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Primary open-angle glaucoma is one of the leading causes of blindness worldwide. With
limited therapeutics targeting the pathogenesis at the trabecular meshwork (TM), there is a
great need for identifying potential new targets. Recent evidence has implicated Toll-like
receptor 4 (TLR4) and it is signaling pathway in augmenting the effects of transforming
growth factor beta-2 (TGFβ2) and downstream extracellular matrix production. In this
review, we examine the role of TLR4 signaling in the trabecular meshwork and the interplay
between endogenous activators of TLR4 (damage-associated molecular patterns
(DAMPs)), extracellular matrix (ECM), and the effect on intraocular pressure
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INTRODUCTION

Glaucoma is a progressive neurodegenerative disease and is the second leading cause of blindness
worldwide, affecting over sixty million people (Kingman, 2004; Quigley and Broman, 2006). Primary
open-angle glaucoma (POAG) is the most common form of the glaucoma’s and affects
approximately fifty-two million people worldwide and more than 2.5 million in the
United States (Friedman et al., 2004; Weinreb and Khaw, 2004; Weinreb et al., 2014; Lu et al.,
2017; Zhang et al., 2021). Current therapies are supportive, with the aim to reduce intraocular
pressure (IOP), a primary risk factor for glaucoma progression. IOP homeostasis is maintained by
the rate at which aqueous humor (AH) is secreted by the ciliary epithelium, and how efficiently it is
drained through the outflow pathways in the iridocorneal angle of the eye. Most of the outflow of AH
drains through the conventional route of drainage, which is made up of the trabecular meshwork
(TM) and Schlemm’s canal (Tamm, 2009). The TM is well known to be a critical tissue in AH
drainage and imparts a normal resistance to AH outflow that becomes abnormally increased in
glaucoma. The TM is a porous structure consisting of a series of fenestrated beams and sheets of
extracellular matrix (ECM) covered with endothelial-like TM cells (Hogan et al., 1971; Vranka et al.,
2015). The ECM of the TM is important in forming a fluid flow pathway for AH drainage (Gong
et al., 1996; Morrison and Acott, 2003). Genes that are broadly categorized as regulating cell signaling
comprise the highest percentage of genes that are upregulated in the TM when their homeostatic
state is altered, such as during changes in IOP (Vittitow and Borrás, 2004). The ability of the TM to
respond to the dynamic changes in IOP in a homeostatic state relies on the ECM remodeling
capabilities of the TM (Keller et al., 2009). When this ability becomes impaired, IOP rises and can
eventually lead to vision loss. While current drug and surgical interventions are in use, their efficacy
is not always guaranteed or long lasting. Additionally, many of the current therapeutics aim to
decrease the production of aqueous humor and are not able to target the key site of drainage
impairment in glaucoma, which is the TM.While progress has beenmade in increasing the efficiency
of humor drainage through the outflow pathway, such as with prostaglandins and Rho-kinase
inhibitors, these therapies address only a small fraction of the mechanisms used by the TM to exert its
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function and thus more treatment options are needed. Therefore,
much effort is being conducted into understanding the molecular
pathways of the TM and how they are altered during glaucoma.

Increases in outflow resistance through the TM can be
contributed to multiple factors, such as actin cytoskeletal
rearrangement in the TM and changes to the inner wall
endothelium of Schlemm’s canal (Stamer and Acott, 2012;
Vahabikashi et al., 2019). Additionally, the ECM composition
of the outer most layer of the TM, the juxtacanalicular tissue
(JCT), as well as the inner layers of the TM plays a key role in the
regulation of IOP and there is also a great deal of evidence that
there are changes to the ECM of the TM in glaucoma. Increased
deposition of ECM proteins in the TM, increased AH outflow
resistance, and increased IOP are all associated with POAG
(Rohen and Witmer, 1972; Lütjen-Drecoll, 1999). Matrix
stiffness is a critical component to a tissue’s function as it can
be perceived by cells and cause intracellular responses such as
intracellular signals to control gene transcription, protein
expression, and cell behavior. The matrix stiffness is also
dependent on the type of ECM proteins present as well as the
morphology and organization of the ECM itself. The
glaucomatous TM has increased deposition of fibronectin and
fine fibrillar material (Lütjen-Drecoll et al., 1986; Babizhayev and
Brodskaya, 1993; Rohen et al., 1993). This demonstrates that the
ECM architecture of the TM is important in regulating aqueous
humor outflow and IOP.

ASSOCIATION OF TOLL-LIKE RECEPTOR
4 WITH GLAUCOMA

Glaucoma is a complex disease and is well known to have genetic
heterogeneity with multiple chromosomal loci linked to the
disease. However, the complex molecular mechanisms leading
to disease pathology are not fully understood. Here we review the
role of toll-like receptor 4 (TLR4) in the development of
glaucomatous trabecular meshwork damage. In human
glaucomatous donor eyes several toll-like receptors, including
TLR4, have been shown to have upregulated expression in the
retina after IOP elevation (Luo et al., 2010; Rieck, 2013).
Additionally, TLR4 polymorphisms are indicated to be
involved with slower responses to infection, reduced
autoimmunity, and glaucoma (Arbour et al., 2000; Radstake
et al., 2004). Specifically, association of TLR4 gene
polymorphisms have been identified in Chinese and Japanese
cohorts with POAG, normal-tension, and exfoliation glaucoma
(Shibuya et al., 2008; Chen et al., 2012; Takano et al., 2012). These
data suggest that TLR4 may have a significant role in the cellular
pathogenesis of multiple types of glaucoma.

TOLL-LIKE RECEPTOR 4 SIGNALING

Toll-like receptors (TLRs) play a significant role in the detection
of pathogen associated molecular patterns (PAMPs) and damage
associated molecular patterns (DAMPs) (Miller et al., 2015).
Functional TLRs 1-10 have been identified in humans and

TLRs 1-13 in murine species (Szabo et al., 2006; Yarovinsky,
2014; Nie et al., 2018). Humans have a nonfunctional TLR11 and
do not express TLR12 and 13. Unlike TLR3, 7, 8, and 9 which are
found in endosomes, TLR4, like TLR1, 2, 5, 6, and 10 are found in
the cell membrane. Like most receptors, TLRs require
homodimerization or heterodimerization of receptors to
activate transcription factors that ultimately lead to the
production of chemokines and cytokines. Ultimately, all
mammalian TLRs have an extracellular domain that contains
leucine-rich domains and an intracellular domain that activates a
signaling cascade leading to nuclear factor-kappa beta (NF-κB)
activation and translocation to the nucleus (Medzhitov et al.,
1997; Chaudhary et al., 1998; Medzhitov et al., 1998; Rock et al.,
1998; Chow et al., 1999; Janeway and Medzhitov, 1999; Yang
et al., 2000).

TLR4 was first identified as the receptor for lipopolysaccharide
(LPS) and was shown to play a vital role in innate immunity
(Poltorak et al., 1998). Activation of TLR4 by LPS occurs when
the ligand LPS binds to circulating LPS-binding protein (LBP).
The LPS bound to LBP binds to TLR4, forming the LPS-TLR4
receptor complex. Once TLR4 is activated, downstream adaptor
molecules bind to the Toll/Interleukin-1 receptor (TIR) domain
of TLR4. TLR4 requires four adaptor molecules to transduce
signals from its TIR domain, with a key adapter being myeloid
differentiation factor 88 (MyD88). Signal transduction initiation
leads to the activation of NF-κB (Kawai and Akira, 2010). Once
activated, NF-κB moves into the nucleus where it initiates both
pro-fibrotic and pro-inflammatory gene transcription, such as
fibronectin (FN1), interleukin 1 (IL-1), and tumor necrosis factor
alpha (TNF-α). TLR4 can also activate the MyD88-independent
signaling pathway following endocytosis. This mechanism of
endocytosis of LPS bound TLR4 and its degradation through
the ubiquitin pathway is one of the negative regulatory
mechanisms in the LPS induced TLR4 pathway, and the
purpose of this internalization is to limit the receptor
expression and the signaling of the pro-inflammatory
MyD88 dependent pathway.

In addition to the classical activation by exogenous LPS,
TLR4 can also be activated by endogenous ligands known as
damage-associated molecular patterns (DAMPs) (Figure 1).
DAMPs are formed in situ because of cell damage, cell injury,
and remolding of the ECM (Miyake, 2007; Piccinini and
Midwood, 2010). DAMPs can upregulate as well as amplify
fibrotic responses in diseases such as renal and hepatic
fibrosis, lesional skin and lung in scleroderma patients, as well
as in Tlr4mutant mice, and augment TGFβ-1 signaling (Poltorak
et al., 1998; Seki et al., 2007; Pulskens et al., 2010; Campbell et al.,
2011; Bhattacharyya et al., 2013). Endogenous DAMP ligands in
the TM can include cellular fibronectin containing the EDA
isoform (FN-EDA), high-mobility group box (HMGB)-1, low
molecular weight hyaluronic acid (LMWHA), and others
(Piccinini and Midwood, 2010; Bhattacharyya et al., 2013).
The specific interaction between TLR4 and each of these
DAMPs is not completely understood. It is known that
HMGB1 binds TLR4 and then signals through adaptor
molecules via the Toll/IL-1 receptor-domain to MyD88, IRAK,
TRAF and finally to NF-κB (Yang et al., 2010). Specifically, how
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hyaluronic acid and TLR4 interact is still not known, but it is
known that this interaction requires the co-receptors MD2 and
CD14 (Jiang et al., 2011). In patients with POAG, high molecular
weight hyaluronic acid has been shown to be depleted in the TM;
however, the amount of low molecular weight hyaluronic acid in
the TM of POAG patients remains to be elucidated (Knepper
et al., 1996). An extracellular matrix protein responsible for
persistence organ fibrosis known as Tenascin-C directly works
with TLR4 and this interaction leads to the activation of NF-κB
(Bhattacharyya et al., 2016; Zuliani-Alvarez et al., 2017). Like
HMGB-1, FN-EDA also activates TLR4 leading to NF-κB
activation. However, whether the signaling pathway is
exclusively through the MyD88-dependent pathway is still not
known.

Evidence continues to surface that links DAMP activated
TLR4 signaling to the regulation and production of ECM
proteins in hepatic fibrosis and to TM damage and ocular
hypertension (Seki et al., 2007; Bhattacharyya et al., 2013;
Hernandez et al., 2017). Regarding fibrosis, specific SNP
alleles in TLR4 have been shown to have an overall
protective effect and be associated with a delayed progression
of fibrosis in liver disease (Huang et al., 2007; Li et al., 2009). As
mentioned, DAMPs can activate TLR4 and in doing so, they
augment TGFβ signaling and downstream fibrotic responses
(Bhattacharyya et al., 2013; Hernandez et al., 2017). DAMPs
have also been shown to control the inflammatory and

downstream fibrotic response in ischemic wounds when they
bind TLR4 (Brancato et al., 2013). TLR4 activation also
downregulates the TGFβ pseudoreceptor known as BMP and
the activin membrane-bound inhibitor (BAMBI). Bone
morphogenic proteins (BMPs) are a group of growth factors
that are involved in regulating the ECM and importantly, BMPs
can lower ECM deposition caused by TGFβ2 activation
(Fuchshofer et al., 2007). BAMBI functions to inhibit TGFβ
as well as BMP and activin signaling (Seki et al., 2007; Yan et al.,
2009; Bhattacharyya et al., 2013). It is known that BAMBI
functions to inhibit TGFβ signaling by cooperating with
SMAD7 and impairing SMAD3 activation, while knockdown
of Bambi expression enhances TGFβ signaling (Yan et al., 2009).
In addition, BAMBI can interact directly with either BMP
receptors or TGFβ receptors to antagonize downstream
signaling (Lin et al., 2006). We have shown that when Bambi
is conditionally knocked down in the TM, IOP becomes elevated
in mice (Hernandez et al., 2018). Downregulation of Bambi by
TLR4 is controlled by the NFκB-dependent signaling pathway
(Seki et al., 2007; Guo and Friedman, 2010; Yang and Seki,
2012). Activation of TLR4 therefore downregulates Bambi
resulting in unopposed TGFβ signaling and fibrogenesis. This
leads to an upregulation and subsequent accumulation of
DAMPs, creating a feed-forward loop and further
amplification and continuation of the fibrotic response via
TGFβ signaling.

FIGURE 1 | TLR4 activation in the trabecular meshwork. In primary open-angle glaucoma, damage to the TM and inner wall of Schlemm’s canal (SC) endothelium
prevents sufficient aqueous humor outflow leading to elevated IOP. Damage associated molecular patterns (DAMPs) such as cellular fibronectin containing EDA isoform
(cFN-EDA) are produced from TM tissue damage and excess TGFβ2 signaling and can activate TLR4 leading to Nuclear Factor-Kappa Beta (NF-κB) activation and
downregulation of BMP and Activin Membrane Bound Inhibitor (BAMBI) expression.
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CROSSTALK OF TGFβ2–TLR4 SIGNALING

TGFβ2 is a profibrotic cytokine that when in its bioactivated form
upregulates ECM proteins, some of which are FN, elastin, and
several forms of collagens. In a healthy eye, TGFβ2 is the
predominant isoform of TGFβ. TGFβ is known to induce
various growth factors, such as connective tissue growth factor
(CTGF) and fibroblast growth factors (FGFs) (Saika, 2006) and
helps maintain tissue homeostasis in the TM regulating ECM
synthesis, deposition, and degradation (Sethi et al., 2011b).
Importantly, these factors have roles in restoration of normal
tissue following injury. In addition to its ability to influence
ECM remodeling, TGFβ is also known to affect multiple cellular
processes, from cell growth to apoptosis (Chen and Ten Dijke,
2016). However, uninhibited and increased TGFβ2 signaling can
lead to deleterious effects. Elevated TGFβ2 signaling results in
damage to the ECM of the TM and increased stiffness of the TM
(Russell and Johnson, 2012; Vranka et al., 2018). TGFβ2 is highly
elevated in the aqueous humor of glaucoma patients and plays a
vital role in the development of POAG (Tripathi et al., 1994; Inatani
et al., 2001; Ochiai and Ochiai, 2002; Ozcan et al., 2004). We and
others have shown that treatment of TM cells with TGFβ2 induces
cross-linking of the ECM as well as alteration in the composition of
the ECM (Welge-Lüssen et al., 1999; Fleenor et al., 2006;

Fuchshofer et al., 2007; Wordinger et al., 2007; Sethi et al.,
2011a; Tovar-Vidales et al., 2011; Hernandez et al., 2017). In
anterior segment perfusion organ culture models the addition of
TGFβ2 elevates IOP and overexpression of TGFβ2 in mouse eyes
causes ocular hypertension (Gottanka et al., 2004; Shepard et al.,
2010; Hernandez et al., 2017). In human TM cells, TGFβ2 signals
through the canonical SMAD and non-SMAD pathways and also
alters the ECM (Sethi et al., 2011a; Tovar-Vidales et al., 2011; Zode
et al., 2011). Specifically, TGFβ2 causes phosphorylation of a
SMAD signaling complex. This complex then moves into the
nucleus, leading to the induction of pro-fibrotic gene
transcription, which causes an increase in the production of
fibrotic factors, such as the various ECM components in the
TM. For ocular hypertension to occur in mice, TGFβ2 signaling
through the canonical SMADpathway is essential (McDowell et al.,
2013). Taken together, this indicates that the effects of
TGFβ2 signaling are a major component in the development of
ocular hypertension and that TGFβ2 regulates the expression of
ECM proteins in the TM. Our group has shown that there is
crosstalk between the TGFβ2 and TLR4 signaling pathways in the
TM and that this crosstalk is contributing to glaucomatous ocular
hypertension (Figure 2) (Hernandez et al., 2017). Although
studies in the TM have focused primarily on the canonical
SMAD-dependent TGFβ2 signaling pathway in the context of

FIGURE 2 | TLR4 and TGFβ2 signaling crosstalk. (A) The trabecular meshwork under homeostasis expresses basal levels of extracellular matrix proteins and BMP
and Activin Membrane Bound Inhibitor (BAMBI), which inhibits endogenous TGFβ2 signaling. (B) Bioactivated TGFβ2 leads to the expression of DAMPs, including cFN-
EDA and LMW Hyaluronic acid, which activate TLR4 and lead to subsequent NF-κB activation. Phosphorylated NF-κB lowers the expression of BAMBI, which in turn,
leads to uninhibited TGFβ2 signaling.
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TGFβ2-TLR4 signaling crosstalk, work in other tissues has
indicated that TLR4 activation can also effect non-canonical
TGFβ pathways as well (McKeown-Longo and Higgins, 2017).
However, whether changes in the TGFβ2 pathway occur first to
induce crosstalk or if TLR4 induction first occurs to facilitate
crosstalk between the pathways, is still not completely clear. It is
known that increased TGFβ2 levels in glaucoma may be due to
epigenetics (Bermudez et al., 2016), suggesting that it is the
increased TGFβ signaling that occurs first leading to production
of excess ECM and DAMPs, which would then activate
TLR4 leading to a feedforward signaling loop.

As mentioned, TGFβ2 signaling increases the production of
ECM proteins, including FN. We and others have identified FN, a
dimeric multidomain ECM glycoprotein, to be elevated in
glaucomatous TM tissues and aqueous humor (Faralli et al.,
2009; Hernandez et al., 2017). Fibronectin functions as a
regulator of cellular processes, directs and maintains tissue
organization and ECM composition, directs ECM-ECM and
ECM-cell interactions, and regulates activity of growth factors
and proteins associated with ECM remodeling. The multi-
domain dimer is composed of type I, type II, and type III
domains with over twenty alternatively spliced isoforms. FN is
composed of either cellular FN or plasma FN isoforms. Cellular FN
has multiple isoforms generated by alternative processing of a
single primary transcript at three domains: extra domain A (EDA),
extra domain B (EDB), and the type III homologies connecting
segment (White et al., 2008). The expression of FN-EDA is
upregulated as a response to tissue injury, repair, or remodeling,
and during disease states (Kuhn et al., 1989; Muro et al., 2003). The
FN-EDA isoform is elevated in glaucomatous TM tissue compared
to normal TM tissue and amplifies the response of TGFβ2 in
primary TM cells in culture (Medina-Ortiz et al., 2013; Hernandez
et al., 2017). Importantly, FN-EDA acts as an endogenous ligand
(DAMP) for TLR4 (Okamura et al., 2001). We have identified FN-
EDA as an important regulator of pathogenic TLR4 and
TGFβ2 signaling in the TM (Hernandez et al., 2017; Roberts
et al., 2020). Importantly, the consequence of the continuous
activation of TLR4 due to this endogenous ligand is the
subsequent uninhibited TGFβ2 signaling and an amplification
of the fibrotic response in the TM. The activation of TLR4 is
known to be dependent on the expression of MD-2 and other
TLR4 accessory proteins (Yang et al., 2000; Okamura et al., 2001).
The α4β1 integrin has been identified to function as a TLR4-
coreceptor to initiate a FN-EDA dependent response in fibroblasts
and it is known that FN-EDA contains integrin α4β1 binding sites
(Liao et al., 2002; Kelsh-Lasher et al., 2017). Studies on pathogen-
initiated TLR4 signaling suggest that adhesion receptors may play
important roles in the regulation of the TLR4-mediated fibrotic
response to tissue damage, so this may be a route that FN-EDA
utilizes to elicit a TLR4 mediated response in TM cells (Gianni
et al., 2012; Ling et al., 2014; Casiraghi et al., 2016).

TLR4 SIGNALING IN THE TM

Recently, utilizing a selective inhibitor of TLR4 signaling,
TAK-242, we showed TGFβ2 induced ECM production in the

TM was inhibited (Hernandez et al., 2017). Notably, FN-EDA
amplified TGFβ2 ECM deposition and TAK-242 blocked this
effect. To evaluate the role of FN-EDA in the development of
ocular hypertension, we utilized an adenovirus vector to
overexpress bioactivated TGFβ2 in the TM of mice
containing a constitutively active FN-EDA isoform or in
FN-EDA null mice, with or without mutation in Tlr4.
Here we found that TGFβ2-induced ocular hypertension
and ECM production is dependent on both EDA and Tlr4,
and in mice constitutively expressing FN-EDA the effects of
TGFβ2 are amplified (Roberts et al., 2020). To further evaluate
the link between the TGFβ2–TLR4 pathway in the TM, we
focused our attention on the role of Bambi, which is known to
be downregulated via NF-kB signaling after TLR4 activation.
We demonstrated that conditional knock-out of Bambi in the
TM resulted in increased ECM deposition and development of
ocular hypertension, likely due to uninhibited
TGFβ2 signaling. In addition, we also tested the role of
NF-κB, an upstream regulator of Bambi expression, in
TGFβ2-induced ocular hypertension and found that
mutation in the p50 subunit of NF-κB prevented TGFβ2-
induced ocular hypertension (Hernandez et al., 2020). These
data suggest that TGFβ2-TLR4 signaling crosstalk is
important in the development of ocular hypertension and
ECM changes in the TM.

We have also examined ways to attenuate the downstream
fibrotic signaling initiated by TGFβ2–TLR4 signaling crosstalk.
Since NF-κB is necessary for this fibrotic response, we examined
how a suppressor of NF-κB signaling, A20, may be able to rescue
the effects of TGFβ2 and TLR4 activators, such as FN-EDA,
within the TM. Previous work showed that A20 is
downregulated in human TM cells that expressed
constitutively active α5β3 integrin (Filla et al., 2021). The
activation of this integrin is suggested to contribute to the
fibrotic-like changes observed in POAG, therefore A20’s
diminished presence may be contributing to the increased
fibrotic response seen in the glaucomatous TM. Expression
changes in A20 have also been shown in the retina of
glaucomatous human donor eyes (Yang et al., 2011). We
showed that TGFβ2 causes a decrease in the expression of
A20 in TM cells, while at the same time increasing
expression of ECM proteins such as FN (Mzyk et al., 2022).
Overexpression of A20 in human TM cells attenuated the
amount of FN expressed in TM cells after stimulation with
either TGFβ2, LPS, or FN-EDA (Mzyk et al., 2022). These data
suggest that A20 is a novel molecular target that inhibits the
pathological ECM changes in the glaucomatous TM.

CONCLUSION

This review summarizes the involvement of the TGFβ2-TLR4
signaling pathways in augmenting the pathogenesis of ocular
hypertension at the trabecular meshwork. The TLR4 pathway is
a fibroinflammatory pathway that can modulate the function of
the TM, specifically by altering the TM’s rate of deposition of
ECM, leading to the impairment of aqueous humor outflow and
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the progression of glaucoma. Identification of additional
DAMPs and regulators of TLR4 signaling may allow us to
identify potential therapeutic targets for POAG. Further
investigation of TGFβ2-TLR4 crosstalk in the TM will help
to explain the mechanisms involved in the development of
glaucomatous TM damage.
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