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Abstract
The α7 nicotinic acetylcholine receptor is involved in neurological, neurodegenerative, and inflammatory disorders. It oper-
ates both as a ligand-gated cationic channel and as a metabotropic receptor in neuronal and non-neuronal cells. As protein 
phosphorylation is an important cell function regulatory mechanism, deciphering how tyrosine phosphorylation modulates 
α7 dual ionotropic/metabotropic molecular function is required for understanding its integral role in physiological and patho-
logical processes. α7 single-channel activity elicited by ACh appears as brief isolated openings and less often as episodes of 
few openings in quick succession. The reduction of phosphorylation by tyrosine kinase inhibition increases the duration and 
frequency of activation episodes, whereas the inhibition of phosphatases has the opposite effect. Removal of two tyrosine 
residues at the α7 intracellular domain recapitulates the effects mediated by tyrosine kinase inhibition. The tyrosine-free 
mutant receptor shows longer duration-activation episodes, reduced desensitization rate and significantly faster recovery from 
desensitization, indicating that phosphorylation decreases α7 channel activity by favoring the desensitized state. However, 
the mutant receptor is incapable of triggering ERK1/2 phosphorylation in response to the α7-agonist. Thus, while tyrosine 
phosphorylation is absolutely required for α7-triggered ERK pathway, it negatively modulates α7 ionotropic activity. Overall, 
phosphorylation/dephosphorylation events fine-tune the integrated cell response mediated by α7 activation, thus having a 
broad impact on α7 cholinergic signaling.
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Abbreviations
nAChR  Nicotinic acetylcholine receptor
ACh  Acetylcholine
ICD  Intracellular domain
ECD  Extracellular domain
TMD  Transmembrane domain
5-HI  5-Hydroxyindole
PP2  4-Amino-5-(4-chlorophenyl)-7-(t-butyl)

pyrazolo[3,4-d]pyrimidine
PNU-282987  N-[(3R)-1-Azabicyclo[2.2.2]oct-3-yl]-

4-chlorobenzamide hydrochloride
Src  Proto-oncogene tyrosine-protein kinase

SFKs  Src-family kinases
MAPK  Mitogen-activated protein kinase
ERK  Extracellular signal-regulated kinase
PAM  Positive allosteric modulator
Po  Open probability
ECS  Extracellular solution

Introduction

The α7 nicotinic acetylcholine receptor (nAChR) is highly 
expressed in the brain, mainly in the cortex, hippocampus, 
and subcortical limbic regions, where it contributes to cogni-
tion, attention, and working memory. In neurons, α7 recep-
tors are found at presynaptic locations where they facilitate 
the release of neurotransmitters; at postsynaptic locations 
where they mediate fast synaptic transmission, and at peri-
synaptic locations where they modulate neuronal excitability 
and activate a variety of signaling pathways through volume 
transmission [1–3]. α7 reduced activity has been associated 
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with several neurological and neurodegenerative disorders, 
particularly schizophrenia and Alzheimer’s disease [4, 5]. α7 
is also expressed in non-neuronal cells, such as astrocytes, 
microglia, oligodendrocytes, endothelial cells, and immune 
cells, where it has anti-inflammatory and neuroprotective 
activities [6, 7]. Potentiation of α7 has therefore emerged as 
a therapeutic strategy for neurological, neurodegenerative 
and inflammatory disorders. Moreover, α7 has been recently 
proposed to be involved in some clinical manifestations of 
COVID-19 [8]. On the other hand, increased α7 activity in 
certain cells may contribute to cancer progression via the 
promotion of cell proliferation, apoptosis inhibition and 
tumor angiogenesis stimulation [9, 10].

α7 belongs to the family of pentameric ligand-gated ion 
channels that contain an extracellular domain (ECD), which 
carries the agonist binding sites; a transmembrane domain 
(TMD), which forms the ion pore and the gate; and an intra-
cellular domain (ICD), which contains sites for modulation 
and intracellular signaling [11].

α7 responds to acetylcholine (ACh) by opening an intrin-
sic cationic channel which triggers rapid membrane depo-
larization and calcium influx [12]. The hallmarks of its 
ionotropic activity are rapid kinetics, rapid desensitization, 
and high calcium permeability. In addition to its ionotropic 
actions, α7 shows important metabotropic activity. Its activa-
tion induces the release of calcium from intracellular stores 
and triggers several signal transduction cascades, includ-
ing JAK2/STAT3 and PI3K/Akt pathways, activation of 
 Ca2+-calmodulin-dependent protein kinase and MAPK/ERK 
pathway [4, 6, 12–16]. In some non-neuronal cells, signaling 
pathways elicited by activation of α7 have been shown to be 
independent of its activity as an ion channel [17, 18].

The metabotropic responses triggered upon receptor 
activation depend on cell-specific protein-α7 receptor inter-
actions that are mainly mediated through the α7-ICD [19, 
20]. The α7 ICD is a loop of 145 amino acids starting from 
the C-terminal of the transmembrane segment M3 to the 
N-terminal of M4. This region carries determinants of ion 
conductance [21] and sites for tyrosine and serine/threonine 
phosphorylation [22–24]. A special sequence of α7-ICD has 
been proposed to be involved in the interaction with Gα and 
Gβγ proteins [14, 25]. Also, direct interactions of α7 with 
several proteins involved in signal transduction, including 
phosphatases, kinases and G proteins, have been suggested 
by proteomic and bioinformatic studies [19, 20, 26].

Protein phosphorylation occurs in a reversible manner 
responding to the cellular balance of kinases, phosphatases, 
ATP and ADP. It is an important cellular regulatory mecha-
nism involved in physiological processes, including metabo-
lism, proliferation, apoptosis, subcellular trafficking, syn-
aptic plasticity, membrane excitability, and pathological 
processes, such as inflammation and cancer [27]. Phos-
phorylation has been shown to modulate several types of 

nAChRs, thus impacting on neuromuscular transmission, 
synaptic plasticity, and neurotransmitter secretion [28–30]. 
At the molecular level, it was shown that tyrosine dephos-
phorylation of α7 increased its macroscopic responses to 
the agonist, an effect attributed either to a direct channel 
modulation [22] or to changes in the number of surface α7 
receptors [23]. In addition, it was reported that α7 tyrosine 
phosphorylation induced by T-cell receptor activation led 
to decreased number of α7 surface receptors and decreased 
channel conductance [31]. Thus, although these few studies 
showed α7 modulation by phosphorylation, the conclusions 
are discrepant, and the underlying molecular mechanisms 
remain largely unknown. The fact that α7 activates sev-
eral downstream signaling pathways and that activation of 
kinases leads to receptor phosphorylation suggest that the 
receptor might be physically associated with components of 
these pathways and receptor phosphorylation may influence 
signal transduction.

We here deciphered the molecular basis of the modula-
tion of human α7 by tyrosine phosphorylation using high-
resolution single-channel recordings, which provide une-
quivocal evidence of the microscopic functional changes, 
and we revealed how tyrosine phosphorylation impacts on 
α7-triggered signaling pathways. Our study unveils molecu-
lar mechanisms through which the integrated response of 
α7, including ionotropic and metabotropic responses, is 
coupled to phosphorylation events. It also enhances our 
understanding of how phosphorylation associated with nor-
mal or pathological situations may fine-tune α7 signaling 
and contributes to the design of novel therapeutic strategies 
targeting α7.

Materials and methods

Drugs

Acetylcholine (ACh), 5-Hydroxyindole (5-HI), 4-amino-
5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine 
(PP2), RIPA buffer drugs, phenylmethylsulfonyl fluoride 
and protease inhibitor mixture, luminol, p-cumaric acid, 
dimethylsulfoxide (DMSO), pervanadate, SU6656, were 
purchased from Merck (USA). PNU-282987 (N-[(3R)-
1-Azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochlo-
ride) was obtained from Tocris Biosciences (Bristol, UK).

Stock solutions were prepared in water (ACh, pervana-
date) or in DMSO (PNU-282987, PP2, SU6656).

Cell culture

BOSC-23 cells, derived from HEK-293 cells (kindly pro-
vided by Dr. Sine, Mayo Clinic, USA) were cultured with 
HEPES-buffered DMEM culture medium (GIBCO, USA) 
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supplemented with 100 µg/mL streptomycin − 100  IU/
mL penicillin (Invitrogen, USA), 10% Fetal Bovine Serum 
(Internegocios, Argentina).

Receptor expression, mutations and cell treatments

Human α7 cDNA subunit was subcloned into the pRBG4 
expression vector [32]. Single and double mutations intro-
duced at phosphorylation sites in the intracellular domain 
were α7-Y386F, α7-Y442F and α7-Y386F/Y442F. The muta-
tions were carried out using the Quick-Change kit (Strata-
gene, USA) and were confirmed by sequencing.

BOSC-23 cells were transfected by the calcium phos-
phate procedure with wild type or mutant α7 subunit cDNAs 
together with the α7 chaperone Ric-3 cDNA (cDNA ratio 
1:4 and total amount of cDNA 4 μg/35 mm dish) and GFP 
cDNA plasmid to allow identification of transfected cells as 
previously described [21, 33]. For some experiments, the 
Src-K297R cDNA was used for transfection together with 
α7 and Ric-3 cDNAs.

All transfections were carried out for about 8–12 h in 
DMEM with 10% FBS. Cells were used for experiments 
two to three days after transfection at which time maximum 
functional expression levels are usually achieved [32–34].

Exposure of cells to modulators of protein phospho-
rylation was carried out following different protocols. For 
some experiments, drugs were added to the dish and cells in 
DMEM were incubated during 30–60 min at 37 °C before 
use. In other experiments, drugs were added to the dish dur-
ing the course of the electrophysiological recording. PP2 and 
SU6656 were used as Src kinase inhibitors. Both inhibitors 
have been shown to exert similar actions in different cell 
contexts and similar effects on α7 macroscopic currents [22, 
35–37].

Single‑channel recordings

Single channels were recorded in the cell-attached patch 
configuration [32, 38]. The bath and pipette solutions con-
tained 142 mM KCl, 5.4 mM NaCl, 1.8 mM  CaCl2, 1.7 mM 
 MgCl2 and 10 mM HEPES (pH 7.4). ACh was solubilized 
directly in the pipette solution. Single-channel currents were 
digitized at 5–10 μs intervals and low-pass filtered at a cut-
off frequency of 10 kHz using an Axopatch 200B patch-
clamp amplifier (Molecular Devices, CA, USA). Analysis 
was performed with the program TAC (Bruxton Corpora-
tion, Seattle, WA, USA) with the Gaussian digital filter 
at 9 kHz (Final cut-off frequency 6.7 kHz). Events were 
detected by the half-amplitude threshold criterion [32]. To 
determine channel amplitude, events were tracked regard-
less of current amplitude and amplitude histograms were 
then constructed.

Open-time histograms were fitted by the sum of expo-
nential functions by maximum likelihood using the pro-
gram TACFit (Bruxton Corporation, Seattle, WA, USA). 
Bursts of channel openings were identified as a series of 
closely separated openings preceded and followed by clos-
ings longer than a critical duration, which was taken as the 
point of intersection between closed components as previ-
ously described [32, 34, 38]. Typically, critical durations 
were defined by the intersection between the first and second 
briefest components in the closed-time histogram for bursts 
of α7 (~ 200–400 µs).

Probability of channel opening  (Po) was determined only 
for experiments in which the drug was added during the 
course of the recording. It corresponded to the fraction of 
time that the channel was in the open state and was deter-
mined in the same recording for the same period before and 
after the addition of the drug.

Whole‑cell recordings

Macroscopic currents were recorded in the whole-cell con-
figuration at − 50 mV as described previously [32, 39]. The 
pipette was filled with intracellular solution (ICS) contain-
ing 134 mM KCl, 5 mM EGTA, 1 mM  MgCl2, and 10 mM 
HEPES (pH 7.3). The extracellular solution (ECS) con-
tained 150 mM NaCl, 1.8 mM  CaCl2, 1 mM  MgCl2, and 
10 mM HEPES (pH 7.3). The solution exchange time was 
estimated by the open pipette method as described in Cor-
radi et al. [39]. This method consists of applying a pulse of 
50% diluted ECS to an open patch pipette, which produces 
a sudden change in the current measured by the patch-clamp 
amplifier. After proper adjustment of the electrode position, 
the current jump in our system varied between 0.1 and 1 ms. 
After the whole-cell formation, ECS containing 1 mM ACh 
was rapidly applied during 300 ms using a three-tube perfu-
sion system with elevated solution reservoirs for gravity-
driven flow and switching valves controlled by a VC3 con-
troller (ALA Scientific). Currents were filtered at 5 kHz and 
digitized at 20 kHz using an Axopatch 200B patch-clamp 
amplifier (Molecular Devices, CA, USA) and acquired using 
WinWCP software (Strathclyde Electrophysiology Software, 
University of Strathclyde, Glasgow, UK). The recordings 
were analysed using the ClampFit software (Molecular 
Devices, CA, USA). Current decays were fitted by a single 
exponential function according to the equation:

in which t is time, I is the peak current, I∞ is the steady-state 
current value, and τd is the decay time constant.

Recovery from desensitization was determined by using 
a twin pulse procedure as described before [32]. Briefly, 
whole-cell currents at -50 mV were elicited by a 300 ms step 

I(t) = I
[

exp
(

−t∕�d
)]

+ I∞,
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pulse of 1 mM ACh. After removal of ACh, a second pulse 
of 1 mM ACh was applied at intervals between 100 and 
6000 ms after the end of the first ACh pulse. The percentage 
of recovery of the peak current elicited by the second pulse 
with respect to the first was plotted against the interpulse 
interval. The points were fitted using SigmaPlot 12 (Systat 
Software Inc) by the exponential rise equation:

in which t is the interpulse interval and τr is the recovery 
time constant.

Western blot

Cells seeded into 6-well plates (4 ×  105 cells/well) were 
transfected and cultured for an additional 48 h in DMEM 
with 10% FBS. Then cells were growth factor/serum starved 
for 24 h. On the experimental day, cells were pretreated 
or not for 30 min with the indicated inhibitor. For activa-
tion, the specific α7 agonist PNU-282987 was added to the 
dish. Cells were then rapidly washed with ice-cold PBS 
and lysed in RIPA buffer (10 mM Tris, pH 7.5; 150 mM 
NaCl; 2 mM Na ortho-vanadate; 0.1% SDS; 1% Igepal and 
1% Na deoxycholate) in the presence of protease inhibitors 
(phenylmethylsulfonyl fluoride and protease inhibitor cock-
tail). Equal amounts of protein (20 μg) were separated on 
SDS-PAGE and transferred to nitrocellulose membranes 
(Amersham Biosciences GE Healthcare, England). Phos-
phorylated ERK1/2 (p-ERK1/2) was detected using anti-p-
ERK1/2 monoclonal antibody 1:100 (sc-7383, Santa Cruz 
Biotechnology, Dallas, TX, USA). Immunocomplexes were 
revealed by chemiluminescence using horseradish peroxi-
dase-conjugated secondary antibody (Amersham), used at 
1:2000 dilution in the same solution as primary antibodies. 
Immunostaining for ERK1/2 (sc-94, Santa Cruz Biotechnol-
ogy) was used for protein loading normalization. Chemi-
luminescence detection was performed using an enhanced 
detection solution [1.25 mM luminol, 0.2 mM p-coumaric 
acid, 0.06% (v/v) hydrogen peroxide, 100 mM Tris–HCl pH 
8.8]. Immunoblots were exposed to autoradiographic film 
(Santa Cruz Biotechnology).

Statistical analysis

Data are presented as mean ± SD. Data sets were analyzed 
using Student´s t-test or Mann–Whitney rank sum test with 
SigmaPlot 12.0 (Sysat Software, Inc.). Statistically signifi-
cant differences between two groups of data were established 
at p values < 0.05. For each condition, n indicates the num-
ber of independent experiments, each from different cell 

f (t) = a
(

1 − exp
(

−t∕�r
))

,

patches, and N, the number of cell transfections, each from 
different days and cell batches.

Results

Inhibition of tyrosine phosphorylation increases 
the duration and frequency of activation episodes 
of human α7

To explore if tyrosine phosphorylation modulates α7 
ionotropic activity, we first incubated cells with the Src-
family protein tyrosine-kinase inhibitor, 4-amino-5-(4-
chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2, 
10 µM), or with the vehicle alone (0.1% DMSO, control) 
for 1 h in DMEM. Then, single-channel currents of α7 
activated by 100 μM ACh were recorded in the presence 
of PP2 in the bath solution. In non-treated cells and in the 
absence of PP2, channel activity appeared mainly as brief 
and isolated openings or as several openings in quick suc-
cession, known as bursts, which correspond to the activa-
tion episode of a single receptor molecule (Fig. 1a) [32, 
38]. Open and burst duration histograms were described by 
two exponential components, with mean durations of the 
slowest components of 0.32 ± 0.07 ms and 0.48 ± 0.13 ms 
(n = 17), respectively (Fig. 1a, c). For the PP2-treated 
cells, open time histograms were also fitted by two com-
ponents with no significant differences in the duration of 
the slowest component with respect to the control condi-
tion (0.35 ± 0.04 ms, n = 11, p = 0.15, Fig. 1b, c). However, 
burst duration histograms from treated cells revealed an 
additional longer duration component of 2.96 ± 1.30 ms 
(n = 11), indicating that PP2 produced a 6.2-fold, statisti-
cally significant, increase in the duration of the activation 
episodes (p < 0.001, Fig. 1b,c).

To further explore the molecular effects of tyrosine 
phosphorylation on α7, we followed a different applica-
tion protocol. Single-channel currents were recorded dur-
ing 4–25 min to allow detection of more than 1000 open-
ing events. Then, 200 μl ECS solution with 0.1% DMSO 
containing or not 10 μM PP2 were added to the dish, and 
channels were recorded again for a similar period (Fig. 2). 
The advantage of this protocol is that it allows record-
ing both the control and treated conditions in the same 
patch, thus overcoming the variability of receptor expres-
sion among different patches. As shown in Fig. 2a, b, PP2 
induced a marked increase in the frequency of channel 
opening in real time. To quantify this effect, we compared 
for each seal the number of bursts/min and the fraction 
of time that the channel can be found in the open state 
(Open probability,  Po) before and after the treatment. The 
changes determined for each patch were averaged for dif-
ferent experiments. Control recordings showed slightly 
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reduced frequency and  Po after the addition of DMSO 
(0.1%), probably due to the expected desensitization of 
α7 as a function of time (Fig. 2, n = 9). In contrast, a pro-
found increase in the frequency of bursts (~ 3-fold, n = 6, 
p = 0.002) and  Po (~ 4.2-fold, n = 6, p = 0.002) took place 
after the addition of PP2 (Fig. 2c).

For each patch, we also determined the mean open and 
burst durations before and after the addition of DMSO (con-
trol) or PP2. We found that both parameters remained con-
stant in the control condition (Open: before = 0.29 ± 0.04 ms, 
af ter = 0.28 ± 0.05  ms, n  = 9, p  = 0.771; Burst: 
before = 0.42 ± 0.08  ms, after = 0.42 ± 0.08  ms, n = 9, 
p = 0.724). In contrast, after the addition of PP2, the 
mean open and burst durations showed a statistically sig-
nificant increase of ~ 1.4-fold (before = 0.24 ± 0.07  ms, 
after = 0.33 ± 0.07  ms, n = 6, p = 0.003) and ~ 5-fold 
(before = 0.38 ± 0.06  ms, after = 1.88 ± 0.40  ms, n = 6, 
p = 0.002), respectively (Fig. 2d).

Taken together this set of experiments confirmed that 
reduced phosphorylation increases burst duration and 
revealed that it also increases the frequency and the prob-
ability of finding the receptor in an open state.

Receptor phosphorylation is mediated 
by endogenous Src kinases.

To evaluate endogenous players involved in the phospho-
rylation effects, we co-expressed α7 with an inactive Src 
kinase (Src-K297R), following the hypothesis that its com-
petition with endogenous cell kinases would lead to reduced 
α7 phosphorylation. Single-channel recordings of α7 acti-
vated by 100 µM ACh from cells transfected with α7 and 
Src-K297R cDNAs showed non statistically significant 
changes in the mean open duration compared to cells not 
expressing the inactive kinase (0.30 ± 0.06 ms, n = 38, and 
0.35 ± 0.10 ms, n = 4, for control and Src-K297R-express-
ing cells, respectively, p = 0.21). However, they showed a 
statistically significant increase in the mean burst duration 
(0.46 ± 0.12 ms, n = 38, and 0.65 ± 0.10 ms, n = 4, for control 
and Src-K297R-expressing cells, respectively, p = 0.005).

Inhibition of tyrosine phosphatases by pervanadate 
decreases open and burst durations of α7 
without affecting channel amplitude.

Given that the inhibition of phosphorylation increases the 
duration of channel opening episodes, we hypothesized 
that the inhibition of tyrosine phosphatases by pervanadate 
should produce the opposite effect. However, the mean open 
and burst durations of α7 are in the sub-millisecond range, 
close to the limit of the temporal resolution of our system, 
and, therefore, a reduction in these durations cannot be 
detected. To overcome this limitation, we used a positive 
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allosteric modulator (PAM) as a tool to increase open and 
burst durations. We chose 5-hydroxyindole (5-HI), which 
is a type I PAM, whose effects at the single-channel level 
have been well described [34]. Cells were preincubated for 
0.5–1 h in the absence or presence of 100 μM pervanadate 
before performing single-channel recordings. In non-treated 
cells, single-channel activity in the presence of 100 μM ACh 
and 2 mM 5-HI appeared mainly as longer bursts composed 
of successive openings of prolonged durations with respect 
to those recorded in the sole presence of 100 μM ACh. The 
mean open and burst durations were 1.40 ± 0.37 ms and 
3.27 ± 0.91 ms, respectively (n = 12, Fig. 3a, c). Record-
ings from pervanadate-treated cells showed evident kinetic 

changes. The mean open and burst durations under these 
conditions were 0.67 ± 0.31 ms and 1.36 ± 0.58 ms (n = 19), 
respectively, indicating a statistically significant reduction 
with respect to the control condition (p = 0.000002 and 
p = 0.00000007, respectively) (Fig. 3b, c).

We also evaluated if enhanced phosphorylation affected 
single-channel amplitude. For α7 openings, there is a wide 
range of channel amplitudes because their brief open channel 
lifetimes do not allow full amplitude resolution. However, in 
the presence of 5-HI and considering only events longer than 
0.2 ms, it is possible to resolve the full channel amplitude 
[32, 38]. There were no statistically significant differences 
in single-channel amplitudes of openings elicited by 100 µM 

a 100 �M ACh 100 �M ACh PP2DMSO

500 ms

5 pA

500 ms

5 pA

b
PP2DMSO

25

35

15

5

N
º o

f b
ur

st
s

60

80

40

20

N
º o

f b
ur

st
s

1 4 7 10 13 16 19
Time (min)

21 24 27 30 33 36 39 1 4 7 10 13 16 19
Time (min)

21 24 27 30 33 36 39

 A
fte

r/ 
Be

fo
re

Control PP2
0

1

2

4

3

Af
te

r/ 
Be

fo
re

Control PP2
0
1
2

4
3

5
Af

te
r/ 

Be
fo

re

Control PP2
0.0

0.4

0.8

1.2
1.6

Af
te

r/ 
Be

fo
re

Control PP2
0

2

6

4

8

c d
** ** ** **

PoNº of bursts Burst durationOpen duration

100 �M ACh 100 �M ACh PP2DMSO

500 ms

5 pA

500 ms

5 pA

PP2DMSO

25

35

15

5

N
º o

f b
ur

st
s

60

80

40

20

N
º o

f b
ur

st
s

1 4 7 10 13 16 19
Time (min)

21 24 27 30 33 36 39 1 4 7 10 13 16 19
Time (min)

21 24 27 30 33 36 39

 A
fte

r/ 
Be

fo
re

Control PP2
0

1

2

4

3

Af
te

r/ 
Be

fo
re

Control PP2
0
1
2

4
3

5
Af

te
r/ 

Be
fo

re

Control PP2
0.0

0.4

0.8

1.2
1.6

Af
te

r/ 
Be

fo
re

Control PP2
0

2

6

4

8** ** ** **
PoNº of bursts Burst durationOpen duration

Fig. 2  Application of PP2 during the course of the single-channel 
recording. Single-channel currents of α7 activated by 100  µM ACh 
were first recorded in the cell-attached patch configuration (Before), 
and DMSO or PP2 was added to the dish during the course of the 
recording to a final concentration of 0.1% or 10  µM, respectively 
(After). a Single-channel traces of a typical recording before and 
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shown as upward deflections. Membrane potential: − 70 mV. b The 
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cal recording before and after the addition of DMSO (left) or PP2 in 
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and  Po were measured during the same period of time before and 

after the addition of the drug. The ratio of the number of bursts and 
 Po after addition of the drug/before the addition of the drug were cal-
culated for each patch. The figure corresponds to the mean ± SD of 
the ratios for 9 (DMSO) and 5 (PP2) patches. d Bar chart showing 
the change in mean open (left, τopen) and mean burst durations (right, 
τburst) after addition of DMSO or PP2. The τopen and τburst after addi-
tion of the drug were normalized to those before the drug exposure 
in the same patch. Data are plotted as mean ± SD. The n (number of 
independent experiments, each from different cell patches) and the 
N (number of cell transfections) for each condition were 9 and 5 for 
DMSO, 6 and 3 for PP2, respectively. Statistical comparisons were 
performed by Mann–Whitney rank sum test, **p < 0.010 (p = 0.002 
for After/Before coefficient for the four measured parameters: Nº of 
bursts,  Po, τopen and τburst)
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ACh and 2 mM 5-HI between cells treated or not with per-
vanadate (10.18 ± 0.31 pA, n = 4, and 9.90 ± 0.25 pA, n = 4, 
respectively; p = 0.21, Fig. 3d). Thus, the use of a PAM 
allowed us to unequivocally demonstrate that an increased 
phosphorylated state reduces α7 open channel lifetime and 
burst duration but does not affect channel amplitude.

Mutant receptors lacking tyrosine residues 
at the intracellular domain exhibit longer burst 
durations than α7 wild type

The intracellular domain contains two tyrosine residues with 
the potential of being phosphorylated. We generated a tyros-
ine-free α7-ICD by introducing the conservative mutation 
of tyrosine to phenylalanine at both positions (α7-Y386F/
Y442F) (Fig. 4). The mean amplitude of single-channel 

currents (considering only events longer than 0.2 ms) elic-
ited by 100 μM ACh from cells expressing this mutant 
receptor was not statistically different from the wild type 
(9.92 ± 0.29 pA, n = 4, and 9.91 ± 0.19 pA, n = 4, respec-
tively; p = 0.951) (Fig. 4d).

The open channel lifetime did not show statistically sig-
nificant changes (0.32 ± 0.05 ms, p = 0.38, n = 12) whereas 
the mean burst duration showed a statistically significant 
increase with respect to α7 wild-type (0.63 ± 0.14 ms, n = 12, 
p = 0.0003, Fig. 4a–c). Moreover, the increased burst dura-
tion was similar to that observed for α7 wild-type receptors 
expressed together with Src-K297R, a condition in which 
the dephosphorylation state is enhanced (p = 0.756). These 
results confirmed that tyrosine residues 386 and/or 442 at 
the ICD are involved in the modulation of α7 channel by 
phosphorylation.
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Fig. 3  Effects of inhibition of phosphatases on channel activity. Sin-
gle-channel currents of α7 activated by 100 µM ACh and potentiated 
by 2 mM 5-HI were recorded from cells that were preincubated for 
0.5–1 h in the absence (a, control) or presence of 100 µM pervana-
date (b). Channel openings are shown as upward deflections. Rep-
resentative open and burst duration histograms are shown for each 
condition. Membrane potential: − 70 mV. Filter: 9 kHz. c Bar charts 
showing the mean open (τopen) and burst (τburst) durations for each 
condition. The durations were obtained from the slowest components 
of the corresponding histograms. Data are plotted as mean ± SD. 
The n (number of independent experiments, each from different cell 
patches) and the N (number of cell transfections) for each condition 

were 12 and 4 for A, 19 and 4 for B; respectively. Statistical com-
parisons were performed by two-tailed Student-t test, ***p < 0.001 
(p = 0.000002 for τopen, p = 0.00000007 for τburst). d Representative 
amplitude histograms constructed with events longer than 0.2 ms are 
shown for control (left) and pervanadate (right). Bar chart shows the 
mean amplitude for each condition. Data are plotted as mean ± SD. 
The n (number of independent experiments, each from different cell 
patches) and the N (number of cell transfections) for each condition 
were 4 and 4 for control, 4 and 3 for pervanadate treatment, respec-
tively. Statistical comparisons were performed by two-tailed Student-t 
test, ns not significant (p = 0.21)
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To identify which of the two tyrosine residues is mediat-
ing the effect on channel properties, we analysed the burst 
durations of the two single mutant receptors, α7-Y386F and 
α7-Y442F. For both single mutant receptors, we detected 
slightly increased mean burst durations with respect to 
wild-type receptors, indicating a trend to longer durations 
(0.52 ± 0.17 ms, n = 5, for α7-Y386F and 0.52 ± 0.05 ms, 
n = 5, for α7-Y442F). However, for neither single mutant 
the increase was statistically significant with respect to the 
wild-type receptor (p = 0.322 for α7-Y386F and p = 0.352 for 
α7-Y442F). Thus, the effect of phosphorylation on channel 

kinetics appears to increase with the number of tyrosine resi-
dues capable of being phosphorylated.

To further confirm that Y386 and Y442 residues are 
involved in the modulatory effects of phosphorylation, we 
expressed the α7-Y386F/Y442F receptor in cells, recorded 
single-channels activated by 100 µM ACh and then added 
10 µM PP2 (final concentration) to the dish during the 
course of the recording as in the assays shown in Fig. 2. We 
determined the changes in mean open and burst durations, 
frequency of openings and  Po induced by PP2. In contrast 
to the results shown for α7 wild type (Fig. 2), the analysis 
showed no changes in the mean duration and frequency of 
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Fig. 4  Single-channel characterization of mutant α7 receptors lack-
ing tyrosine residues at ICD. Single-channel currents elicited by 
100 µM ACh from cells expressing α7 (a) or the mutant α7-Y386F/
Y442F (b). Traces are shown at two different time scales. Channel 
openings are shown as upward deflections. Representative open and 
burst duration histograms are shown for each receptor. Membrane 
potential: −  70  mV. Filter: 9  kHz. c Bar charts showing the mean 
open (τopen) and burst (τburst) durations for each receptor. The dura-
tions were obtained from the slowest components of the correspond-
ing histograms. Data are plotted as mean ± SD. The n (number of 
independent experiments, each from different cell patches) and the 
N (number of cell transfections) were 38 and 13 for wild-type, 12 

and 5 for the mutant, respectively. Statistical comparisons were per-
formed by two-tailed Student-t test; ns: not significant (p = 0.38 for 
τopen), ***p < 0.001 (p = 0.0003 for τburst). d Representative amplitude 
histograms constructed with events longer than 0.2  ms are shown 
for wild-type (left) and mutant (right) receptors. Bar chart shows the 
mean amplitude for each receptor. Data are plotted as mean ± SD. 
The n (number of independent experiments, each from different cell 
patches) and the N (number of cell transfections) for each receptor 
were 4 and 4 for wild-type, 4 and 3 for mutant; respectively. Statisti-
cal comparisons were performed by two-tailed Student-t test, ns not 
significant (p = 0.95)
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bursts and in  Po after the addition of PP2 (Fig. 5, n = 5). In 
addition, the changes in mean open duration, mean burst 
duration, frequency of channels and  Po induced by PP2 were 
statistically significantly different between wild-type and 
mutant receptors (p = 0.0005, 0.000005, 0.009 and 0.009, 
respectively). As a control, we measured the changes in the 
frequency of bursts without the addition of PP2. The results 
showed a slight reduction in channel activity of the mutant 

α7-Y386/Y442F in the absence of PP2 probably due to 
desensitization during a long time of recording (0.77 ± 0.12).

Thus, the lack of tyrosine residues in α7 ICD abolishes 
the increase in the frequency of openings and  Po mediated 
by PP2 which takes place in wild-type receptors.

Tyrosine phosphorylation of α7 ICD favors 
the desensitized state of the receptor

To get further insights into the mechanism by which phos-
phorylation affects single-channel kinetics, we recorded 
macroscopic currents from wild-type and α7-Y386F/Y442F 
mutant receptors to explore effects on desensitization.

Rapid application of a 300 ms-pulse of ACh to BOSC-
23 cells expressing human α7 or α7-Y386/Y442F elicited 
macroscopic currents that reached the peak in about 5–10 ms 
and decayed in the presence of the agonist due to desen-
sitization (Fig. 6a). Current decays were fitted by a single 
component, and the decay time constants were 28.9 ± 6.5 ms 
(n = 7) and 39.1 ± 7.1 ms (n = 7) for wild-type and mutant 
receptors, respectively. The analysis indicated that the decay 
rate is statistically significantly slower in the mutant receptor 
(p = 0.0165).

An increase in channel activity could be due to faster 
recovery from a desensitized to an activatable state. Thus, 
we measured the time course of recovery from desensiti-
zation using a twin pulse procedure. A 300 ms-pulse of 
1 mM ACh was applied, then the agonist was removed, and, 
after increasing recovery times in ECS, a second 300 ms-
pulse of 1 mM ACh was applied. The results showed that 
currents were detected after ~ 300–400 ms in ECS for the 
mutant receptor but not for the wild-type receptor, for which 
a ~ 600–800 ms interval was required to elicit detectable cur-
rents by the second ACh pulse (Fig. 6a).

The percentage of the peak current of the second pulse 
related to the first pulse of agonist (control pulse) was plot-
ted as a function of the interval time without ACh (inter-
pulse) for wild-type and mutant receptors and fitted by an 
exponential function. Figure 6b shows the mean and SD of 
the percentage of the recovery as a function of the inter-
pulse duration for eight different experiments for wild-type 
and mutant receptors. The results showed that the mutant 
receptor recovers faster from the desensitized state than the 
wild-type receptor. The mean time constants for recovery 
(τr), obtained from the fit of each different experiment, were 
1930 ± 550 ms (n = 8) for wild-type and 664 ± 200 ms (n = 8) 
for mutant receptors, thus indicating a statistically signifi-
cant (p < 0.001), threefold faster recovery from desensitiza-
tion for the mutant receptor.

Thus, the lack of tyrosine residues capable of being phos-
phorylated decreases the desensitization rate from the open 
state and accelerates the recovery from the desensitized state 
to an activatable state.
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Fig. 5  Effect of PP2 on mutant α7-Y386F/Y442F receptors. Single-
channel currents of α7-Y386F/Y442F activated by 100  µM ACh 
were first recorded in the cell-attached patch configuration (before), 
and PP2 was added to the dish during the course of the recording to a 
final concentration of 10 µM (after). a Single-channel traces of a typi-
cal recording before and after addition of PP2. Channel openings are 
shown as upward deflections. Membrane potential: − 70 mV. Filter: 
6  kHz. b The plot shows the number of bursts of openings at each 
minute of a typical recording before and after the addition of PP2. c 
Bar chart showing the change in a number of bursts, probability of 
channel opening  (Po), mean open durations (τopen) and mean burst 
durations (τburst) after addition of PP2 for α7 and α7-Y386F/Y442F. 
For each recording, the total number of bursts,  Po, τopen and τburst were 
measured during the same period of time before and after the addition 
of the drug. The number of bursts,  Po, τopen and τburst after addition of 
the drug were normalized to those before drug exposure in the same 
patch. Data are plotted as mean ± SD. The n (number of independ-
ent experiments, each from different cell patches) and the N (number 
of cell transfections) for each receptor were 6 and 3 for α7, 5 and 3 
for α7-Y386F/Y442F; respectively. Statistical comparisons were per-
formed by two-tailed Student-t test, ***p < 0.001 (p: 0.009, 0.009, 
0.0005 and 0.000005 for After/Before PP2 ratio for the four measured 
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Tyrosine phosphorylation of ICD is involved in α7 
metabotropic responses

Given that α7 has a dual ionotropic/metabotropic activity, 
we explored if phosphorylation affects signaling pathways 
elicited by α7 activation. We chose the ERK1/2 pathway that 
is associated to α7-induced neuroprotection [40].

A brief exposure of α7-expressing BOSC-23 cells to 
the specific α7 agonist PNU-282987 (PNU, 10 μM) for 2.5 
or 5 min increased significantly ERK1/2 phosphorylation 
(p-ERK1/2) with respect to cells not exposed to the agonist, 
thus confirming that this pathway is induced by α7 activation 
in BOSC-23 cells (Fig. 7a). Pretreatment of cells (30 min) with 
the Src family kinase inhibitor SU6656 (10 μM) before PNU 
exposure abolished α7-triggered p-ERK1/2 (Fig. 7b, lanes 2 
and 4). SU6656 did not significantly affect p-ERK1/2 content 

in cells not exposed to the agonist (lane 3) with respect to the 
basal condition (lane 1). To further confirm that the inhibitory 
effect of the Src inhibitor was specifically related to α7 phos-
phorylation, we also measured p-ERK1/2 after the PNU-pulse 
in cells expressing the double mutant α7-Y386F/Y442F recep-
tor in the absence of the kinase inhibitor (Fig. 7b). p-ERK1/2 
generated by PNU-exposure was not detected in α7-Y386F/
Y442F expressing cells (lane 6), indicating the requirement of 
the tyrosine residues in the α7-triggered ERK1/2 pathway. As 
control of receptor expression, we verified by single-channel 
recordings that the mutant receptor was active in the cells.

In summary, phosphorylation of two tyrosine residues in 
ICD involves an intrinsic mode of α7 regulation, coordinating 
the control of both the receptor ionotropic activity and the 
ERK metabotropic pathway.
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Fig. 6  Macroscopic current responses and recovery from desensitiza-
tion. Whole cell currents were elicited by a 300 ms-pulse of 1 mM 
ACh from cells expressing α7 or α7-Y386F/Y442F. To measure 
the time of recovery from desensitization, after the first ACh pulse 
(300  ms), the cell was exposed to ECS free of agonist for intervals 
between 100 and 6000  ms, and then a second pulse of ACh was 
applied. a The figure corresponds to representative experiments for 
wild-type and mutant α7, each from a single cell. For each receptor, 

the control current and the recovered currents after exposure for dif-
ferent times to ECS without ACh are shown. b For both receptors, 
recovery was measured by the ratio of the peak currents between the 
second and first pulse of agonist. The ratios (expressed in percentage) 
were plotted against the interval time in the absence of ACh and fit-
ted by a single exponential function. The data correspond to the mean 
and SD of the percentage of recovery at each interval from eight inde-
pendent experiments for each receptor
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Discussion

The role of protein phosphorylation/dephosphorylation as 
an important regulator of cell function is well established. 
We here deciphered molecular mechanisms and structures 
underlying the fine regulation of α7 ionotropic and metabo-
tropic functions by phosphorylation. We found that phospho-
rylation/dephosphorylation events of two tyrosine residues at 
the ICD modulate the frequency and duration of α7 channel 
activation episodes elicited by ACh mainly by changing the 
rate of fast desensitization and the stability of the desensi-
tized state. Although tyrosine phosphorylation exerts a nega-
tive modulation of α7 ionotropic activity, it is required for 
triggering the ERK signaling pathway, which takes place 
at a different temporal scale to the ion flux response. Thus, 
tyrosine phosphorylation has contrasting actions as well as 
the different degrees of participation in α7 ionotropic and 
metabotropic activities. Overall, α7 pleiotropic responses 
can be fine-tuned by the phosphorylation state of the cells.

The importance of understanding how phosphoryla-
tion alters Cys-loop receptor function is supported by its 

association with pathological states. Inappropriate phos-
phorylation of Cys-loop receptors has pathological conse-
quences and it has, therefore, been postulated that modula-
tion of receptor phosphorylation may be an avenue for novel 
therapeutic strategies [24, 41]. For example, phosphorylation 
of glycine receptors in spinal pain sensory neurons is associ-
ated with chronic pain [42, 43], and of  GABAA receptors, 
with status epilepticus, alcoholism and spatial memory defi-
cits [24]. In nAChRs, it has been reported that phosphoryla-
tion of the muscle-type, α4β2 and α7 receptors is relevant 
to muscle disorders, nicotine addiction, and fertilization, 
respectively [24, 44, 45]. α7 is involved in different patho-
logical situations in which aberrant phosphorylation has 
been described, including Alzheimer’s disease, inflamma-
tory and respiratory disorders, and cancer [46–49]. Enhance-
ment of α7 activity improves cognition and memory, favors 
long-term potentiation, and has neuroprotective and anti-
inflammatory effects [4, 50, 51], all processes in which 
tyrosine phosphorylation events are involved. Therefore, 
further exploration of the direct impact of α7 phosphoryla-
tion state on these physiological and pathological situations 
is highly relevant for therapeutic strategies.

Tyrosine phosphorylation of α7 takes place solely at the 
least conserved intracellular region, the ICD, whose length 
and sequence are highly variable among Cys-loop recep-
tors. In line with the great spectrum of ICD sequences and 
phosphorylation sites, phosphorylation has been shown to 
elicit a wide variety of molecular effects among Cys-loop 
receptors, including changes in expression levels, synaptic 
targeting, receptor activity and desensitization [24].

Previous studies using whole-cell recordings have shown 
that tyrosine phosphorylation of α7 decreases the maximal 
macroscopic responses to the agonist whereas dephospho-
rylation produces the opposite effect [22, 23]. Indeed, the 
explanation for the increase in α7 currents upon dephos-
phorylation was discrepant as it was attributed to a higher 
number of receptors on the surface [23] or to direct changes 
in receptor function [22, 28]. Macroscopic currents cannot 
provide information about the underlying mechanism for 
such effect since their amplitudes depend on the amplitude 
of each individual channel, the number of channels in the 
cell and the probability of channel opening. In contrast, our 
approach that uses high-resolution single-channel record-
ings unequivocally determined that phosphorylation directly 
affects the receptor conformational states. Particularly, the 
increase in the mean burst duration cannot be explained by 
a change in the number of receptors, clearly indicating a 
direct effect on channel kinetics. Nevertheless, our study 
cannot discard small changes in the number of receptors in 
the membrane occurring at longer times, whose study was 
out of the scope of the work.

At the single-channel level, we revealed that the lack 
of tyrosine residues and the inhibition of kinases increase 
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burst duration. Increased burst duration could be the result-
ant of a reduced rate of desensitization since desensitization 
governs the open channel lifetime of α7 [32]. In line with 
this finding, macroscopic currents from the mutant recep-
tor decay slower than currents from wild-type receptors. 
Although in α7 the decay rates of whole-cell currents do 
not reflect exactly its desensitization rate due to the temporal 
resolution limitation of the system [32, 52], the comparison 
of the times constants under identical conditions suggests 
decreased desensitization rate from the open state in the non-
phosphorylated receptor.

Our macroscopic current recordings also showed that the 
mutant receptor recovers faster from desensitization. This 
latter effect is clearly evidenced at the single-channel level 
as an increase in the frequency of opening events in real 
time after the addition of the kinase inhibitor in the wild-
type receptor. Thus, the enhancement of burst duration and 
frequency of opening in the absence of tyrosine phospho-
rylation indicates that phosphorylation reduces the energetic 
barrier from the open to desensitized states and stabilizes the 
receptor in a desensitized state.

Changes in α7 channel amplitude due to tyrosine phos-
phorylation indirectly mediated by T-cell receptor activa-
tion were suggested by current fluctuation analysis [31]. 
This finding does not agree with our results as our high-
resolution single-channel recordings showed no changes in 
single-channel amplitude. A possible explanation for this 
discrepancy may reside in the fact that, due to its very brief 
open channel lifetime, α7 channel amplitude cannot be fully 
resolved. Because of this, single channels of α7 typically 
show a broad spectrum of amplitudes [32, 52]. Only if chan-
nel openings longer than a given duration (which depends on 
the recording and filtering conditions) are selected for ampli-
tude histograms or if a PAM that enhances duration is used, 
α7 amplitude can be accurately determined. Our recordings 
in the presence of 5-HI clearly revealed that tyrosine phos-
phorylation decreases open and burst durations but does not 
affect channel amplitude. In agreement, no changes in chan-
nel amplitude due to tyrosine phosphorylation were reported 
for the muscle nAChR [53].

There are only two tyrosine residues in α7 ICD, Y386, 
located at the middle of ICD and Y442, located before the 
beginning of the MA helix. Whereas the first is not con-
served, the second one is conserved among α1, α4, and β1 
nAChR subunits. Muscle nAChRs are phosphorylated by 
tyrosine kinases at β, γ and δ subunits [24, 54, 55]; and 
tyrosine phosphorylation is of great relevance in the forma-
tion of the neuromuscular junction and receptor clustering 
[28]. At the molecular functional level, tyrosine phosphoryl-
ation has been correlated with an increased rate of receptor 
desensitization [53, 56]. Respect to neuronal α4β2 nAChRs, 
which together with α7 are the most abundant nAChRs in the 
brain, only one report shows that tyrosine phosphorylation 

may negatively affect function and expression [44]. Interest-
ingly, inhibition of phosphorylation by PP2 or expression of 
a kinase defective Src reduced the amplitude of macroscopic 
currents of α3β4α5 nAChRs, indicating that phosphoryla-
tion acts as a positive modulator, opposite to its actions in 
α7 [57].

In line with our conclusion that phosphorylation affects 
directly α7 function, it has been shown that phosphoryla-
tion can cause global allosteric conformational changes in 
glycine receptors [58]. Also, it has been proposed that phos-
phorylated conformations could in principle be targeted by 
drugs with therapeutic potential (Reviewed in [24]). As a 
proof of concept, it was shown that a non-anesthetic propo-
fol derivative, 2,6-di-tert-butylphenol, was accessible to its 
α3β glycine receptor binding site only after PKA-dependent 
phosphorylation [43].

In addition to its ionotropic action, which leads to a rapid 
increase of intracellular calcium and depolarization, α7 trig-
gers intracellular signaling pathways, some of which may 
be also triggered by the calcium influx. These actions are 
of great importance for α7 neuroprotective, antioxidant and 
anti-inflammatory activities and take place at a different 
temporal scale from the rapid ion flux. Thus, we here evalu-
ated phosphorylation effects on α7 metabotropic function.

To determine how tyrosine phosphorylation is coupled to 
α7 metabotropic activity, we chose to explore the effects on 
the MAPK/ERK pathway, which is associated with nicotine-
induced neuroprotection and cell proliferation [15, 40, 59, 
60]. We found that a very brief exposure of α7-expressing 
BOSC-23 cells to the specific α7 agonist PNU-282987 mark-
edly increased p-ERK levels, in good agreement with results 
from a variety of neuronal and non-neuronal cells express-
ing α7 [40, 61, 62]. The enhancement of p-ERK levels was 
fully abolished in the presence of a Src kinase inhibitor, 
indicating the involvement of tyrosine phosphorylation in 
this effect. More importantly, the removal of tyrosine resi-
dues in α7 ICD closely recapitulated the effects of the kinase 
inhibitor. Thus, phosphorylated tyrosine residues in α7 ICD 
are strictly required for triggering ERK1/2 signaling path-
way. Future studies should be directed to analyze if other 
α7-activated signaling pathways also require tyrosine phos-
phorylation of α7 ICD.

It remains to be elucidated what governs the phosphoryl-
ated state of α7 and how SFKs regulate α7 signaling towards 
ERK phosphorylation. A direct association between Src and 
α7 may occur. This is supported by in silico studies show-
ing SH2- and SH3-domain binding sites in the α7 ICD [19], 
which may be recognized by SFKs, and by studies showing 
the binding of Src to fusion proteins containing the N-termi-
nal half of the ICD of the β1 nAChR subunit [63]. Moreover, 
a direct interaction between α7 and Fyn was suggested in 
primary cultures of rat cortex neurons [64]. Agonist acti-
vation of α7 may be required to produce a conformational 
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change that exposes tyrosine residues for SFK-mediated 
phosphorylation. The involvement of adaptor proteins, as 
shown for tyrosine phosphorylation of the muscle nAChR 
δ-subunit [65], the existence of crosstalk between α7 and 
other receptors [31, 60, 66], and Src-activation by other 
mediators triggered by α7-induced calcium influx may 
also take place. Most likely, different actions might occur 
depending on the scaffolding proteins present in the receptor 
microdomain and the cellular context, which may result in 
the activation of different intracellular signaling pathways 
and calcium movement initiated by agonist binding to α7.

We found that while α7 tyrosine phosphorylation is abso-
lutely required for α7-triggered ERK pathway, it acts as a 
negative modulator of α7 ionotropic activity (Fig. 8). Given 
that α7 is highly permeable to  Ca2+, decreased phospho-
rylation may act, by increasing open channel probability, 
as a regulatory mechanism that enhances calcium entrance 
into the cell, which in turn, leads to most of α7 functions, 
including neurotransmitter release, postsynaptic depo-
larization, and triggering of cell signaling processes [67]. 
Also, this transient increase of calcium is converted into a 
sustained, wide-ranging phenomena by the release of cal-
cium from intracellular stores through a calcium-induced 
calcium release (CICR) mechanism [4, 13]. On the other 
hand, decreased α7 phosphorylation decreases metabotropic 
responses requiring phosphorylated tyrosine residues, such 
as the ERK pathway here described, and therefore would 
redirect responses to those mainly governed by its ionotropic 
activity. Therefore, phosphorylation/dephosphorylation 
events of α7 fine-tune the integrated cell response initiated 
by α7 activation, thus having a broad impact on α7 cholin-
ergic signaling and on its involvement in human disorders, 
such as neurodegenerative diseases, cancer and inflamma-
tory disorders.
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