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Estimation in multi-arm two-stage trials
with treatment selection and
time-to-event endpoint
Matthias Brückner,*† Andrew Titman and Thomas Jaki

We consider estimation of treatment effects in two-stage adaptive multi-arm trials with a common control. The
best treatment is selected at interim, and the primary endpoint is modeled via a Cox proportional hazards model.
The maximum partial-likelihood estimator of the log hazard ratio of the selected treatment will overestimate the
true treatment effect in this case. Several methods for reducing the selection bias have been proposed for normal
endpoints, including an iterative method based on the estimated conditional selection biases and a shrinkage
approach based on empirical Bayes theory. We adapt these methods to time-to-event data and compare the bias
and mean squared error of all methods in an extensive simulation study and apply the proposed methods to
reconstructed data from the FOCUS trial. We find that all methods tend to overcorrect the bias, and only the
shrinkage methods can reduce the mean squared error. © 2017 The Authors. Statistics in Medicine Published by
John Wiley & Sons Ltd.
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1. Introduction

Multi-arm trials, which compare multiple treatment arms to a common control group, are more efficient
than traditional two-arm designs as only a single control group is used [1]. Additional efficiency gains
can be achieved by selecting treatments at one or more interim analyses [2]. Most of the recent research
in this area focuses on how such studies are designed for a normally distributed endpoint (e.g., [3–6]).
Approaches that are applicable to non-normal and particularly time-to-event endpoints are less frequent
in contrast (e.g., [7–10]), although many examples of multi-arm trials with survival endpoints, such as
the three-arm SANAD trial in generalized and unclassifiable epilepsy [11], the four-arm STAMPEDE
trial in prostate cancer [12], or the five-arm FOCUS trial in poor prognosis advanced colorectal cancer
[13], exist.

Adaptive treatment selection at an interim analysis increases the chance of a successful trial and avoids
wasting resources on unpromising treatments [1]. It is well known, however, that selecting promising
treatments based on the observed data leads to overestimation of the treatment effect in the selected treat-
ment arms and an underestimation of the treatment effect in the dropped treatment arms [14]. A variety
of different strategies to remove or reduce the bias has been developed for normal data. The uniformly
minimum variance conditionally unbiased estimator (UMVCUE) in a two-stage design when selecting
the best treatment was first derived by Cohen and Sackrowitz [15] and extended to more general selection
rules in [16] . A simple iterative method for calculating a bias-corrected estimate based on the estimated
conditional selection bias was proposed by Stallard and Todd [17]. An extension of the shrinkage esti-
mator of Hwang [18] to two-stage adaptive designs has been proposed by Carreras and Brannath [19].
They show that the shrinkage estimator has smaller Bayes risk than the maximum likelihood estimator
(MLE) and also a smaller mean squared error (MSE) in many scenarios.
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Common to the methods for normal data is that they assume equal variance between treatment arms and
do not consider the control group, because in the normal case, the conditional selection bias of the MLE
is the same with or without a control group (although the equal variance assumption has been relaxed for
the UMVCUE in recent work [20], which also explicitly accounts for a shared control group). However,
in the context of survival trials and for the estimation of log hazard ratios (log-HRs), a control group is
required. The challenge thereby is that a control group, which is common to all treatment groups, induces
a correlation among the log-HR estimators. Moreover, the assumption of equal and known variances
is unrealistic in the survival setting as the variances depend on the number of observed events. In this
paper, we therefore adapt the method of Stallard and Todd [17] to time-to-event endpoints and consider
shrinkage estimators in this context. In an extensive simulation study, we then compare the bias and MSE
of these estimators and analyze reconstructed data from the FOCUS trial.

In Section 2.2, we derive explicit formulas for the selection bias of the MLE in the selected, as well as in
the dropped treatment arms under a Cox proportional hazards model, when the treatment with the largest
observed effect at an interim analysis is selected. We derive two shrinkage estimators in Section 2.3 and
adapt the iterative Stallard–Todd method to survival data in Section 2.4. The simulation study in Section 3
compares the bias and MSE of these methods for different number of treatment groups, allocation ratios,
and total number of events. An analysis of reconstructed data from the FOCUS trial is presented in
Section 4 before we conclude with a discussion.

2. Methods

We consider a two-stage design where the best treatment, that is, the treatment with the smallest estimated
log-HR, is selected at the interim analysis. Let S be the index of the selected treatment. Note that S is a
random variable depending on the Stage 1 data.

2.1. Model

Consider K ⩾ 2 treatment groups and a common control group. Denote the total sample size by n, and
suppose patients are allocated to group k in Stage 1 with probability pk (k = 0,… ,K). Here, the index
k = 0 represents the control group. Assuming proportional hazards between each treatment group and
the control group, we consider the following Cox proportional hazards model:

𝜆j(s) = 𝜆0(s) exp
(
𝛽TZj

)
j = 1,… , n, (1)

where 𝛽 is the vector of log-HRs and Zj = (Z1j,… ,ZKj) is the vector of binary treatment indicators, that
is, Zkj = 1 if patient j is in group k and 0, otherwise (k = 1… ,K, j = 1,… , n). The joint model in Eq. (1)
is equivalent to K separate Cox models with the same baseline hazard function 𝜆0, which is the hazard
in the common control group. In a sequential survival trial with more than one analysis time point, we
need to distinguish between the calendar time, measured from the start of the trial, and the individual
survival time of each patient. Associated with each patient is an entry time Rj, measured from the start
of the trial, a survival time Tj, and a censoring time Cj, both measured from entry of the patient into the
trial. At each calendar time t, only the minimum Yj(t) = min(Tj,Cj, t − Rj) and the censoring indicator
Δj(t) = I{Tj ⩽ min(Cj, t − Rj)} can be observed. The observed data of all patients at calendar time t are
given by

D(t) =
{(

Yj(t),Δj(t),Rj, Zj

)
, j = 1,… , n(t)

}
,

where n(t) =
∑

j I
{

Rj ⩽ t
}

is the number of patients recruited by calendar time t.

2.2. Maximum likelihood estimator

The MLE of 𝛽 in Eq. (1) at calendar time t is denoted by 𝛽MLE(t) = (𝛽MLE
1 (t),… , 𝛽MLE

K (t)) and is obtained
by maximizing the partial-likelihood of the Cox model based on the data D(t). In practice, interim and
final analyses are usually not scheduled at fixed calendar times but after a certain number of events have
been observed. Let dj be the total number of events of the j-th analysis and dkj the number of events in
the k-th group at the j-th analysis, such that dj = dj0 + … + djK (k = 0,… ,K, j = 1, 2). Denote by
𝛽MLE,j the vector of estimated log-HRs 𝛽MLE,j

k (k = 1,… ,K, j = 1, 2) at the interim and final analyses,
respectively. The estimated log-HR in the selected treatment group at the interim analysis is 𝛽

MLE,1
S =
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mink=1,…,K{𝛽
MLE,1
k }. The true treatment effect 𝛽S of the selected treatment is a random variable, and in

general, 𝛽S ≠ mink 𝛽k. We say that an estimator 𝛽MLE,j
S of 𝛽S at Stage j is unbiased if E[𝛽MLE,j

S ] = E[𝛽S]
(j = 1, 2) [15].

The MLEs are correlated because of the common control group. If 𝛽 ≈ 0 and the censoring time C is
stochastically independent from Z, we show in Section A in the Appendix that the correlation 𝜌kl between
𝛽

MLE ,j
k and 𝛽

MLE ,j
l is approximately √

pkpl√
p0 + pk

√
p0 + pl

> 0 (1 ⩽ k, l ⩽ K).

Note that when the size of the common control group decreases, the correlation of the MLEs increases. In
the special case p0 = 1−

∑K
k=1 pk = 1−Kp, where all treatment groups are the same size, the correlation

𝜌 between any two log-HR estimators at the interim analysis is approximately (1 − p0)∕(1 + (K − 1)p0).
The derivation of the selection bias is based on the joint asymptotic distribution of the vectors 𝛽MLE ,1

and 𝛽MLE ,2. We have approximately

(
𝛽MLE ,1, 𝛽MLE ,2

)T ∼ N

(
(𝛽, 𝛽)T ,

(
Σ1 Σ2
Σ2 Σ2

))
,

where Σj is the asymptotic covariance matrix of 𝛽MLE ,j (j = 1, 2) (see Section A in the Appendix).

2.2.1. Estimation in a two-stage design. Denote by 𝛿MLE
S the increment of the MLE based on all data

observed after the interim analysis (including events observed in Stage 2, from patients recruited in
Stage 1). This is an (asymptotically) unbiased estimator of the true log-HR, which is inefficient, because
it ignores all of the Stage 1 data. Formally, 𝛿MLE

S can be defined via the score process U of the Cox model
and the corresponding Fisher information I conditional on the selection S. Asymptotically U2S − U1S
and U1S are stochastically independent, because of the independent increments property of U. Thus, the
increment of the MLE given by

𝛿MLE
S =

U2S − U1S

I2S − I1S
,

is asymptotically independent from 𝛽
MLE ,1
S conditionally on S. At the final analysis, the MLE of the

selected treatment can be defined in two different, but asymptotically equivalent, ways, either by 𝛽MLE ,2,
that is, from all data accrued until the final analysis or by a weighted sum of the first stage MLE and the
increment from first to second stage, that is,

𝛽
MLE ,1,𝛿
S ∶= w𝛽MLE ,1

S + (1 − w)𝛿MLE
S ,

where w ∈ [0, 1] is a pre-specified constant. We will consider both estimators in our simulation study.
Usually, w will be equal to the information fraction at the planned time of the interim analysis, that is,
w = d1∕d2.

2.2.2. Selection bias and mean squared error. The bias of the MLE of the selected treatment at analysis
j can be written as

Bias
(
𝛽

MLE ,j
S

)
= E

[
𝛽

MLE ,j
S − 𝛽S

]
=

K∑
k=1

E
[
𝛽

MLE ,j
k − 𝛽k ∣ S = k

]
P(S = k).

The true treatment effect in the selected treatment arm is overestimated, when the best performing
treatment arm is selected, because

E

[
min

k=1,…,K
𝛽

MLE ,1
k

]
⩽ min

k=1,…,K
E
[
𝛽

MLE ,1
k

]
= min

k=1,…,K
E[𝛽k] ⩽ E[𝛽S].

One can see that the true treatment effect in the dropped treatment arms is underestimated.
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For normal means, the selection bias is maximal if all means are equal [19]. Their result and its proof
still hold asymptotically for the estimated log-HRs when the signs are reversed; that is, for given variances
and correlation, the absolute value of the bias is maximal if all true log-HRs are equal. We obtain a lower
bound

Cj(Σj) = E min
k=1,…,K

{
𝛽

MLE ,j
k − 𝛽k

}
for the selection bias of 𝛽MLE ,j

S depending on the asymptotic covariance matrix Σj. This bound is attained
when the true log-HRs are all equal. Because the correlations are always nonnegative in our setting, it
is an immediate consequence of Slepian’s lemma [21] that for fixed variances, the lower bound Cj(Σj) is
minimal when all correlations are 0. This corresponds to a situation where every treatment group has its
own independent control group.

There are two possible ways of defining the MSE, because 𝛽S is a random variable. First, the MSE of
predicting 𝛽S

E

[(
𝛽

MLE ,j
S − 𝛽S

)2
]
= Var

(
𝛽

MLE ,j
S − 𝛽S

)
+ Bias

(
𝛽

MLE ,j
S

)2
,

which is the definition that we will use in our simulation study, or alternatively the MSE of estimating
E[𝛽S]:

E

[(
𝛽

MLE ,j
S − E[𝛽S]

)2
]
= Var

(
𝛽

MLE ,j
S

)
+ Bias

(
𝛽

MLE ,j
S

)2
.

Note that while the bias does not depend on the correlation in the normal case, this is not the case for the
variance. The MSE is always larger with control group than without a control group:

E
[(

XS − X0 − (𝜃S − 𝜃0)
)2
]
= E

[
(XS − 𝜃S)2

]
+ Var(X0) > E

[
(XS − 𝜃S)2

]
,

where Xk is the sample mean and 𝜃k is the true mean in group k = 0,… ,K.

2.2.3. Conditional selection bias. We will now give explicit expressions for the selection probabilities
and the conditional selection biases at the interim and final analyses. The detailed derivations can be
found in Section B in the Appendix.

Let 𝛽MLE ,1
−k be the vector 𝛽MLE ,1 with the k-th element removed. Denote by

S𝛽−k(x),Σ−k(x)(x) = ∫
∞

x
· · ·∫

∞

x
𝜙𝛽−k(x),Σ−k(x)(y1,… , yK−1)dy1 · · · dyK−1

the survival function of the (K − 1)-dimensional normal distribution with mean 𝛽−k(x) and covariance
matrix Σ−k(x), where 𝛽−k(x) is the conditional mean and Σ−k(x) is the conditional covariance matrix of
𝛽

MLE ,1
−k given 𝛽

MLE ,1
k = x, respectively. The probability of selecting treatment k is given by

P(S = k) = ∫
∞

−∞
S𝛽−k(x),Σ−k(x)(x)𝜙

(
x − 𝛽k

𝜎1k

)
𝜎−1

1k dx,

where 𝜎1k =
√
Σ1kk. At the interim analysis, the conditional selection bias cb+

1k of 𝛽MLE ,1
k conditional on

{S = k} is

cb+1k = E
[
𝛽

MLE ,1
k ∣ S = k

]
− 𝛽k =

∫ ∞
−∞(x − 𝛽k)S𝛽−k(x),Σ−k(x)(x)𝜙

(
x−𝛽k

𝜎1k

)
𝜎−1

1k dx

∫ ∞
−∞ S𝛽−k(x),Σ−k(x)(x)𝜙

(
x−𝛽k

𝜎1k

)
𝜎−1

1k dx
. (2)
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In the dropped treatment arm, the MLE is biased in the opposite direction; that is, the treatment effect
is underestimated, and the bias cb−

1k of 𝛽MLE ,1
k given {S ≠ k} is

cb−
1k = E

[
𝛽

MLE ,1
k ∣ S ≠ k

]
− 𝛽k = −

(
E
[
𝛽

MLE ,1
k ∣ S = k

]
− 𝛽k

) P(S = k)
1 − P(S = k)

. (3)

We derive now an explicit formula for the conditional selection bias at the final analysis. Let uk =
Σ2k.Σ−1

1 , where Σ2k⋅ is the k-th row of the matrix Σ2. Then, the conditional selection bias at the final
analysis can be written as

cb+
2k =

K∑
l=1

uklvkl, (4)

where

vkl =
⎧⎪⎨⎪⎩

E
[
𝛽

MLE ,1
l ∣ S ≠ l

]
− 𝛽l for l ≠ k

E
[
𝛽

MLE ,1
k ∣ S = k

]
− 𝛽k for l = k.

In the dropped treatment arm, analogously to Eq. (3),

cb−
2k = −cb+

2k

P(S = k)
1 − P(S = k)

. (5)

We have shown in Section 2.2.2 that the absolute value of the bias is maximal when the correlation is 0;
that is, each treatment group has its own independent control group. In this case, Eqs (4) and (5) reduce to

cb+2k =
𝜎2

2k

𝜎2
1k

cb+1k

and

cb−2k =
𝜎2

2k

𝜎2
1k

cb−
1k,

respectively. Thus,

cb+2k

cb+1k

=
cb−2k

cb−1k

=
𝜎2

2k

𝜎2
1k

≈
d1k

d2k
. (6)

Thus, each additional event observed after the interim analysis reduces the conditional bias, and the
bias at the final analysis will be smaller than at the interim analysis. We also see that only the total number
of observed events matters and not whether the event comes from a patient recruited before or after the
interim analysis. This is especially interesting in the dropped treatment arms, because it quantifies the
bias reduction that we can expect, when continuing follow-up until the final analysis. In our simulation
study in Section 3, we see that this relation also holds approximately in the case of a common control
group. This result is analogous to the normal case, for example [22].

In a two-arm trial with a single treatment group, recruitment may be stopped early at the interim
analysis for the lack of benefit, when the estimated log-HR is larger than some pre-specified threshold
c, but follow-up is continued until the final analysis. The selection bias in this case can be obtained as a
special case by setting K = 2, 𝛽MLE ,1

2 = c, and letting 𝜎12 → 0. This leads to

cb−j1 = E
[
𝛽

MLE ,j
1 ∣ 𝛽MLE ,1

1 > c
]
𝛽1 =

𝜎2
j1

𝜎11

𝜙

(
c−𝛽1

𝜎11

)
1 − Φ

(
c−𝛽1

𝜎11

) .

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 3137–3153
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We see that Eq. (6) still holds; that is, additional events reduce the conditional selection bias. This
confirms the simulation study results of [23].

2.3. Shrinkage estimator

We consider two different approaches to deriving the shrinkage estimator. The first approach follows
closely the original derivation of [18], by considering the posterior mean of the selected treatment when
the covariance matrix of the data is known, but arbitrary, and then replacing the prior mean and variance
by their sample estimates. The second approach first scales the estimators by the square root of their
covariance matrix to obtain independent estimators with unit variances and then rescales the shrinkage
estimates back to the original scale.

In the normal case with known and equal variances and four or more treatment groups, the shrinkage
estimator can be derived as an empirical Bayes estimator [24]. Let Xk be the sample mean and 𝜃i the true
mean in group k (k = 1,… ,K ⩾ 4). We assume normal priors for the true means 𝜃k ∼ N(𝜇, 𝜏2) and that
the sample mean Xk conditional on 𝜃k is normally distributed with mean 𝜃k and known variance 𝜎2 (k =
1,… ,K). The posterior mean of 𝜃k conditional on Xk is given by (1−C)𝜇+CXk and the posterior variance
by 𝜎2C, where C = 𝜏2∕(𝜏2 +𝜎2). Thus, the posterior mean of 𝜃S is E[𝜃S ∣ X1,… ,XK] = (1−C)𝜇+CXS.
To obtain an estimator of the posterior mean of 𝜃S, the unknown quantities 𝜇 and C are estimated by the
overall sample mean X̄ and

Ĉ = 1 − (K − 3)𝜎2∑K
k=1(Xk − X̄)2

,

respectively. Ĉ is an unbiased estimator of C [24]. Because C ⩾ 0, the estimator Ĉ is replaced by Ĉ+ =
max(Ĉ, 0). Therefore, the shrinkage estimator is given by

Q = (1 − Ĉ+)X̄ + Ĉ+X.

The aforementioned estimators are only defined for K ⩾ 4. The best linear unbiased predictor can be
used instead when K ⩽ 3. The best linear unbiased predictor is the same as the empirical Bayes estimator
but with K − 3 replaced by K − 1 [19].

2.3.1. Shrinkage estimator for the log hazard ratios. The extension from independent equal variances
to the general case of an arbitrary covariance matrix is straightforward. In order to simplify the notation,
we write 𝛽 in the following for the MLE at Stage j instead of 𝛽MLE ,j. Assume now

𝛽 ∼ N(𝜇, 𝜏2I)
𝛽 ∣ 𝛽 ∼ N(𝛽,Σ),

(7)

where I is the K × K identity matrix and the Σ the covariance matrix, which we assume to be known for
the moment. Note that we still put independent priors on the true treatment effects. The posterior mean
of 𝛽 given the data 𝛽 is (

𝜏−2I + Σ−1
)−1 (

𝜏−2𝜇 + Σ−1𝛽
)
= C𝛽 + (I − C)𝜇,

where the shrinkage factor C is now the matrix I −Σ(𝜏2I +Σ)−1. The marginal covariance matrix of 𝛽 is
𝜏2I + Σ. Because Σ is symmetric, there exists an orthogonal matrix U and a diagonal matrix D such that
D = UΣU′. Thus, U𝛽 is a vector of independent normal distributed variables. The marginal covariance
matrix of U𝛽 is 𝜏2I+D. The following iterative procedure described by Morris [24] to calculate the MLE
𝜏2 of 𝜏2 can now be applied to the transformed data U𝛽:

1 Start with an initial guess of 𝜏2.
2 Define weights wk = (𝜏2 + D2

kk)
−1 (k = 1,… ,K).

3 Estimate 𝜏2 by

𝜏2 =
∑K

k=1 wk

{
(𝛽k − 𝛽)2 − D2

kk

}∑K
k=1 wk

.

3142

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 3137–3153



M. BRÜCKNER, A. TITMAN, AND T. JAKI

4 If 𝜏2 < 0, set 𝜏2 = 0.
5 Repeat Steps 2 and 4 until convergence.

As Σ is unknown, we apply this iterative method with the diagonal matrix D̂ = ÛΣ̂Û′ instead of D,
where Σ̂ is an estimator of the unknown covariance matrix Σ and Û is an orthogonal matrix to diagonalize
Σ̂. We can now define an estimator of the matrix C by

Ĉ = I − Σ̂(𝜏2I + Σ̂)−1.

Similarly as before, we replace the unknown prior mean 𝜇 by the overall log-HR 𝛽, which is calculated
by pooling all treatment groups together and fitting a Cox proportional hazards model to the pooled data.
The shrinkage estimator is defined by

𝛽EB = Ĉ𝛽 + (I − Ĉ)𝛽.

The shrinkage estimator of the selected treatment is 𝛽EB
S . If 𝜏2 = 0, then Ĉ = 0, and the shrinkage

estimator is equal to the overall log-HR 𝛽. We will call this the EB shrinkage method.
We could have diagonalized with the orthogonal transformation U from the beginning; that is, we could

have used U𝜃 and U𝛽, applied the shrinkage, and then transformed back to the original coordinates. This
would have led to the shrinkage factor:

C̃ = U′U − U′D(𝜏2I + D)−1U,

which is exactly the same as C, because U is orthogonal.

2.3.2. Shrinkage estimator of the scaled log hazard ratios. Instead of only diagonalizing Σ̂, we standard-
ize it to the identity matrix and then apply the method of the independent equal variances case. This leads
to an alternative shrinkage estimator. Consider the problem of shrinkage towards 0 when Σ is known. We
start by transforming the vector 𝛽 with covariance matrix Σ to a vector 𝛽∗ with independent components
and unit variances. Define the scaled MLEs:

𝛽∗ = Σ−1∕2𝛽 ∼ N(Σ−1∕2𝛽, I).

When we use a N(𝜇∗, 𝜏∗2I) prior on the scaled treatment effects Σ−1∕2𝛽, we know from the independent
case with equal variances that the empirical Bayes estimator is given by Ĉ+𝛽∗, where

Ĉ+ = max

(
1 − K − 3∑K

k=1 𝛽
∗2
k

, 0

)
.

We have
K∑

k=1

𝛽∗2
k = 𝛽TΣ−1𝛽.

The right hand side is the Wald test statistic for testing equality of all treatment effects, which is asymp-
totically equivalent to the log-rank test statistic in the Cox model in Eq. (1). When shrinking towards the
overall log-HR 𝛽, we take the log-rank test statistic Z, which directly compares the treatment groups, that
is, without the control group and treatment group 1 being the new baseline, instead. Therefore,

Ĉ+ = max
(

1 − K − 3
Z

, 0
)
.

As in the normal case, we replace K − 3 by K − 1 if K < 4. The log-rank test statistic Z is asymptotically
𝜒2

K−1 distributed. This is the justification to consider the shrinkage estimator:

𝛽LR = Ĉ+𝛽 +
(
1 − Ĉ+) 𝛽,

which we will call the LR shrinkage method.

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 3137–3153
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2.3.3. Two-stage shrinkage estimators. We define a two-stage estimator similar to the two-stage
shrinkage estimator proposed by Carreras and Brannath [19] using the increment of the MLE:

𝛽
∗,1,𝛿
S ∶= w𝛽∗,1S + (1 − w)𝛿MLE

S , (8)

where 𝛽
∗,1
S is one of the two shrinkage estimators at the interim analysis defined previously.

2.3.4. Confidence intervals. Our focus is on point estimation. Construction of correct confidence inter-
vals is difficult and a topic of ongoing research. No adequate methods for constructing confidence
intervals in this setting are available apart from bootstrap resampling. However, bootstrap confidence
intervals cannot properly account for the variability introduced by the selection process, because the
selection in a resampled data set may be different from the decision in the original data set, but the deci-
sion to stop recruitment in the dropped treatment arms cannot be reversed in retrospect. Despite this,
such intervals are useful to compare the relative merits of the estimators. We use a bootstrap approach
conditional on the selection S0 in the original data set similar to [25]:

1 Resample data accrued until final analysis;
2 Determine calendar time t∗ of interim analysis in resampled data set;
3 Obtain Stage 1 data from resampled data set, and if necessary, recensor event times of overrunning

patients at t∗;
4 Calculate Stage 1 MLEs 𝛽k (k = 1,… ,K) from Stage 1 data;
5 If 𝛽S0

= mink 𝛽k, calculate bias-corrected estimates.

These steps should be repeated until a large enough number of estimates have been produced in order
to calculate empirical quantiles of the sampling distributions with the desired accuracy. Note that the
interim analysis in each resampled data set is conducted at the same information fraction as in the original
data set, although this may correspond to a different number of events and calendar time.

2.4. Stallard–Todd estimator

The bias-corrected estimator of Stallard and Todd ([17], [26]) is the solution 𝛽ST ,1 of

𝛽 = 𝛽MLE ,1 − b(𝛽), (9)

where b(𝛽) = (b1(𝛽),… , bK(𝛽)) is an estimate of the vector of conditional biases when the true log-HR
is 𝛽 (Section 2.2.3). A simple fixed point iteration can be used to find 𝛽ST ,1:

1. 𝛽0 = 𝛽MLE ,1;
2. 𝛽n+1 = 𝛽MLE ,1 − b(𝛽n);
3. Repeat Step 2 until convergence.

The conditional biases depend on the unknown covariance matrix of 𝛽MLE ,1 (Section 2.2.3), which we
replace with the estimator Σ̂1 from the Cox model. The estimation of the vector b(𝛽) is computationally
complex, because it requires the numeric evaluation of integrals of multivariate cumulative distribution
functions. Transforming the vector 𝛽MLE ,1 in the same way as in Section 2.3.2 and then solving Eq. (9)
with the identity matrix as covariance matrix does not work, because these solutions are in general not
solutions of the original equation.

We have defined the Stallard–Todd estimator only at the interim analysis. A similar definition is pos-
sible at the final analysis using the bias formulas derived in Section 2.2.3, that is solving Eq. (9) with
𝛽MLE ,2 instead of 𝛽MLE ,1. However, in our simulations, the iterative procedure diverged most of the time.
This also happened in the data example in Section 4. This seems to be related to the fact that the selec-
tion bias depends on the marginal covariance matrix, but only the conditional covariance matrix given
the selection can be estimated at the final analysis. We therefore only use the two-stage estimator at the
final analysis defined by

𝛽
ST,1,𝛿
S ∶= w𝛽ST,1

S + (1 − w)𝛿MLE
S . (10)
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Confidence intervals for the Stallard–Todd estimator can only be obtained by resampling, as its (asymp-
totic) sampling distribution is not known. Simulations not reported here suggest that asymptotic normality
does indeed hold.

2.5. Bias-corrected Kaplan–Meier estimator

The Kaplan–Meier estimator in the selected treatment group will be biased upwards. The Kaplan–Meier
estimator in the control group will always be (asymptotically) unbiased. We can define a bias-corrected
Kaplan–Meier estimator based on any of the bias-corrected estimators 𝛽∗S (t) of the log-HR by using the
relationship between the survival functions in the control and the treatment groups under the Cox model
(Eq. (1)). The bias-corrected Kaplan–Meier estimator at a time t is defined as

F̂∗
S(s) = F̂0(s)exp(𝛽∗S (t)) s ⩽ t.

In simulations not reported here, we found that the selection bias of the Kaplan–Meier estimator in the
selected treatment arm is negligible even when all true treatment effects are equal. We would expect the
selection bias to be more pronounced, when selection was performed based on, for example, the estimated
survival probability at a specific time instead of the estimated log-HRs at interim.

3. Simulations

We consider three base scenarios in our simulation study, which are similar to those in [19] and cover a
range of configurations of true log-HRs. It is of course impossible to cover all possible configurations in
a simulation study.

1 Constant: All hazard ratios (HRs) are equal to 1. HRk = 1 (k = 1,… ,K).
2 Linear: A linear trend from 0.6 to 1: HR1 = 1,HRk − HRk+1 = 0.4∕(K − 1) (k = 2,… ,K).
3 Peak: All but one HRs are 1: HR1 = 0.6,HRk = 1 (k = 2,… ,K).

The baseline hazard was log(2)∕12, which corresponds to a median survival time of 12 (months) in
the control group. We compare the bias and MSE of all methods for an increasing number of treatment
groups K. A maximum of 200 patients are allocated to each group. The interim analysis was conducted
after (K + 1) ⋅ 50 observed events in all treatment groups and control group combined. This amounts to
approximately 50 events in each group when the event rates are similar. The final analysis was performed
after 200 events in the selected treatment group and control group combined.

Figure 1 shows the bias in 105 simulations of each method in each of the base scenarios as the number
of treatment groups K ranges from 2 to 6 at the interim analysis, the final analysis, and for the two-
stage estimators. The corresponding square root of the MSE is shown in Figure 2. We observed some
convergence problems of Stallard–Todd estimator, especially in the case K = 2 with non-convergence in
up to 20% of the simulations. In these cases, the MLE was used as a fallback, which slightly increases
the bias but reduces the MSE. Overall the results are very similar to those of [19] in the normal case.

The simulation results confirm the theoretical result that the bias of the MLE is maximal, when all
treatment effects are equal (“Constant” scenario). Both shrinkage estimators clearly outperform the MLE
and the Stallard–Todd method in terms of bias and MSE in this case. In the “Linear” scenario, the LR
shrinkage estimator has smaller bias than the MLE, when there are four or more treatment groups and
about the same MSE for any number of treatment groups. Both shrinkage estimator win over the Stallard–
Todd method except in the K = 2 case (which is identical to the K = 2 case in the “Peak” scenario). In
the “Peak” scenario, the MLE is practically unbiased and beats all other methods in terms of bias and
MSE. However, the LR shrinkage estimator is still very close to the MLE and has a smaller MSE than
the Stallard–Todd estimator.

While the estimates of the Stallard–Todd method are on average not far from those of the other methods,
a closer look at the distribution of the estimated HRs at the interim analysis (Figure 3) reveals that the
Stallard–Todd method produces more extreme and skewed results, than the other methods, especially in
the “Constant” scenario.

The influence of the allocation ratio on the bias and MSE of the two-stage estimators is shown in
Figure 4. A maximum of n patients were allocated to each treatment group and a maximum of m patients to
the control group. The allocation ratios m ∶ n considered were 3:1, 2:1, 1:1, 1:2, and 1:3. This corresponds
to correlations between the estimated log-HRs of approximately 1/4, 1/3, 1/2, 2/3, and 3/4. The bias
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Figure 1. Bias as function of the number of treatment groups in each of the three base scenarios at the interim
and final analyses and for the two-stage estimators. The Stallard–Todd estimator is only defined at the interim

analysis and as two-stage estimator.

increases with increasing correlation in line with our theoretical result. The MSE apparently attains its
minimum at a correlation of 0.5. This suggests that patients should be equally allocated to all groups.

The bias and MSE decrease when the number of observed events increases (Figure 5). There is a
considerable finite sample bias in addition to the selection bias, when only a few events (< 25 events per
group) are observed.

The largest effect considered is a HR of 0.6. The MLE is already practically unbiased when the HR is
0.6 for one treatment and 1 for all other treatments as can be seen in Figure 1. An even larger effect would
not provide any additional insight, although estimation also works well for values smaller than 0.6.

4. Application

We apply our methods to data reconstructed from the published Kaplan–Meier curves of the FOCUS trial
[13] using the method of [27]. The Kaplan–Meier curves were digitized using WebPlotDigitizer [28].

In the FOCUS trial, five treatment strategies of sequential and combination chemotherapy for poor
prognosis advanced colorectal cancer were compared: flourouracil only (arm A, control), irinotecan
after flourouracil (arm B-ir), combination of flourouracil and irinotecan (arm C-ir), oxaliplatin after
flourouracil (arm B-ox), and combination of flourouracil and oxaliplatin (arm C-ox). A total of 2135
patients were randomized in the ratio 2:1:1:1:1.

The reconstructed data closely match the original data in terms of hazard ratios and corresponding
confidence intervals (Table I). The data are analyzed under a hypothetical two-stage design, with an
interim analysis after 900 events across all arms. This corresponds to roughly 300 events in the control
arm and 150 events in each of the four treatment arms. The final analysis is conducted after 900 events
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Figure 2. Root mean squared error as function of the number of treatment groups in each of the three base scenar-
ios at the interim and final analyses and for the two-stage estimators. The Stallard–Todd estimator is only defined

at the interim analysis and as two-stage estimator.

Figure 3. Boxplot of estimated hazard ratios at the interim analysis in the three scenarios for K = 4. MLE,
maximum likelihood estimator; EB, EB shrinkage estimator; LR, LR shrinkage estimator; ST, Stallard–Todd

estimator.

in the control arm and the selected treatment arm, resulting in about 600 events in the control arm and
300 events in the selected treatment arm. In addition to point estimates, bootstrap confidence intervals
from 1000 replications for all methods conditional on the treatment selection in the original data set are
provided. The resulting confidence intervals therefore do not account for the variability introduced by
the selection and are expected to have less than the nominal coverage as discussed in Section 2.3.

Both shrinkage methods produce very similar and sensible results (Table II), when compared with the
original observed HRs of the FOCUS trial (Table I), where no selection was performed. The estimated

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 3137–3153
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Figure 4. Bias and Root mean squared error (RMSE) of the two-stage estimators as functions of the correlation
for K = 4 treatment groups in each of the three base scenarios.

Figure 5. Bias and Root mean squared error (RMSE) of the two-stage estimators as functions of the number of
events at the final analysis for K = 4 treatment groups in each of the three base scenarios.

Table I. HRs, 95% confidence intervals, and p-values of the original
FOCUS data [13] and the reconstructed data.

Original data Reconstructed data

Comparison HR (95% CI) p-value HR (95% CI) p-value

A versus B-ir 0.91 (0.79–1.03) 0.16 0.91 (0.79–1.05) 0.18
A versus C-ir 0.84 (0.73–0.96) 0.01 0.84 (0.73–0.97) 0.02
A versus B-ox 0.97 (0.85–1.11) 0.65 0.96 (0.84–1.10) 0.58
A versus C-ox 0.93 (0.81–1.06) 0.26 0.91 (0.79–1.05) 0.18

HR, hazard ratio.
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Table II. Estimated HRs and 95% bootstrap confidence intervals for all
treatment groups (versus A).

Hazard ratio (95% CI)

Method Group Interim analysis Final analysis Two-stage

MLE B-ir 0.87 (0.69–1.04) 0.91 (0.80–1.04) 0.91 (0.80–1.04)
C-ir 0.79 (0.63–0.94) 0.84 (0.73–0.97) 0.84 (0.73–0.97)
B-ox 0.88 (0.72–1.05) 0.96 (0.83–1.10) 0.96 (0.83–1.10)
C-ox 0.81 (0.66–0.98) 0.91 (0.79–1.04) 0.91 (0.79–1.04)

EB B-i 0.84 (0.72–0.97) 0.90 (0.82–1.01) 0.89 (0.80–1.02)
C-ir 0.84 (0.68–0.94) 0.90 (0.77–0.99) 0.87 (0.76–0.98)
B-ox 0.84 (0.72–0.99) 0.90 (0.83–1.05) 0.94 (0.83–1.07)
C-ox 0.84 (0.70–0.95) 0.90 (0.81–1.02) 0.92 (0.81–1.04)

LR B-ir 0.84 (0.71–1.02) 0.91 (0.80–1.03) 0.90 (0.80–1.03)
C-ir 0.83 (0.64–0.94) 0.87 (0.75–0.98) 0.86 (0.74–0.97)
B-ox 0.85 (0.72–1.03) 0.94 (0.83–1.08) 0.94 (0.83–1.09)
C-ox 0.83 (0.68–0.97) 0.91 (0.80–1.03) 0.92 (0.80–1.04)

ST B-ir 0.86 (0.61–1.03) – 0.91 (0.75–1.04)
C-ir 0.96 (0.64–1.58) – 0.93 (0.75–1.24)
B-ox 0.88 (0.65–1.05) – 0.96 (0.81–1.10)
C-ox 0.72 (0.55–0.98) – 0.86 (0.73–1.04)

Interim analysis at 50% of the total number of events. C-ir was selected at interim.
Follow-up continued in all groups until the final analysis.
MLE, maximum likelihood estimator; EB, EB shrinkage estimator; LR, LR
shrinkage estimator; ST, Stallard–Todd estimator.

HRs of the LR shrinkage method are very close the MLE in all arms, with narrower confidence intervals,
while the EB shrinkage method shrinks all estimates to the overall HR, resulting in a smaller treatment
effect in the selected C-ir arm. This is the same tendency of the EB shrinkage estimator to overcorrect
the bias that was also observed in the “Linear” and “Peak” simulation scenarios.

The Stallard–Todd estimator applied to this specific data set at the interim analysis gives rather dif-
ferent results, which contradict the observed HRs in the original data, where the C-ir arm was the best
performing treatment arm. While this result is unsatisfactory, it is in-line with the simulation results
(Figure 3) that show that extreme solutions can be obtained with this approach. The iterative procedure
did not converge when applied at the final analysis (see also Section 2.4).

The effect of continuing follow-up in the dropped treatment arms can be seen clearly in the B-ir and
C-ox arms. The substantial difference in Stage 1 HRs completely disappears at the end of Stage 2.

5. Conclusion

The bias of the MLE was found to be small except for a large number (K ⩾ 6) of treatment groups.
We have shown that the common control group reduces the bias of the MLE because of the induced
correlation of the MLEs and that the bias of the MLE in the dropped treatment arms is reduced when
continuing follow-up until the final analysis in accordance with the simulation results of [23].

In our simulation study, the shrinkage methods performed very well, when all treatment effects are
equal, but had a larger bias than the MLE, which increased with number of treatment groups, when the
the maximal absolute difference of the true treatment effects was large. These results reflect the prior
assumptions underlying the empirical Bayes estimators. When comparing the estimators with respect to
the MSE, the Stallard–Todd method performs the worst across all scenarios. This is also reflected in the
analysis of the reconstructed FOCUS trial data, which shows that either shrinkage method is preferable
to the Stallard–Todd method.

Unless there is reason to believe that there are large differences between the true treatment effects,
the LR shrinkage estimator can be recommended as a way to reduce the bias and the MSE of the MLE.
Because the shrinkage estimators tend to overcorrect the bias, they might also be of interest in situations
where overestimation of the treatment effect is considered worse than underestimation.

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 3137–3153
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All methods were based on the asymptotic normal approximation of the log-HRs. In our main simula-
tions, the number of events was at least 150, such that finite sample bias is negligible. This can be seen,
for example, in the Peak scenario in Figure 1, where the MLE is practically unbiased. However, when
the number of events per group is very small (< 25), the finite sample bias outweighs the selection bias
as was seen in Figure 5. Such small event numbers do not seem relevant in practice, because typically
much larger event numbers are required to achieve acceptable power.

Assuming a Cox proportional hazards model is convenient but not necessary, because all methods are
based on the asymptotic approximation of the distribution of the treatment effect estimators. Therefore,
the Cox model could be replaced with any other model with asymptotically normal treatment effect
estimators. It is anticipated that the results would be comparable to those under the Cox model.

Confidence intervals after adaptive treatment selection that have the correct coverage probability are
non-trivial and were outside of the scope of this work. As far as we know, no adequate methods for
construction of confidence intervals for the shrinkage or Stallard–Todd methods have been proposed.

In most trials some form of covariate adjustment is required, for example, inclusion of center effects
in a multi-center trial to account for stratified randomization. As long as the asymptotic results still hold,
no adjustment is necessary, because only the dimension K of the multivariate normal distribution needs
to be increased to accommodate any additional regression coefficients.

The shrinkage estimators could also be derived as estimators arising from penalized Cox regression
[29]. When using an L2 penalty, that is,

∑K
k=1(𝛽k − 𝛽)2, there is a one-to-one correspondence between

the penalty parameter and the prior variance 𝜏. This is appealing, because the penalized Cox regression
works directly on the time-to-event data and not only via an asymptotic normal approximation. Selection
of the penalty parameter could be performed by cross-validation in order to minimize the prediction
MSE. However, cross-validation is computationally extremely expensive and results in an additional
cross-validation error. In simulations not reported here, the penalized MLE with cross-validation did not
perform better than the shrinkage estimator.

The LR shrinkage of the vector of MLEs does not change the ordering of its components, because

𝛽
LR,1
k − 𝛽

LR,1
l = Ĉ+

(
𝛽

MLE ,1
k − 𝛽

MLE ,1
l

)
(1 ⩽ k, l ⩽ K)

and Ĉ+ ⩾ 0. Thus, the results would be the same if selection were based on the LR shrinkage estimator
instead of the MLE.

Finally, it is worth mentioning that the calculation of the shrinkage estimator does not depend on the
specific selection rule used. It can be used without change with complex selection rules, for example,
when selection is based on hypothesis tests. For the Stallard–Todd method and the UMVCUE approach,
non-trivial modifications are necessary [20].

Appendix A: Asymptotic covariance matrix of 𝛽MLE (t)

Weak convergence of the maximum likelihood estimator (MLE) as a function of calendar time to a mean-
zero Gaussian field {𝜂(t) ∶ t ⩾ 0} follows from theorem 4.2 of [30]. For t ⩾ 0, define the matrix 𝜇(t)
by

𝜇kj(t) = I{k = j}pke𝛽k ∫
t

0
Sk(t, u)𝜆0(u)du − pkpje

𝛽k+𝛽j ∫
t

0

Sk(t, u)Sj(t, u)∑K
l=0 plSl(t, u)e𝛽l

𝜆0(u)du (1 ⩽ k, j ⩽ K),

where Sk(t, u) = P(T ∧C∧ (t−R)+ > u ∣ Zk = 1), S0(t, u) = P(T ∧C∧ (t−R)+ > u ∣ Z1 = … = ZK = 0)
and 𝛽0 = 0. Then, for j = 1, 2,

√
n
{
𝛽MLE ,j(⋅) − 𝛽

} L
→ 𝜂(⋅) (n → ∞),

where the covariance function of 𝜂 is given by

E
[
𝜂(s)′𝜂(t)

]
= 𝜇−1(s ∨ t) (s, t ⩾ 0).
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For 𝛽 ≈ 0 and C independent of Z, the asymptotic covariance matrix of
√

n
{
(𝛽MLE ,j

1 (t), 𝛽MLE ,j
2 (t))T−

(𝛽1, 𝛽2)T
}

is the inverse of the matrix:

�̃�(t) =
(

p̃1(1 − p̃1) −p̃1p̃2
−p̃1p̃2 p̃2(1 − p̃2)

)
∫

t

0
S0(t, u)𝜆0(u)du,

where p̃i = pi∕(p0 + p1 + p2). Consequently, we have for the correlation 𝜌12(t) between 𝛽
MLE ,j
1 (t) and

𝛽
MLE ,j
2 (t):

𝜌12(t) ≈
�̃�−1

12 (t)√
�̃�−1

11 (t)
√

�̃�−1
22 (t)

=
p1p2√

p0 + p1

√
p0 + p2

.

Appendix B: Proofs

B.1. Selection probability

P(S = k) =P

(
𝛽

MLE ,1
k = min

j
𝛽

MLE ,1
j

)
=E

[
P

(⋂
j≠k

{
𝛽

MLE ,1
j > x

}
∣ 𝛽MLE ,1

k = x

)]
=∫

∞

−∞
S𝛽−k(x),Σ−k(x)(x)𝜙

(
x − 𝛽k

𝜎k

)
𝜎−1

k dx.

(B.1)

If 𝛽MLE ,1
k (k = 1,… ,K) are independent, then

P(S = k) = Φ𝛽−k−𝛽k ,Σ̃k
(0,… , 0),

where Σ̃k is the covariance matrix of 𝛽MLE ,1
−k − 𝛽

MLE ,1
k .

B.2. Conditional selection bias

B.2.1. At the interim analysis. At the interim analysis, the selection bias of 𝛽MLE ,1
k conditional on S = k

is

cb+1k =
E
[(

𝛽
MLE ,1
k − 𝛽k

)
I {S = k}

]
P(S = k)

=
E
[(

𝛽
MLE ,1
k − 𝛽k

)
P
(

S = k ∣ 𝛽MLE ,1
k

)]
P(S = k)

.

(B.2)

Equation (2) now follows from 𝛽
MLE ,1
k ∼ N(𝛽k, 𝜎

2
k ) and

P(S = k ∣ 𝛽MLE ,1
k = x) = P

(
𝛽

MLE ,1
l > x ∀l ≠ k ∣ 𝛽MLE ,1

k = x
)
= S𝛽−k(x),Σ−k(x)(x).

In the dropped treatment arm, the conditional bias of 𝛽MLE ,1
k given S ≠ k is

cb−1k =
E
[
𝛽

MLE ,1
k (1 − I{S = k})

]
− 𝛽k(1 − P(S = k))

1 − P(S = k)

= −
(

E
[
𝛽

MLE ,1
k ∣ S = k

]
− 𝛽k

) P(S = k)
1 − P(S = k)

.

(B.3)
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B.2.2. At the final analysis. We have that

E
[
𝛽

MLE ,2
k ∣ 𝛽MLE ,1

1 ,… , 𝛽
MLE ,1
K

]
= 𝛽k + uk

(
𝛽MLE ,1 − 𝛽

)
.

Therefore,

cb+2k =
E
[
E
[
𝛽

MLE ,1
k ∣ 𝛽MLE ,1

1 ,… , 𝛽
MLE ,1
K

]
I{S = k}

]
P(S = k)

− 𝛽k

=
K∑

l=1

uklvkl.

(B.4)

In the dropped treatment arm, the conditional bias of 𝛽MLE ,2
k given S ≠ k is

cb−
2k = −

(
E
[
𝛽

MLE ,2
k ∣ S = k

]
− 𝛽k

) P(S = k)
1 − P(S = k)

.
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