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The Novel Corona Virus 2019 has drastically affected millions of people all around the world and was a
huge threat to the human race since its evolution in 2019. Chest CT images are considered to be one of the
indicative sources for diagnosis of COVID-19 by most of the researchers in the research community.
Several researchers have proposed various models for the prediction of COVID-19 using CT images using
Artificial Intelligence based algorithms (Alimadadi e al., 2020 [19], Srinivasa Rao and Vazquez, 2020 [20],
Vaishya et al., 2020 [21]). EfficientNet is one of the powerful Convolutional Neural Network models pro-
posed by Tan and Le (2019). The objective of this study is to explore the effect of image enhancement
algorithms such as Laplace transform, Wavelet transforms, Adaptive gamma correction and Contrast lim-
ited adaptive histogram equalization (CLAHE) on Chest CT images for the classification of Covid-19 using
the EfficientNet algorithm. SARS- COV-2 (Soares et al., 2020) dataset is used in this study. The images
were preprocessed and brightness augmented. The EfficientNet algorithm is implemented and the perfor-
mance is evaluated by adding the four image enhancement algorithms. The CLAHE based EfficientNet
model yielded an accuracy of 94.56%, precision of 95%, recall of 91%, and F1 of 93%. This study shows that
adding a CLAHE image enhancement to the EfficientNet model improves the performance of the powerful
Convolutional Neural Network model in classifying the CT images for Covid-19.
Copyright � 2022 Elsevier Ltd. All rights reserved.
Selection and peer-review under responsibility of the scientific committee of the International Confer-
ence on Advances in Materials Science
1. Introduction

Novel Coronavirus is a wide group of viruses that cause every-
thing from a regular cold to more chronic infections like Middle
East Respiratory Syndrome (MERS) and severe acute respiratory
syndrome (SARS). In Wuhan, China, a new coronavirus (COVID-
19) was found in 2019. This is a newly discovered coronavirus that
has never been seen in people earlier. The majority of people
affected with the COVID-19 virus will have minor to medium res-
piratory symptoms and this will recover fully without requiring
additional care and treatment. Adults over the age of 65, including
those with underlying health conditions such as cardiovascular
disease, diabetes, chronic respiratory disease, and cancer, are at
an increased risk of developing a serious illness. On January 30,
2020, the World Health Organization (WHO) announced a world-
wide health emergency. To minimize the spread of illnesses, early
treatment of illnesses is among the first lines of defense against
this epidemic. Table 1 descibes various deep learning applied in
this of research [1,2,5,6,9,11] along with the corresponding results.

Presently, the starting point for diagnosing COVID-19 is a posi-
tive nucleic acid testing (NAT) report using reverse- transcriptase
polymerase-chain-reaction (RT-PCR) technology. The conventional
testing tool, RT-PCR, is well- known, but recent investigations have
found that it has a significant risk of false negatives. The RT-PCR
method for determining COVID-19 has a few shortcomings. As a
result, chest CT has become an accurate imaging technique for
COVID-19, which is performed in addition to clinical symptoms
and epidemiological findings to identify the illness. CT scan images
are also helpful for detecting COVID-19 with greater specificity and
sensitivity, according to studies. To begin with RT-PCR, test kits are
inadequately available, require additional time for testing, and
checking sensitivity also varies. The CT scan images were effective
in diagnosing COVID-19, resulting in more lives saved. In endemic
areas, a CT scan of the chest is found to be crucial for COVID-19
identification. Due to the sensitivity and specificity results of CT
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Table 1
Comparison of Different Deep learning Methods using Transfer Learning Techniques
to identify COVID 19 patients or non-COVID patients by CT scan images ([1,2,5,6,9],
and [11]).

S.No Pre-trained Models Accuracy

1 VGG-16 89%
2 DenseNet169 93.15%
3 InceptionV3 53.4%
4 Inception ResNet 90.90%
5 ResNet50 60%
6 AlexNet 82%
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scans, many different countries. Now uses a clinical detection
threshold based on optimal CT scan imaging symptoms. As a result,
the images of the CT scan are a good replacement for the RT-PCR
method. This paper aims to reduce the number of false-positive
and false-negative where to try to save the human life and can pro-
vide better accuracy with other deep learning approaches.
2. Related works

Coronavirus is a subclass of RNA viruses that can cause danger-
ous serious diseases in people and animals. There have been more
than 24.6 crore cases reported of coronavirus worldwide as of
today, with around 44.3L of these instances leading to the death
of the person infected. There are 216 countries, areas, or territories
got affected by the coronavirus. The top four countries with the
most instances are the United States, Brazil, India, and Russia.

COVID-19 testing involves evaluating items that show the pres-
ence of severe acute respiratory syndrome-associated coronavirus.
Several researchers have proposed various models for the predic-
tion of COVID-19 using CT images using Artificial Intelligence
based algorithms (Alimadadi e al., 2020 [19], Srinivasa Rao and
Vazquez, 2020 [20], Vaishya et al., 2020 [21]). The state-of-the-
art of Convolutional Neural Networks (CNNs) for diagnosing
COVID-19 from chest X- rays automatically (CXRs) is presented
in [12]. Different types of deep learning algorithms were investi-
gated and identified the best algorithms were for the classification
of CXR images. Investigations were done using 1345 viral images,
1341 healthy CXR images for deep analysis of COVID-19. From
the observations, VGG16 and Mobile net were able to provide an
accuracy of 98.28%. Still larger data set is required to weigh the
performance of transfer deep learning with F1 score, specificity,
sensitivity, and precision.

Automated detection of Covid-19 in X-ray and CT images using
a machine learning approach is presented in [7]. For this approach,
accurate feature extraction is playing a major role in learning. This
method is considered a pool of methods of deep learning
approaches. They are mobileNet, DenseNet, Xception, ResNet,
IncepptionNet, NasNet, InceprtionResNet and VGNet. The extracted
features were then fed into several machine learning classifiers to
classify subjects as either a case of COVID-19 or a normal case. The
findings of this research on a chest X-ray and CT dataset shows
Densenet architecture trained by Bagging tree classifier was able
to provide good accuracy on extracted features for classification
of the images. The investigation on the elements that influence
the quality of ImageNet pre-trained features by transfer learning
[4]. The process of developing high-performance learners by means
of easily assessible data collected from various areas is called
transfer learning [13]. The objective of this paper [4] was to estab-
lish the importance of feature learning for training data, rather
than to evaluate various neural network topologies. Using transfer
learning, a significant reduction was observed in several images or
the number of classes for training the data.
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A new automatic prediction of COVID 19 disease using CT
images with the integration of deep learning and machine learning
techniques are developed in [10]. The DenseNet201 model has the
best training results, with a good accuracy rate. The DenseNet201
model and KNN algorithm had the best result when combining
pre-trained models with ML algorithms and were able to achieve
very good accuracy. An integrated approach of five different trans-
fer learning architectures such as Densenet 201, VGG19, Efficient
Net, Mobile net, and ResNet to detect Covid-19 images[8]. The find-
ings of this research reveal that transfer learning-based frame-
works could be a viable alternative to the existing methods for
detecting the occurrence of the infection in victims. The impact
of using standard Histogram Equalization and Contrast Limited
Adaptive Histogram Equalization on lung scans is also examined
in the study. The VGG-19 architecture, when integrated with a
dataset that uses Contrast Limited Adaptive Histogram Equaliza-
tion, provided the highest overall results, with 95.75 percent
accuracy.

KarNet, a simplified two-dimensional DL architecture, works
well in identifying COVID-19 patients using lung CT scan images
[3]. Karnet was a deep learning framework that combined the
pre-trained models such as DenseNet201, VGG16, ResNet0V2,
and MobileNet. This integrated model acted as the backbone of
Karnet. Each model of this approach was developed and tested
using both augmented and unaugmented datasets. Karnet model
that utilized DenseNet201 produced a better identification ability
when compared with other pre-trained models. DenseNet was able
to produce 97% accuracy for the dataset.
3. Materials and methods

The SARS-CoV-2 computed tomography (CT) scan dataset [14],
which is openly accessible, is used in this study. The dataset com-
prises a collection of 2482 CT scans, out of which 1252 CT scans are
of those positive for COVID-19 infection followed by 1230 CT scans
for patients who are not infected by COVID-19. The information
was gathered from genuine patients in a hospital in Sao Paulo, Bra-
zil. The goal of this dataset is to promote the product development
of artificial intelligence systems that can determine whether a per-
son is affected with SARS-CoV-2 by analyzing his or her CT scans.
Fig. 1 illustrates a few samples obtained from the dataset for
COVID and NON-COVID CT scans.
3.1. Image preprocessing and enhancement

The images were pre-processed and the dataset size is
enhanced with brightness augmentation. Further, we applied the
following five image transformation to enhance the images before
it is fed to the EfficientNet algorithm. The adaptive gamma correc-
tion transformation technique is used to increase the visibility of
the detailed information present in an image. This is done by
increasing the brightness and contrast of an image without affect-
ing any visual artifacts. The adaptive gamma correction defines the
function which has intensity transformation based on the input
image. It has several steps which include color transformation,
image classification, and intensity transformation, enhancement
of low-contrast image, and enhancement of the high- or
moderate-contrast image.

The wavelet transform is to choose a function as the basic
wavelet whose integral is zero in the time domain. We can obtain
a family function by expanding and translating the fundamental
wavelet, which could serve as a framework for the function space.
By projecting the image onto the framework, we decompose the
original image. Several scaling in the wavelet transform domain
can give a time-scale expression to an image in the original time



Fig. 1. CT Scans of people with COVID (top 3) and without COVID (bottom 3).
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domain. Then we may get the most efficient image transformation
domain. Fig. 2 illustrates the original image with the output
acquired from the four image transformation techniques.

CLAHE is a histogram-based image enhancement method that
limits amplification based on the clipping done in the histogram
to limit it to a predefined level. It is a methodology for allocating
projected intensity levels in medical data that has proven to be
effective. The approach looks at a histogram of intensity in a con-
textual region focused on every pixel and adjusts the displayed
brightness at that pixel to the ranking of that pixel’s intensity in
its histogram. The obtained histogram is a customized version of
the standard histogram, in which the method’s image contrast is
shown at each intensity level [15]. CLAHE works by minimizing
contrast enhancement, which is commonly achieved by a tech-
nique called Histogram Equalization [16], which also results in
noise augmentation. As a result, desired outcomes were attained
in circumstances where noise became excessively noticeable by
enhancing contrast, such as medical photos, by restricting contrast
augmentation in Histogram Equalization. In simple terms, contrast
enhancement is the slope of the function that connects the input
picture intensity value to the desired resultant image intensities.
The slope of this related function can be limited to reduce contrast
[17]. In our work, the inclusion of CLAHE has aided in enhancing
the overall accuracy rate.
3.2. EfficientNet algorithm

The EfficientNet algorithm was originally introduced by [18] by
offering an incredible method for scaling neural network models
by enhancing depths, breadth, and precision. It is a convolutional
neural network (CNN) design and scaling technique that applies
a compounded coefficient to scale up all depth, width, and resolu-
tion dimensions evenly.

The EfficientNet scaling method consistently increases network
breadth, depth, and resolution with a set of preset scaling param-
eters, contrasting standard practice, which adjusts these factors
randomly The researchers started by creating a base network using
a technique called neural architecture search, which automates the
building of neural networks. On floating-point operations per sec-
ond which in short is known as the ‘‘FLOPS” level, it optimizes both
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effectiveness and precision. The movable inversion bottleneck con-
volution called ‘‘MBConv” has been utilized in this architecture.
Furthermore, the authors then scaled up the base network to cre-
ate the EfficientNet class of deep learning methods.

Fig. 3 shows the EfficientNet-B0 setup, which is the most effi-
cient. There are a total of 18 convolution layers, each having a k
(3,3) or k(3,3) kernel (5,5). The size of the input image is 224 by
224 pixels. The next layers are reduced in resolution to lower the
size of the feature map but increased in width to improve accuracy.
The second convolution layer, for example, has W = 16 filters,
whereas the next convolution layer has W = 24 filters. For the last
layer, which is sent to the fully connected layer, the maximum
number of filters is D = 1, 280.

The hyperparameters are set up during the model’s training. To
avoid overfitting during the training phase, an early stopping
approach was adopted. At the moment where the validation loss
value was the best, the models were registered. The models were
trained using the Adam optimization technique. In this optimiza-
tion, the learning rate is initially set to 0.0005.

Fig. 4 depicts the flow diagram carried out in our work. Initially,
we have performed the necessary and requisite data processing
methodology. This is followed by an image-enhancing step with
the aid of the Contrast Limited Adaptive Histogram Equalization
(CLAHE) technique. Once the enhancing process is completed, we
load the reconstructed enhanced data into the EfficientNet algo-
rithm. The obtained results for the proposed work are evaluated
in terms of accuracy rate, precision, recall, and F1-score.
4. Results and discussion

In this study, the effects of image transformation algorithms
such as SMQT, Wavelet transform, Laplace transform and CLAHE
were analyzed on the EfficientNet algorithm in the classification
of the COVID-19 CT images. This study was conducted in a system
with a corei5 processor 7th generation, 16 GB RAM, and Nvidia
GeForce 940MX GPU. The SARS-COV-2 CT scan dataset consists of
2482 images. The training set comprises 1984 images and the test-
ing set comprises 497 images in the ratio of 8:2 approximately. The
effect of five image transformations such as CLAHE, Wavelet trans-
form, adaptive gamma correction, and Laplace transform are eval-



Fig. 2. (a) Original Image; (b) Adaptive Gamma Corrected Image; (c) Laplace Transformed Image (d) Wavelet Transform Image (e) CLAHE Enhanced Image.
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uated on the EfficientNet algorithm. The accuracy and loss of the
EfficientNet algorithm without image enhancement are shown in
Fig. 6. The model achieved a validation accuracy of 90.15%.

However, few of the evaluated image transforms showed a sig-
nificant difference in the classification accuracy. Fig. 6 shows the
accuracy and loss of the EfficientNet algorithm with Laplace trans-
formed images. The accuracy was comparatively lower than the
EfficientNet algorithm without Laplace transformation. Fig. 8
shows the accuracy and loss with adaptive gamma-corrected
images. Though there is a slight increase in the accuracy there
was no significant improvement. Fig. 8 shows the accuracy and loss
with Wavelet transform. Either the wavelet transform did not
show a significant improvement. Fig. 9 shows the accuracy and loss
with CLAHE transformation. It is observed that there is a significant
increase in accuracy compared to the other image transforms. In
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this work, a 10-fold cross validation has been performed whose
results are elaborated in Table 2 respectively.

Fig. 5 shows the training and validation accuracy of the Effi-
cientNet model. The model achieved a validation accuracy of
90.15%.

Fig. 6 shows the training and validation accuracy and loss of the
EfficientNet model with Laplace image transformation. The model
achieved a validation accuracy of 75.90%.

Fig. 7 shows the training and validation accuracy and loss of the
EfficientNet model with adaptive gamma- corrected images as
input. The highest accuracy is achieved during the epoch. The
model achieved an accuracy of 90.94%

Fig. 8 shows the training and validation accuracy of the Effi-
cientNet model with wavelet transformation. The model achieved
a validation accuracy of 92.55.



Fig. 3. EfficientNet: Detailed Architecture Diagram.

Fig. 4. Flow Diagram for the Proposed Work.
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Fig. 9 shows the training and validation accuracy of the Effi-
cientNet model with CLAHE image transformation. The model
achieved an accuracy of 94.56%. The effect of the CLAHE transform
was comparatively significant on the accuracy of the model.

The average of the 10 fold cross validation is given in Table 3. As
shown in Table 3 the performance metrics such as precision, recall
and F1 for CLAHE transform are high compared to the other image
transforms on the EfficientNet model.
5. Conclusion

This paper provides an efficient image classification using Effi-
cientNet for COVID-19 detection using CT images. We used prepro-
cessing to enrich the images before implementing the algorithm in
this investigation. Our method can increase the visibility of the
given image without affecting the visual artifacts of the image. Sev-
eral transformation techniques were executed on EfficientNet such
2516
as Wavelet transform, Laplace transforms, adaptive gamma, and
CLAHE. Among them, we were able to achieve an accuracy of
94.56% using CLAHE transformation on EfficientNet. Finally, chest
CT imaging provides high sensitivity for COVID-19 diagnosis. To
detect COVID-19 via CT images, we provide a very efficient
approach using CLAHE transformation on EfficientNet strategy that
outperforms state-of- the-art approaches.
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Fig. 5. Training and validation accuracy of EfficientNet model.

Fig. 6. Training and validation accuracy of Laplace transformed images on EfficientNet model.

Fig. 7. Training and validation accuracy/loss of adaptive gamma-corrected images on EfficientNet model.
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Fig. 8. Training and validation accuracy/loss of wavelet transformed images on EfficientNet model.

Fig. 9. Training and validation accuracy/loss of CLAHE transformed images on EfficientNet model.

Table 2
Results of 10-Fold cross validation.

Fold Accuracy Precision Recall F-1 Score

1 94.80% 93.01% 91.00% 91.00%
2 94.12% 94.60% 91.00% 94.00%
3 93.54% 93.33% 90.89% 93.00%
4 92.72% 92.70% 92.00% 92.00%
5 92.52% 92.31% 90.00% 92.00%
6 95.67% 94% 91.00% 94.00%
7 96.52% 98.44% 91.00% 93.90%
8 96.52% 98.39% 91.10% 93.80%
9 94.74% 97.45% 91.00% 92.10%
10 94.48% 95.78% 91.00% 94.20%
Average 94.56% 95.00% 91.00% 93.00%

Table 3
Average values of performance metrics.

Model Accuracy Precision Recall F1

Laplace transform 0.7590 0.68 0.72 0.64
Adaptive gamma correction 0.9094 0.91 0.91 0.92
Wavelet transform 0.9255 0.93 0.90 0.93
CLAHE transform 0.9456 0.95 0.91 0.93
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