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Background: While chimeric antigen receptor (CAR)-T cell therapy is becoming widely
used in hematological malignancies with remarkable remission rate, their high recurrence
remains an obstacle to overcome. The role of consolidative transplantation following CAR-
T cell-mediated remission remains controversial. We conducted a retrospective study to
explore whether bridging to unrelated cord blood transplantation (UCBT) could improve
the prognosis of patients entering remission after CAR-T therapy with different
characteristics through subgroup analyses.

Methods: We reviewed 53 patients with relapsed/refractory (R/R) B-cell acute
lymphoblastic leukemia (B-ALL) successfully infused with CD19 CAR-T cells and
achieved complete remission (CR). In this study, 25 patients received consolidative
UCBT (UCBT group) and 28 patients did not accept any intervention until relapse (non-
UCBT group). Subgroup analysis on prognosis was then performed according to gender,
age, number of previous relapses, tumor burden, presence of poor prognostic markers,
and structure of CAR.

Results: Compared with the non-UCBT group, patients who underwent consolidative
UCBT had better median event-free survival (EFS; 12.3 months vs. 6.2 months; P = 0.035)
and relapse-free survival (RFS; 22.3 months vs. 7.2 months; P = 0.046), while no significant
difference was found in overall survival (OS; 30.8 months vs. 15.3 months; P = 0.118).
Subsequent multivariate analysis revealed that bridging to UCBT was a protective factor for
RFS (P = 0.048) but had no significant effect on EFS (P = 0.205) or OS (P = 0.541). In the
subgroup analysis, UCBT has an added benefit in patients with specific characteristics.
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Patients who experienced ≥2 relapses or with sustained non-remission (NR) showed better
RFS (P = 0.025) after UCBT. Better EFS was seen in patients with poor prognostic markers
(P = 0.027). In the subgroup with pre-infusion minimal residual disease (MRD) ≥5% or with
extramedullary disease (EMD), UCBT significantly prolonged EFS (P = 0.009), RFS (P =
0.017), and OS (P = 0.026). Patients with occurrence of acute graft-versus-host disease
(aGVHD) appeared to have a longer duration of remission (P = 0.007).

Conclusion: Consolidative UCBT can, to some extent, improve clinical outcomes of
patients with R/R B-ALL entering remission following CD19 CAR-T therapy, especially in
patients with more recurrences before treatment, patients with poor prognostic markers,
and patients with a higher tumor burden. The occurrence of aGVHD after UCBT was
associated with better RFS.
Keywords: chimeric antigen receptor (CAR), unrelated cord blood transplantation, acute B lymphoblastic leukemia,
CD19, prognosis
1 INTRODUCTION

Chimeric antigen receptor (CAR)-T cell therapy has been proven
to have remarkable efficacy in hematological malignancies in
recent years and is considered one of the most promising
targeted therapies for tumors. CD19-targeted CAR-T cell
therapy has led to a paradigm shift in the treatment of relapsed
and refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL).
Numerous clinical trials revealed that patients treated with CD19
CAR-T cells can achieve a complete remission (CR) rate of 75%–
93%. Despite the impressive results, however, approximately 38%–
61% of patients eventually relapsed during long-term follow-up
(1–8). Researchers have proposed a series of solutions to reduce
the recurrence rate after CAR-T cell therapy such as optimizing
CAR structure (7, 8), designing artificial antigen-presenting cells
(AAPCs) (9), binding immunological checkpoint inhibitors (10),
sequentially administering two groups of CAR-T cells (11), and
bridging to transplantation. Some studies speculated that the
combination of CAR-T therapy and transplantation prolonged
survival and provided patients with more opportunities (12–14).

However, the role of consolidative transplantation following
CAR-T therapy remains controversial while the effect can be
influenced by pretreatment patient characteristics, lymphodepletion
regimen, structure of CAR, and post-CAR-T therapy parameters (12).
In some groups, it increases the economic burden and risk of death
related to transplantation. It is necessary to weigh the advantages
and disadvantages.

Equally important, which source of stem cells for
transplantation to choose is inconclusive. Current studies
emphasize the interface between allogeneic hematopoietic stem
cell transplantation (allo-HSCT) and CAR-T cell therapy, as allo-
HSCT is considered the only recognized curative cellular therapy
for patients with B-ALL. Few studies have focused on unrelated
cord blood transplantation (UCBT) following CAR-T therapy.
Umbilical cord blood (UCB) is gradually being considered as an
alternative source of peripheral blood progenitor cells (PBPCs)
or bone marrow (BM) transplantation, particularly when a
human leukocyte antigen (HLA)-matched donor is not
org 2
available. A retrospective study determined the optimal role of
UCBT in adults with acute leukemia, and showed that leukemia-
free survival (LFS) in patients after UCBT was equivalent to that
after PBPC or BM transplantation (15). Thus, UCBT may also be
considered as an option to improve the prognosis of patients who
have undergone CAR-T therapy. Another study conducted at
our center showed that patients who received consolidative
UCBT after CAR-T-induced remission had a 26.7% 2-year
cumulative incidence of relapse (CIR) (16), so it is worth
exploring if UCBT can benefit patients who have obtained
remission after CAR-T therapy. Our research aims to explore
the role of consolidative UCBT in patients receiving CD19 CAR-
T cells and which characteristics of patients can influence the
effect of UCBT more obviously.
2 MATERIALS AND METHODS

2.1 Patients
From January 2016 to April 2021, we reviewed patients with R/R
B-ALL who were successfully infused with CD19 CAR-T cells at
the First Affiliated Hospital of USCT (Anhui Provincial Hospital)
and the Second Hospital of Anhui Medical University
(SHAMU). The medical ethics committee of the two hospitals
reviewed and approved the study protocols. Fifty-three patients
were consecutively enrolled in this non-randomized clinical
study according to exclusion criteria including the following:
1) unable to evaluate the effectiveness of CAR-T cell therapy,
(2) failure to achieve CR after CAR-T cell therapy,
(3) contraindications in terms of critical organ insufficiency
and uncontrollable infections, and (4) a history of
transplantation before CAR-T therapy. Twenty-five patients
received consolidative UCBT at our center selectively,
depending on pre-UCBT assessment including disease features,
treatment history, comorbidities, and personal reasons including
patient preference and economic considerations. In conformity
with the Declaration of Helsinki, informed consent was provided
from each participant.
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2.2 Procedures
2.2.1 Chimeric Antigen Receptor-T Cell Therapy
Protocol
All included patients were treated with conditioning
chemotherapy including fludarabine (FLU, 30 mg/m2 × 3 days)
in combination with cyclophosphamide (CY, 300 mg/m2 × 3
days) before the intravenous infusion of cryopreserved CD19
CAR-T cells at a dose of 1 × 106 cells/kg body weight. The CAR
in this study consists of an CD19-specific single-chain antibody
fragment (scFv) derived from FMC63 fused to a modified IgG4-
hinge spacer, a costimulatory molecule including CD28 alone or
both CD28 and CD137 (4-1BB), and a CD3z signaling domain.
Enrichment of CAR-T cells from patient’s PBMCs was done
using CD4-magnetic beads (Miltenyi Biotec GmbH) and CD8-
magnetic beads (Miltenyi Biotec GmbH).

2.2.2 Unrelated Cord Blood Transplantation
Procedures
The selection of cord blood and HLA typing have been
previously described (17). Concisely, molecular techniques
with minimum antigenic segmentation level resolution for
HLA-A and HLA-B and allele-level resolution for DRB1 were
used when performing HLA typing. All recipients obtained
single-unit cord blood from the Chinese Cord Blood Bank.
Each unit of cord blood was high-resolution matched to the
recipient’s HLA-A and HLA-B antigens and HLA-DRB1 and
had a minimum of 3.0 × 107 total nucleated cells (TNCs)/kg of
body weight and 1.2 × 105 CD34+ cells/kg of body weight until
frozen. All recipients were given myeloablative regimen
including FLU/BU/CY (FLU, 30 mg/m2 per day for 4 days;
busulfan, total 12.8 mg/kg, 0.8 mg/kg every 6 h for 4 days; CY, 60
mg/kg daily for 2 days), FLU/BU/CY plus carmustine (BCNU)
(250 mg/m2), FLU/CY plus total body irradiation (TBI; total 12
Gy, 4 fractions) or FLU/BU/CY plus semustine (320 mg/m2). A
co-application of mycophenolate mofetil and cyclosporin A was
used as prophylaxis for graft-versus-host disease (GVHD).

2.3 Definitions
Bone marrow morphology with ≤5% blasts, no evidence of
circulating blasts, and no extramedullary infiltration were
considered as CR. Minimal residual disease (MRD)-negative
CR was characterized as no immunophenotypically abnormal
blasts detected in peripheral blood (PB)/BM by multiparametric
flow cytometry (FCM). MRD status was assessed by 10-color
FCM with a sensitivity of 104 nucleated cells. Disease relapse was
defined as ≥5% of blasts in BM, reappearance of blasts in the PB,
or extramedullary infiltration after CR. The endpoints were
event-free survival (EFS), relapse-free survival (RFS), and
overall survival (OS). We calculated EFS as the time interval
from CAR-T cell infusion to disease progression (including
MRD-positive and gene recurrence), relapse, or death,
whichever came first, or last visit. RFS was calculated from the
date of CAR-T cell infusion to the date of relapse, death, or last
visit. For OS, death as the final endpoint was caused by any factor
or the final follow-up date could be used. Acute GVHD
(aGVHD) was assessed according to the Mount Sinai Acute
Frontiers in Immunology | www.frontiersin.org 3
GvHD International Consortium (MAGIC) criterion (18), and
chronic GVHD (cGVHD) was assessed according to the
consensus criteria of the National Institutes of Health (19).

2.4 Statistical Analysis
Descriptive statistics were used to present the characteristics of
the patients. The difference in non-relapse mortality (NRM) rate
between two groups was determined by Fisher’s exact test.
Kaplan–Meier analysis and Cox regression model were applied
to perform univariate and multivariate analysis on factors
affecting the survival of overall patients, respectively. The
median EFS, RFS, and OS were demonstrated by Kaplan–
Meier curves and were compared by log-rank test. The hazard
ratio (HR) and 95% CI for EFS, PFS, and OS for subgroup
analysis were estimated using a stratified Cox regression model
and visualized by a forest plot. A two-tailed P value <0.05 was
considered statistically significant. All statistical analyses were
conducted using Statistical Product and Service Solutions (SPSS)
26.0, and GraphPad Prism 8.00 software (GraphPad Software, La
Jolla, CA, USA) was used to create figures.
3 RESULTS

3.1 Patients
A total of 53 patients with B-ALL treated with CD19 CAR-T cells
were consecutively enrolled. Characteristics of patients with a
median age of 28 (range 3–66 years) years are presented in
Table 1. Twenty-two (41.5%) patients experienced less than 2
relapses, and 31 (58.5%) patients experienced ≥2 relapses or
remain in non-remission (NR). Thirty-six (67.9%) patients had
poor prognostic markers including TP53, BCR-ABL1, E2A-
PBX1, and MLL-AF4 and complex karyotype before CAR-T
therapy. Furthermore, 43 (81.1%) patients had MRD >5% or
with extramedullary disease (EMD) before CAR-T treatment,
and 10 (18.9%) patients had MRD <5%. Thirty-eight (71.7%)
patients were infused with CAR-T cells incorporating a CD28 co-
stimulation domain, and 15 (28.3%) patients with CAR-T cells
contained both CD28 and 4-1BB. All patients achieved CR
before transplant, while 3 patients remained MRD-positive.

Twenty-five patients received UCBT after CAR-T cell therapy
(the UCBT group); 28 patients did not accept any treatment until
relapse (the non-UCBT group). The median interval from CAR-
T therapy to UCBT was 66 (range 30–268 days) days; 17 patients
received UCBT within 3 months following CAR-T therapy. The
median infused TNC count and CD34+ cells were 2.79 (range,
1.24–9.80) × 107/kg and 1.97 (range, 0.69–7.15) × 105/kg,
respectively. Among the patients who underwent UCBT after
CAR-T therapy, 11 (44.0%) patients had aGVHD and one
patient had cGVHD in the follow-up. Pre-engraftment
syndrome (PES) was observed in 19 (76.0%) patients (Table 1).

3.2 Overall Outcomes
Disease status of 53 patients from the day of CAR-T cell infusion
to the end of follow-up was shown in Figure 1A. The NRM rates
in the UCBT and non-UCBT groups were 33.3% and 5%,
April 2022 | Volume 13 | Article 879030

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xu et al. Consolidative UCBT Following CAR-T-Induced Remission

Frontiers in Immunology | www.frontiersin.org 4
respectively; no significant difference was found by Fisher’s exact
test (P = 0.128) between the two groups. In the UCBT group, 10
(40.0%) patients relapsed at a median time of 6.2 months (range
1.4–22.3 months) including one CD19-negative relapse and one
central nervous system leukemia (CNSL), and one patient
underwent transformation from ALL to myelodysplastic
syndrome (MDS) and eventually progressed to acute myeloid
leukemia (AML). Ten (40.0%) patients remained disease-free
until the end of follow-up; one patient was lost to follow-up at 5.6
months of remission. Four patients died because of transplant-
related complications including GVHD, thrombotic
microangiopathy (TMA), and severe infection. Among the
patients who relapsed after UCBT, eight patients received
reinfusions of CAR-T cells after relapse, five patients achieved
CR again, and two of them remained in MRD-negative remission
until the end of follow-up. The remaining two patients who
received only chemotherapy or supportive therapy showed poor
prognosis and died of primary disease in the short term. In the
non-UCBT group, 18 (64.3%) patients experienced relapses at a
median time of 6.5 months (range 1.4–58.9 months). Six patients
achieved sustained MRD-negative remission without other
interventions after CAR-T cell infusion until the end of follow
up, one patient remained in MRD-negative remission and was
lost to follow-up at 34.3 months, one patient showed a positive
MRD at 36.5 months, and one patient showed a positive P210 at
17.7 months.

3.3 Survival Analysis
Initially, we performed an analysis of the factors associated with
overall prognosis (Table 2). Univariate analysis indicated a
TABLE 1 | Characteristics of the 53 patients.

Characteristics Overall number (%)

Bridging to UCBT
Yes 25 (47.2)
No 28 (52.8)
Age (years) 28 (3-66)
Gender
Men 20 (37.7)
Women 33 (62.3)
Number of relapses
<2 22 (41.5)
≥2 or NR 31 (58.5)
Poor prognostic markers* 36 (67.9)
Previous EMD 12 (22.6)
Pre-infusion tumor burden
MRD ≥5% or with EMD 43 (81.1)
MRD <5% 10 (18.9)
CAR structure
CD28 38 (71.7)
CD28/4-1BB 15 (28.3)
Pre-transplant BM-MRD
MRD negative CR 22 (88.0)
MRD positive CR 3 (12.0)
Transplant-related complications
aGVHD 11 (44.0)
cGVHD 1 (4.0)
PES 19 (76.0)
TRM 4 (16.0)
Data are presented as the median (range) or count (percentage).
UCBT, unrelated cord blood transplantation; EMD, extramedullary disease; MRD, minimal
residual disease; CAR, chimeric antigen receptor; BM, bone marrow; CR, complete
remission; aGVHD, acute graft-versus-host disease; cGVHD, chronic graft-versus-host
disease; PES, pre-engraftment syndrome; TRM, transplantation-related mortality.
*Include: Complex karyotype, BCR-ABL1, MLL-AF4, TP53, E2A-PBX1.
A B

D E

C

FIGURE 1 | Treatment responses and long-term survival of each patient, survival analysis between the UCBT group and the non-UCBT group, and the association
between aGVHD and RFS in the UCBT group. (A) Disease status from CAR-T cell infusion to the end of follow-up of each patient. (B–D) Differences of EFS (B), RFS
(C), and OS (D) between the UCBT group and the non-UCBT group in overall patients. (E) The association between the occurrence of aGVHD and RFS of patients
underwent consolidative UCBT after entering remission by CAR-T therapy. UCBT, unrelated cord blood transplantation; aGVHD, acute graft-versus-host disease;
EFS, event-free survival; RFS, relapse-free survival; OS, overall survival; CAR, chimeric antigen receptor.
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significant difference in survival between the two groups, the
estimated median EFS (12.3 months vs. 6.2 months; P = 0.035)
and RFS (22.3 months vs. 7.2 months; P = 0.046) were better in
the UCBT group than those in the non-UCBT group, while the
OS showed no difference (30.8 months vs. 15.3 months; P =
0.118) (Figures 1B–D). Subsequent multivariate analysis for
factors with P < 0.2 in the univariate analysis showed that
consolidative UCBT was an independent protective factor for
RFS (P = 0.048), but with no significant effect on overall EFS (P =
0.205) or OS (P = 0.541). Multivariate analysis also showed a
worse EFS (P = 0.069) and OS (P = 0.045) in patients with poor
prognostic markers.

Comparison of baseline characteristics of the two groups
revealed no significant differences in gender, number of
relapses, poor prognostic markers, pre-infusion tumor burden,
and CAR structure; however, there were differences in the age
distribution (Table 3). Considering if those factors may
potentially associate with the influence of consolidative UCBT
on the prognosis of patients, we subsequently subgrouped the
patients to determine which group of patients were more likely to
benefit from consolidative UCBT (Figure 2). In patients who
experienced ≥2 relapses or sustained NR, UCBT prolonged RFS
(P = 0.025) compared to non-UCBT. Consolidative UCBT had
significant influences in EFS (P = 0.027) of patients with poor
prognostic markers includingMLL-AF4, BCR-ABL1, TP53, E2A-
PBX1, and complex karyotype, while no significant effect was
shown in patients without those markers. In the subgroup with
MRD ≥5% or with EMD before infusion, UCBT prolonged EFS
Frontiers in Immunology | www.frontiersin.org 5
(P = 0.009), RFS (P = 0.017), and OS (P = 0.026) independent of
poor prognostic markers; the improvement was not observed in
patients with pre-infusion MRD <5%. No significant effect of
UCBT was seen in either group subdivided according to gender
(men and women), CAR structure (CD28 and CD28/4-1BB), and
age (<25 years and ≥25 years).

In our study, time between CAR-T cell infusion and UCBT
did not influence EFS (P = 0.360), RFS (P = 0.413), or OS (P =
0.204) of the patients. Four patients bridging to UCBT at 3
months after CAR-T therapy still showed sustained remission.
Our further exploration suggested a correlation between aGVHD
after UCBT and prognosis, which showed that patients who had
aGVHD tend to have a better RFS (P = 0.007) (Figure 1E),
although EFS (P = 0.113) and OS (P = 0.593) did not significantly
prolong, and the results need to be further confirmed by a
large sample.
4 DISCUSSION

While CAR-T cell therapy increases the remission rate of patients
diagnosed with R/R B-cell hematological malignancies, the limited
duration of remission and unsatisfactory long-term survival
present challenges for CAR-T cell therapy. The two relapse
patterns after CAR-T therapy include CD19-positive relapse and
CD19-negative relapse. CD19-positive relapses are commonly
associated with decreased CAR-T cell persistence, low potency
and poor response of CAR, and transient B-cell aplasia (20).
TABLE 2 | Factors affecting EFS, RFS, and OS in overall patients.

Items EFS RFS OS

Median/mean Log-rank c2 P Median/mean Log-rank c2 P Median/mean Log-rank c2 P

Univariate analysis
Bridging to UCBT
No 6.2 4.456 0.035* 7.2 3.990 0.046* 15.3 2.522 0.112
Yes 12.3 22.3 30.8
CAR structure
CD28 10.0 0.084 0.772 12.3 0.113 0.737 16.6 0.155 0.694
CD28/4-1BB 9.8 12.3 30.8
Age (years)
<25 18.3 3.362 0.067 22.3 1.198 0.274 33.2 3.090 0.079
≥25 7.2 10.1 15.3
Poor prognostic markers*
No 22.3 2.985 0.084 6.5 1.946 0.163 38.0 3.610 0.057
Yes 8.2 2.7 19.3
Number of relapses
<2 14.5 0.817 0.366 18.3 0.788 0.375 22.2 0.531 0.466
≥2 or NR 8.3 11.3 16.5
Tumor burden
MRD ≥5%/EMD 8.8 0.001 0.979 6.1 0.514 0.474 16.5 0.099 0.754
MRD <5% 10.8 4.1 16.6
Multivariate analysis
Items HR (95% CI) P HR (95% CI) P HR (95% CI) P
Bridging to UCBT 0.562 (0.232–1.370) 0.205 0.456 (0.210–0.992) 0.048* 0.737 (0.276–1.964) 0.541
Age (years) 1.293 (0.521–3.205) 0.580 1.865 (0.788–4.413) 0.156 1.679 (0.612–4.601) 0.314
Poor prognostic markers 2.033 (0.945–4.375) 0.069 – – 2.411 (1.022–5.688) 0.045*
April 2022 | Volu
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EFS, event-free survival; RFS, relapse-free survival; OS, overall survival; UCBT, unrelated cord blood transplantation; CAR, chimeric antigen receptor; NR, non-remission; MRD, minimal
residual disease; EMD, extramedullary disease; HR, hazard ratio; CI, confidence interval.
*Include: Complex karyotype, BCR-ABL1, MLL-AF4, TP53, E2A-PBX1.
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The mechanism of this kind of relapse may be related to CD19
gene mutation leading to CD19 loss (21), selection and lineage
switch by immune pressure (22, 23), and trogocytosis and
cooperative killing (24). Prevention for relapse after CAR-T
therapy includes improving the structure of CAR (7, 25),
optimizing lymphodepletion regimen (26), dual/multi-targeted
CAR-T cells (23, 27), sequential infusion of two groups of CAR-
T cells (11, 28), CAR-T cell combined with immune checkpoint
inhibitor (10), and consolidative transplantation after CAR-T
therapy (12–14, 29–33). HSCT has been chosen in several
centers to consolidate remission after CAR-T treatment. Clinical
studies by Lee et al. (14) demonstrated a decline in relapse rate in
pediatric patients who were consolidated with HSCT. Hay et al.
Frontiers in Immunology | www.frontiersin.org 6
(34) reported a phase I/II data investigating the role of 4-1BB
CD19 CAR-T cells in adult ALL, demonstrating prolonged EFS in
patients who received HSCT after CAR-T therapy. A clinical study
by Shalabi et al. (29) showed that CAR-T cell therapy combined
with HSCT could synergistically improve LFS. However, whether
to consolidate with transplantation after CAR-T is still a critical
question, since treatment-related morbidity and mortality need to
be balanced against the risk of relapse. Functional CAR-T cells that
persisted in patients may be destroyed by transplantation and
losing their antitumor activity. And there are some studies
showing that no difference in prognosis was seen in patients
who did and did not receive consolidative transplantation after
fusion of CD28-based CD19 CAR-T therapy (6, 35).
FIGURE 2 | Forest plot showing the hazard ratios for EFS, RFS, and OS of various subgroups. UCBT, unrelated cord blood transplantation; EFS, event-free
survival; RFS, relapse-free survival; OS, overall survival; CAR, chimeric antigen receptor; NR, non-remission; MRD, minimal residual disease; EMD, extramedullary
disease; HR, hazard ratio.
TABLE 3 | Patient characteristics among the two groups.

Characteristics Non-UCBT group (N = 27) UCBT group (N = 29) P value (Non-UCBT vs. UCBT)

Age (years) <0.001**
<25 4 (14.3) 19 (76.0)
≥25 24 (85.7) 6 (24.0)
Gender 0.145
Men 8 (28.6) 12 (48.0)
Women 20 (71.4) 13 (52.0)
Number of relapses 0.833
<2 12 (42.9) 10 (40.0)
≥2 or NR 16 (57.1) 15 (60.0)
Poor prognostic markers* 0.991
No 9 (32.1) 8 (32.0)
Yes 19 (67.9) 17 (68.0)
Pre-infusion tumor burden 0.842
MRD <5% 5 (17.9) 5 (20.0)
MRD ≥5% or with EMD 23 (82.1) 20 (80.0)
CAR structure 0.572
CD28 21 (75.0) 17 (68.0)
CD28/4-1BB 7 (25.0) 8 (32.0)
April 20
Data are presented as count (percentage).
*P < 0.05 (bilateral); **P < 0.01 (bilateral).
UCBT, unrelated cord blood transplantation; NR, non-remission; MRD, minimal residual disease; EMD, extramedullary disease; CAR, chimeric antigen receptor.
*Include: Complex karyotype, BCR-ABL1, MLL-AF4, TP53, E2A-PBX1.
22 | Volume 13 | Article 879030
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Another issue to be addressed is which source of
transplantation should be chosen. Current studies have focused
on consolidative HSCT after CAR-T therapy, with fewer studies
on UCBT. Stem cells can be obtained from BM, PB, or UCB.
UCB offers benefits such as rapid acquisition, less constricted
HLA matching, and lower rates of GVHD (36–38). A
comparative analysis of UCB and BM in children with acute
leukemia demonstrated that 4-6/6 HLA-matched UCB provided
a similar probability of LFS to matched BM (39). Thus, we
assumed that UCBT may serve as an alternative for patients
without a compatible donor. However, there is still a deficiency
of data on the outcomes of CAR-T therapy bridging to UCBT.
Another study in our center showed a relatively high 2-year CIR
in patients who received consolidative UCBT following CAR-T-
mediated remission (16), so it is worth exploring whether UCBT
can benefit patients who achieved remission after CAR-T
therapy or not.

In this retrospective study, 25 of the 53 patients received
subsequent UCBT after CAR-T therapy, and the other 28
received CAR-T therapy alone. In overall patients, the NRM
rate appeared to be higher in the UCBT group, but there was no
statistical difference between the two groups, and UCBT
contributed a significant improvement in RFS, while there was
no significant effect on EFS and OS. In studies focusing on
consolidative allo-HSCT after CAR-T, the effect of HSCT was
influenced by many potential factors including complex
karyotypes, certain genes associated with poor prognosis,
leukemia burden, number of relapses, high lactate
dehydrogenase (LDH) levels, lymphodepletion regimen, and
constructure of CARs (12). Therefore, we conducted a subgroup
analysis to explore factors influencing the effect of UCBT.

A high pre-infusion tumor burden had been reported to
increase the relapse rate after CAR-T therapy (6, 13, 40). A
clinical trial showed that consolidative HSCT significantly
prolonged EFS and RFS in patients with a high leukemia
burden (13). In our study, we observed a pronounced influence
of consolidative UCBT on patients with MRD ≥5% or with EMD,
suggesting that patients with a higher tumor burden would be
more likely to benefit from consolidative UCBT. Some studies
have found that surface CAR expression was inversely correlated
with tumor burden due to receptor internalization (41–43); this
may contribute to a higher probability of relapse in patients with
a high tumor burden. Those findings demonstrate the necessity
of consolidative transplantation for patients with a high tumor
burden after CAR-T therapy. In addition, we found that the
number of relapses can influence the effect of UCBT, patients
who experienced fewer than 2 relapses did not benefit from
consolidative UCBT, while in patients with recurrent relapses or
sustainable NR, consolidative UCBT improved their RFS
significantly. As for patients with poor prognosis markers,
while worse overall EFS and OS were observed in multivariate
analysis, those patients showed an improved EFS after bridging
to UCBT. MLL/AF4, BCR/ABL1, TP53, and E2A/PBX1 complex
karyotypes are reported to indicate an inferior prognosis in B-
ALL patients (44–48). Consolidative UCBT after CAR-T therapy
may achieve a longer molecular response.
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According to criteria published by Gökbuget et al. (49) age is
the most important prognostic factor for ALL, and the prognosis
of patients deteriorates with increasing age. Apart from that,
some studies showed that adult patients are more likely to benefit
from consolidative allo-HSCT, while younger patients can
achieve durable remission without a consolidating allo-HSCT
(4, 8). As the younger patients took a larger proportion in the
UCBT group in our study, we further grouped the patients
according to age (<25 years vs. ≥25 years) to reduce the
influence of the confounding variable; the results showed that
consolidative UCBT did not affect survival of patients in
either group.

Another factor that can affect prognosis is the co-stimulatory
structural domain of CAR. Preclinical studies indicated a
relatively short duration after infusion of CAR-T cells with
CD28 co-stimulatory domain (50, 51); moreover, numerous
investigations have revealed that 4-1BB-based CAR-T cells
exhibited more durable persistence than CAR-T cells that
contained CD28 co-stimulatory domain (20, 32, 33, 52, 53).
However, the outcomes of CAR-T cell containing CD28 co-
stimulatory domains varied significantly among different studies.
A retrospective analysis showed no improvement in EFS or OS in
patients using CD28-based CD19 CAR-T cells bridged with
HSCT (6). A study in pediatric patients using CD28 co-
stimulatory CD19 CAR-T cells (54) suggested that HSCT leads
to better EFS. Several reports of treating patients with 4-1BB-
based CD19 CAR-T cells (13, 34) exhibited better RFS with
consolidative HSCT, whereas patients receiving 4-1BB-
containing CD19 CAR-T cells in the global ELIANA trial show
no benefit in OS (8). It is unscrupulous to conclude the influence
of different CAR structures on the effect of post-CAR-T
transplantation. In our study, we did not observe an
improvement in prognosis by consolidative UCBT in patients
receiving CD28-based CAR nor in those receiving CD28/4-1BB-
based CAR. Considering the limited sample size and
confounding factors, a comparative study is needed.

Our study demonstrated that consolidative UCBT after CAR-
T therapy can improve the clinical outcomes in specific groups of
patients; however, the recurrence rate after transplantation was
relatively high (40.0%, 10/25). Patients without occurrence of
aGVHD appeared to have a shorter duration of remission. The
occurrence of aGVHD after UCBT may indicate better RFS. A
study showed that time from CAR-T cell application to
transplantation associated with the risk of death (55). Some
researchers recommended early consolidative UCBT to
maximize the benefit, considering that approximately 10% of
patients relapsed after CAR-T therapy within 3 months (12).
However, our study did not show a correlation between the
interval and long-term survival; among the 10 patients in the
UCBT group who achieved sustained remission, four patients
had an interval ≥3 months from CAR-T infusion to
transplantation. Thus, the optimal time for consolidative
transplantation needs to be determined by multicenter and
large-sample studies. It is imperative to seek a treatment
option for patients who relapse after transplantation because
these patients generally have a poor prognosis. Eight patients
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accepted re-infusion of CAR-T cells in this study, five of them
achieved CR and the median OS after relapse was 21.9 months
(range 9.4–39.5 months), the remaining two patients who did not
receive a second CAR-T therapy died rapidly after relapse.
Comparative studies with larger samples are necessary to
explore the role of re-infusion of CAR-T cells.

Our study has its shortcomings due to its retrospective nature
and the uniformity in baseline characteristics of patients; election
bias on transplantation may also exist. However, the results from
real-world data by subgroup analysis are still informative. Large-
sample studies with consistent patient baseline characteristics are
still needed.
5 CONCLUSION

To conclude, our study showed that consolidative UCBT
provides an option for post-CAR-T consolidation. In patients
with a history of ≥2 relapses or sustained NR, with poor
prognostic markers, or with MRD ≥5% or EMD, long-term
survival was significantly improved by consolidative UCBT. In
contrast, UCBT does not necessarily result in a better prognosis
for patients with a lower number of recurrences, no prognostic
markers, and a lower tumor burden. For posttransplantation
relapse, re-infusion of CAR-T cells may be an option to consider.
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