCA analysis require
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FIGURE 9 | Simulated strain metrics for ground truth head impact measurements and the corresponding PCA and biphasic approximations. The blue line shows the

50% risk of concussion for each metric. The significant differences are indicated with (*) for p < 0.01. Also the mean and standard error of the mean are shown on the

right for strain estimation errors.

TABLE 3 | Sensitivity and specificity of strain metrics for maximum principal strain (MPS) for whole brain (WB) and corpus callosum (CC), as well as fiber strain (FS) for CC

compared to the ground truth, with respect the threshold of 50% risk of concussion.

MPS WB MPS CC FS CC

PCA Tri. H.S. PCA Tri. H.S. PCA Tri. H.S.

Sensitivity 0.93 0.74 0.63 0.98 0.55 0.53 0.97 0.63 0.62

Specificity 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.94 0.95

only 15 modes to build the ground truth angular velocity
kinematics with over 90% accuracy as well as accurately capture
the predictive value of head impact kinematics using a variety of
injury metrics.

A major advantage of our approach is that with the acquired
modes above, we are able to emulate a head impact data set
with any given number of cases without needing access to
the ground truth measurements. This emulated data set would
closely replicate head impacts measured by on-field wearable
sensors that constitute current state of the art.

The advantage of this low-rank emulator, in addition
to its computational efficiency, is that it avoids simplifying
assumptions for the shape of acceleration impulses and only uses
empirical measurements. In contrast, the conventional biphasic
assumption for head impacts as simple impulses with only two
variables, i.e., acceleration magnitude and duration, falls short
in providing accurate estimates. This effect is more pronounced
for acceleration impulses that are more variable due to the
time derivative but is true for velocity profiles as well. This
apparent lack of accuracy in injury prediction in the biphasic
approximations might be due to the fact that the biphasic triangle
and half-sine signals are built using acceleration signals and then
integrated to give the corresponding velocity profiles. Since there
is no restitutive deceleration for these impulses, angular velocity
eventually becomes constant after the acceleration returns to
zero, contrary to the actual measured impulses (Yoganandan
et al., 2008). In the case of kinematics-based injury metrics, the
discrepancies in misidentifying concussive and subconcussive
cases by HIC and RIC could be explained by these metrics’
dependence on the shape of the acceleration impulse. In contrast,
BrIC is only a function of peak angular velocity, and therefore
exhibits less sensitivity to the shape of the impulse and the
biphasic impulse’s lack of restitutive deceleration (Figure 7).

In the case of brain angle metric, the biphasic impulse
approximations show over five-fold errors compared to PCA-
based impulses. This difference could be attributed to the
simplification of the biphasic models that influences the solution
of the mechanical lumped-parameter models. This discrepancy
seems to affect the coronal direction the most and the sagittal
direction the least for the biphasic approximations.

Similar to the brain angle results, brain finite element strains
showed superior performance by our PCA-based approach. In
previous publications, it has been shown that the closer the
model is to the correct anatomical and morphological attributes
of the brain, the more accurate the injury predictions become
(Giordano et al., 2014; Zhao and Ji, 2019). Similarly, we see a
decline in performance for the biphasic models as we include
more region-specific and morphological details: from maximum
principal strains (MPS) in the whole brain to MPS in corpus
callosum and on to axonal fiber strains (Table 3).

Several other points are worth noting based on our analysis.
Relative with time domain, we observe differences in kinematics
profiles in the three anatomical directions. It seems that the head
experiences higher linear accelerations in the anterior-posterior
direction (3.54 ± 2.97 m/s2) compared to lateral (2.62 ± 2.25
m/s2) and inferior-superior (3.01 ± 3.44 m/s2) directions, and
higher angular accelerations in the sagittal direction (190.53 ±

177.34 rad/s2) compared to coronal (314.50 ± 401.53 rad/s2)
and axial (177.34 ± 128.16 rad/s2) directions. This observation
might be attributed to the type and direction of loading in the
specific activity, e.g., direction of tackling in football, as well
as anatomical features such as the neck constraint in those
directions (Eckersley et al., 2017). In the frequency domain,
there is a dominant low-frequency response (10 to 40 Hz) in
the head kinematics, expressed by ∼ 90% of the total angular
velocity response in the axial plane, ∼83% in the coronal plane
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and ∼74% in the sagittal plane, confirming previous findings on
frequency dependence of head impacts (Wu et al., 2016; Laksari
et al., 2018). These results could prove useful for designing
better helmets and other safety devices to avoid brain injury by
targeting specific low-frequency range of motion.

In summary, our proposed PCA decomposition approach
not only provides a deeper understanding of the head’s
response during impacts, but also provides a formal basis for
reconstructing and augmenting head impact kinematics data.
Our current emulator is built upon the 537 measured on-field
head impacts described above and successfully generates new
kinematic data, whose features such peak or duration are nearly
indistinguishable (see Supplementary Figure 7). It is expected
that with more on-field measurements, we would be able to
improve the performance of the emulator even further, but
our convergence analysis showed the available 537 cases to be
sufficient (see Supplementary Figure 8). This type of approach
might prove necessary given the increased need for larger
training data sets in modern machine learning algorithms.
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