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Abstract We present a systematic study of flexible
cylindrical brush-shaped macromolecules in a good solvent
by small-angle neutron scattering (SANS), static light
scattering (SLS), and by dynamic light scattering (DLS)
in dilute and semi-dilute solution. The SLS and SANS data
extrapolated to infinite dilution lead to the shape of the
polymer that can be modeled in terms of a worm-like chain
with a contour length of 380 nm and a persistence length of
17.5 nm. SANS data taken at higher polymer concentration
were evaluated by using the polymer reference interaction
site model (PRISM). We find that the persistence length
reduce from 17.5 nm at infinite dilution to 5.3 nm at the
highest concentration (volume fraction 0.038). This is
comparable with the decrease of the persistence length in

semi-dilute concentration predicted theoretically for poly-
electrolytes. This finding reveals a softening of stiffness of
the polymer brushes caused by their mutual interaction.
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Introduction

If polymeric side chains are grafted to a polymer backbone,
a cylindrical polymer brush results [1–3]. In recent years,
these polymers have become the subject of intense
experimental and theoretical research interest by a broad
variety of methods [4, 5]. The main feature of cylindrical
brushes is a marked stiffening of the main chains. It has
been shown theoretically and by computer simulations [6]
that this stiffening is due to a balance of repulsive forces
originating from a steric overcrowding of the side chains
and the entropic restoring forces of the main chain. The
analysis of cylindrical brushes by small-angle neutron
scattering (SANS) [7, 8], small-angle X-ray scattering
(SAXS) [9] and static light scattering (SLS) [10] in dilute
solution has demonstrated that these macromolecules
exhibit a worm-like conformation that may be approximat-
ed by a cylinder if the length of the brush is not too large.
This is in qualitative agreement with studies of the contour
length and end to end distance of individual brush
molecules in the dried state by atomic force microscopy
(AFM) [11]. Up to now, most studies on cylindrical brushes
in solution have been conducted in the dilute regime.
Recently, Rathgeber et al. [10] reported the formation of
ordered structures of dissolved brushes at intermediate
concentrations. However, still higher concentrations lead to
the disappearance of the ordered phase and thus to a
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reentrant isotropic phase. The authors explained this by a
screening of the excluded volume interaction when the
polymers start to overlap. However, no quantitative
explanation was given.

The central question of this investigation is the interplay
between the interaction and the stiffness of the brushes in
dilute and semi-dilute solution. Following the decrease of
the persistence length by mutual interaction, we aim at a
general discussion of concentration-dependent conforma-
tional changes of chain molecules. The decrease of the
persistence length by mutual interaction has first been
discussed for cylindrical brushes by Borisov et al. in 1987
[12]. For polyelectrolytes in solution, Stevens and Kremer
demonstrated that an increase of the concentration must
lead to a decrease of the persistence length [13]. Cylindrical
polymer brushes offer the possibility to study the softening
of the stiffness in a neutral system. Scattering methods
allows in situ studies and therefore give access to this
important problem related to polymer solutions. A quanti-
tative understanding of the correlations and interaction of
polymeric species can be achieved using the polymer
reference interaction site model (PRISM) integral equation
theory. Here we use the PRISM theory to model the
interaction of cylinder brushes at finite concentrations.

Recently, we investigated a worm-like polymer brush
near the overlap concentration and detected a softening of
the bottle-brush at high concentrations due to mutual
interaction with the other brushes [14]. Here we give a full
account of this work.

Figure 1 displays the chemical structure of the polymer
studied here. The brush was synthesized by a “grafting from”
method and composed of poly(2-hydroxyethylmethacrylate)
(P-HEMA) backbone grafted with poly(t-butyl acrylate)(P-

TBA) chains. The weight average number of repeating units
in the main chain is 1,600 with a polydispersity index of
MW/Mn=1.06. Due to the initiator efficiency of approxi-
mately 0.5 only every second repeating unit carries a side
chain containing ca. 61 units. Thus, the brush is a statistical
copolymer of units with side chains (ca. 780) and units
without side chains (ca. 820). Hence, we deal with a rather
sparse brush system as opposed to dense brushes in which
each repeating unit carries a side chain. The details of the
synthesis have been reported in reference [4].

The article is organized as follows: first we present a
characterization of the brush macromolecules in dilute
solution in order to characterize its molecular structure and
bare persistence length measured at infinite dilution. Next,
more concentrated solutions will be analyzed. The interaction
between the brushes will be modeled using the PRISM
integral equation theory. In the third section the dynamic
properties of the polymer brushes will be considered.

Experiment

Small-angle neutron scattering

The poly(t-butyl acrylate) brush was synthesized by
“grafting from” route via atom transfer radical polymeriza-
tion leading to a (poly 2-hydroxyethylmethacrylate) back-
bone partially grafted with poly(t-butylacrylate) (P-TBA)
side chains. Details have been reported before [3–5, 14].
Deuterated tetrahydrofuran (THF-d8, Fluka, deuteration
degree 99.9%) was used as received. The partial specific
volume of the polymer was determined using a DMA-60-
densitometer (Paar, Graz, Austria) to v ¼ 1:10 (±0.02) cm3/g.
All SANS data were obtained using the instrument D11 of
the Institute Laue-Langevin (ILL) in Grenoble (France). The
wavelength of the incident neutrons was 0.6 nm and the
sample-detector distances were set to 1.1, 5, and 20 m. In
order to obtain the radial averaged intensities in absolute
scale, the data were treated by the use of the software
provided at the instrument. For all data sets, the rates of
incoherent scattering caused mainly by the protons were
determined at high scattering angle, set as a constant and
subtracted from the crude data. Further treatment was done
according to references [15, 16].

Light scattering

The polymer brush was dissolved in THF (Sigma Aldrich)
leading to a concentration range of 1.5 g/L to 7.0 g/L. The
solutions are filtered into dust-free optical cells using
0.45 μm PTFE filters. The light scattering experiments
were carried out by using the ALV/DLS/SLS-5000 compact
goniometer system equipped with a He-Ne laser (l=

Fig. 1 Chemical structure of the investigated cylindrical polymer
brush consisting of a poly(2-hydroxy-ethylmethacrylate) (P-HEMA)
backbone grafted with poly(t-butyl acrylate)(P-TBA) chains. The
repeating units carrying side chains (ca. 780) alternate statistically
with unsubstituted repeating units (ca. 820). The weight average
number of repeating units per side chain is 61
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632.8 nm). For each solution simultaneous dynamic light
scattering (DLS) and static light-scattering (SLS) measure-
ments were performed (three runs of 600 s, angles changing
from 30° to 150° with an angular step width of 10°). The
refractive increment dn/dc of the solution was measured
using a DnDc2010 device supplied by Polymer Standards
Service to 0.063±0.002 ml/g. For depolarized dynamic
light scattering (DDLS) measurements a Glan-Thomson
polarizer with an extension coefficient better than 10–5 was
used. The light scattering data were analyzed according to
the CONTIN method using standard ALV software.

Theoretical basis

Small-angle neutron scattering and light scattering deter-
mine the intensity I(q,�) as a function of the scattering
vector q and the volume fraction � of the dissolved objects.
The absolute value of the scattering vector is given by q=
|q|=(4πn/l)sin(θ/2) in which n is the refractive index of
the medium, λ is the incident wavelength, and θ is the
scattering angle. For the systems under consideration the
scattering intensity may be rendered as [17]

I q; fð Þ ¼ f $rð Þ2VpP qð ÞS q; fð Þ þ fIfluc qð Þ: ð1Þ

The form factor P(q) is determined by interference
effects between radiation scattered by different parts of
the same particle. Consequently, this scattering intensity
describes the shape of the particle with volume Vp. The
degree of local order in the sample is given by the structure
factor S(q,�) which is related to the mutual interactions
between different particles. Δρ denotes the excess scatter-
ing length density between the solute and the solvent.
Finally, the contribution to the scattering intensity due to
density fluctuations of the polymer chains is denoted by
Ifluc(q). This contribution becomes only important for high
scattering vectors.

For dilute solutions, the dependence of the structure
factor S(q,�) on the volume fraction � (�=c/ρT, ρT is the
density of the particle and c is the weight concentration of
the dissolved polymer) may be expressed in a virial series
by [15, 17–20]

1

S q; fð Þ ¼ 1þ 2Bapp qð Þfþ O f2
� �

: ð2Þ

The apparent second virial coefficient Bapp(q) includes
the effective diameter of interaction deff and the particle
volume Vp. The apparent second virial coefficient is an
explicit function of q [15, 17–19]

Bapp qð Þ ¼ 2pd3eff
3Vp

1� 1

10
d2effq

2 þ O q3
� �� �

: ð3Þ

In the limit of vanishing scattering vector Bapp(q)
reduces to its thermodynamic limit, the second virial
coefficient. Thus, the effective diameter deff gives the
balance of both repulsive and attractive interactions
between the solute molecules [15, 19].

With complete generality, I(q,�) may be approximated in
the region of small q by Guinier’s law [17]

I q; fð Þ qRg <<1; f ! 0�!fVp Δrð Þ2 exp � R2
g

3
q2

 !
ð4Þ

where Rg is the radius of gyration. Rg depends on the excess
scattering length density Δρ.

The scattering intensity of randomly orientated, non-
interacting cylindrical objects can be approximated by the
product of an infinitely thin rod and a factor which is due to
the finite diameter of the chain [17]. At sufficiently high
scattering angles this approximation is given by [17]

I q; fð Þ � fIfluc qð Þ �!qRg >> 1
p Δrð Þ2f Vp

qL
exp � 1

2
R2
cq

2

� �

ð5Þ

Here the radius of gyration perpendicular to the chain
axis is denoted as Rc. From the particle volume Vp the
molecular weight MW can be obtained by Vp=MW/NA/ρT
(NA is Avogadro’s number). The division of the molecular
weight MW by the total length L leads to the mass per unit
length ML.

Thus, the forgoing consideration suggest the following
way to determine the overall structure of the isolated
polymer brush: At first, the data measured at finite
concentration are extrapolated to vanishing concentration
by use of Eqs. 2 and 3. After subtraction of the scattering
contribution due to thermal fluctuations of the side chains
the scattering intensity of a single particle P(q) results and
the worm-like shape of the investigated polymer brushes
can be confirmed. Finally, the structure factor S(q,�)
obtained according to Eq. 1 can be compared to
calculations done within the frame of the PRISM
approach.

Results and discussion

Analysis of the particles in dilute solution

The present analysis rests on precise measurements of
I(q,�) at different concentrations. The set of data obtained
for different concentrations are displayed in Fig. 2 together
with the result of the extrapolation to vanishing concentra-
tion which includes SANS and SLS data.
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For the sake of clarity not all data taken at low
concentration are shown in the graph. As expected, all
measured SANS intensities as the function of concentration
differ strongly at low q but superimpose at intermediate and
high q values. The suppression of the intensity near q=0
(correlation hole effect) affects more than one order of
magnitude. This point directly to the effect of mutual inter-
action of the polymer brushes. Evidently, non-negligible
interaction starts at much lower volume concentrations than
measured, e.g. below �=0.001. The extrapolation to
vanishing concentration is done separately for each q value
as suggested by Eq. 2 (see Fig. 2 inset). Due to statistical
problems and low concentrations a linear extrapolation is
used. Since we aim at the limits of vanishing q values, the q
range accessible by SANS was not sufficient. Hence, static
light scattering was used to obtain data at smallest q values
possible in order to supplement the analysis by SANS.

Having extrapolated I(q,�)/� to � =0, Eq. 3 may be
used to determine the effective diameter deff of interaction.
Figure 3 shows the apparent virial coefficient Bapp(q) in
the dilute regime as obtained by SLS and SANS as
function of q2. The data agree within the given limits of
error. Figure 3 clearly demonstrates that Bapp(q) strongly
depends on the scattering angle as expected. The effective
diameter deff can be calculated from the slope of the linear
regression to deff=64±10 nm.

Figure 4 displays the intensity, extrapolated to vanishing
concentration for the entire q range available by the
combination of SLS and SANS. In general, the side chains
of the polymer brushes exhibit density fluctuations that will
give an additional scattering contribution at large q values (cf.
Eq. 1). The rather flat region at small q in Fig. 3 is due to the
fact that the intensity must follow Guinier’s law (Eq. 4) in this
regime. The radius of gyration resulting from Guinier’s law
follows as Rg=53 nm and the molecular weight MW is found
to be 7.41×106 g/mol. Together with the weight-average
degree of polymerization Pw=1,600 of the main chain this
leads to an average molecular weight of the repeating unit of
M0=4,600 g/mol. Note that this is the average of all repeating
units of which only ca. 50% carry side chains (cf. Fig. 1).

Further, Fig. 4 demonstrates that the scattering intensity
is dominated by an additional contribution at q>0.8 nm−1.
The contribution due to internal density fluctuations may be
approximated by [7]

Ifluc qð Þ ¼ ab
sin m tan�1 qb*ð Þ½ �
mqb* 1þ q*2b

h im=2 ð6Þ

with

q*b ¼ qx

erf qRc

� ffiffiffi
6

p� �� �3 andm ¼ 1

ub
� 1 ð7Þ

where υb is the Flory exponent, a measure of the fractal
dimension, erf denotes the error function. The amplitude ab
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Fig. 2 Influence of concentration on the absolute scattering intensities
I q; fð Þ=f. I q; fð Þ f= as function of q. Parameter of the different SANS
curves is the volume fraction (top to bottom: φ =0.000, 0.002, 0.006,
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Fig. 3 Apparent second viral coefficient Bapp(q) of the polymer brush
in the dilute regime as determined by SLS (circles) and SANS
(inverted triangles). The effective diameter deff deriving from the
linear regression results as ca. 64 nm

132 Colloid Polym Sci (2009) 287:129–138



is the scattering due to thermal fluctuations relative to the
amplitude of the contribution resulting from the overall
shape. Ifluc(q) is also called blob scattering [7]. The dashed
line in Fig. 4 displays the fit according to Eq. 6. The best
description fitting Eq. 6 to the experimental data base on a
radius of gyration of the cross section Rc of 5.0 nm, a
correlation length (blob size) ξ of 1.0 nm and the Flory
exponent υb of 0.6. The value υb is very close to the
theoretical result expected from perturbation calculations
for flexible cylinders with excluded volume interactions,
which is 0.588.

The corrected intensity thus obtained can now be used to
estimate the mass per unit length ML and the cross-sectional
radius of gyration Rc (see discussion of Eq. 5). Figure 5
displays the respective plot. The q range in which Eq. 5 can
be applied safely is rather small. However, the accuracy is
sufficient to estimate ML to 19,000 g/Mol/nm. If the length
of the repeating unit would be 0.25 nm as expected for
vinylic chains, ML follows from the degree of polymeriza-
tion of 1,600 and the molecular weight of the repeating unit
M0 (see above) to 18,400 g/Mol/nm. The slightly higher
value of ML (19,000 g/Mol/nm), however, points to a
length of the repeating unit of ca. 0.24 nm. We admit that
this value is affected by a significant error. Nevertheless a
similar shortening of the repeating unit was found recently
by Zhang and coworkers [8]. Up to now, the origins of this

effect are not fully clear. The cross-section radius of
gyration Rc of ca. 5.4 nm is afflicted by a big error around
15% (cf. Fig. 5).

The investigated polymers can be described as flexible
cylinders with a circular cross-section and a uniform
scattering length density. Thus, for the interpretation of
the scattering intensity at vanishing concentration, we used
the empirical equations for semiflexible polymer chains
with excluded volume interaction derived by Petersen and
Schurtenberger (model 3 of reference [21]). The model is a
parameterization of Monte Carlo simulations of a discrete
representation of the worm-like chain model of Kratky and
Porod applied to the pseudo-continuous limit. For details
see Eqs. 3, 26, and 27 in the original reference [21]. The
parameters of the model are the cross-sectional radius Rc,
the contour length L (total length) and the persistence
length lp. The contour length is described as a chain of
some number of locally stiff segments of length lp. Hence,
this value is a measure for the stiffness of the chain.
Polydispersity of the cross-section is included using a
Schulz–Zimm distribution. The comparison of the experi-
mental data to the model is shown in Fig. 6.

The scattering intensity extrapolated to vanishing con-
centration is well-described by this model using 5.0 nm as
radius of the cross-section as suggested by the fit of the
blob scattering. The contour length results as 380 nm and
the persistence length as 17.5 nm. The contour length is
comparable with the contour length of 384 nm calculated
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to Eq. 5 for the determination of the mass per unit length ML and the
cross-sectional radius of gyration Rc. The measured intensity is
corrected to the blob scattering. From the linear relationship Vp and
thus ML and Rc are obtained
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from degree of polymerization and the length of the
repeating unit of 0.24 nm.

Intermolecular pair correlation

We now turn our attention to the analysis of the scattering
intensities taken at finite concentration. One can calculate
structural properties of interacting polymer brushes using
generalized Ornstein–Zernike equations of an interaction
site integral equation theory. Spatial pair correlations of a
polymer brush solution are characterized by a set of
intermolecular site–site total correlation functions hij(r,�),
where the indices i and j run over interaction sites on each
of two brush polymers. These functions are related to a set
of intermolecular site–site direct correlation functions
cij(r,�) by the generalized Ornstein–Zernike relations of
the reference interaction site model [22]. This set of
generalized Ornstein–Zernike equations must be supple-
mented by a set of closure relations. If the interaction sites
are simply the centers of exclusion spheres, to account for
steric effects, a convenient closure is the Percus–Yevick
approximation [22]. The reference interaction site model
has been proved to be a successful theory of the pair
structure of many molecular fluids [23]. In the case of
macromolecular and colloidal systems, with very large
numbers of interaction sites, the number of coupled
Ornstein–Zernike equations becomes intractable, and a
considerable simplification follows from the assumption

that the direct correlation functions cij(r,�) are independent
of the indices i and j. This leads to the polymer reference
interaction site model theory first applied by Schweizer and
Curro to long flexible polymers [24]. PRISM neglects end
effects in that case. The resulting single generalized
Ornstein–Zernike equation of the PRISM reads

h q; fð Þ ¼ P2 q; fð Þc q; fð Þ
1� f

VP
c q; fð ÞP q; fð Þ ; ð8Þ

where h(q,φ) and c(q,φ) are particle-averaged total and
direct correlation functions, respectively. P(q,φ) is the
Fourier transform of the sum of the intramolecular two-
point correlation functions for a given volume fraction φ. In
the limit φ→0 this function reduces to the form factor
P(q)≡P(q,φ →0). Eq. 8 is solved numerically together with
the Percus–Yevick closure taking steric interactions into
account. Within the PRISM theory the structure factor
S(q,φ) reads

S q; fð Þ ¼ 1þ fh q; fð Þ
VpP q; fð Þ : ð9Þ

The scattering intensity I(q,�) is calculated according to
Eq. 1 with S(q,�) as input. The PRISM integral equation
theory has been successfully applied to various systems,
such as rod-like viruses [25], plate-like colloids [26],
dendrimers [16, 20], and nanoparticles [27], flexible
polymers [28], mixtures of spherical colloids and semiflex-
ible polymers [29], polyelectrolyte brushes [30]. Moreover,
it has been demonstrated that the simpler PRISM theory
yields results in good agreement with the more elaborate
reference interaction site model calculations for lamellar
colloids [31].

In Fig. 7 the experimental scattering intensity I(q,�) is
compared to the results of the integral equation theory for
the PRISM. We have used the form factor P(q) calculated
for a worm-like chain of length L=380 nm und persistence
length lp=17.5 nm as input into the generalized Ornstein–
Zernike equation, i.e., P(q,�)=P(q) in Eqs. 8 and 9. For the
sake of clarity the scattering intensities related to different
volume fractions have been shifted vertically in Fig. 7.
With increasing volume fraction the integral equation
results (long dashed lines) and the experimental data
(symbols) deviate. The comparison of the calculated
scattering intensities with the experimental data demon-
strates that the persistence length, lp=17.5 nm, and the form
factor P(q) may be used as input into the generalized
Ornstein–Zernike equation only for very low volume
fractions of the polymer brushes � ≤0.002. For higher
volume fractions marked deviations are found indicating
that this approach is no longer valid.

An alternative way of modeling these data is to consider a
volume fraction-dependent persistence length of polymer
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Fig. 6 Comparison of the experimental data extrapolated to zero
concentration to the model of flexible cylinder with a circular cross
section. The measured scattering intensity is corrected to the blob
scattering. Parameters of the fit are: L=380 nm, Rc=5.0 nm (σ =30%),
and lp=17.5 nm
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brushes and hence a volume fraction-dependent intramole-
cular correlation function P(q,�) as input into Eqs. 8 and 9.
Here P(q,�)=P(q,�,lp,L) is the form factor of a semi-flexible
polymer chain that depends on both the contour length L and
the persistence length lP [21]. The results for the scattering
intensities as obtained from the PRISM integral equation
theory using volume fraction-dependent persistence lengths
are in agreement with the experimental data for I(q,�)
(solid lines in Fig. 7). For comparison, the short dashed
lines in Fig. 7 depict the modeling of the experimental data
assuming a solution of noninteracting polymer brushes
characterized by S(q,�)=1 in Eq. 1.

The dependence of the persistence length on the volume
fraction shown in Fig. 8 is reminiscent of the behavior of
the predicted persistence length of polyelectrolytes [13, 32].
Although the polymer brush solutions under consideration
and the theoretically investigated polyelectrolyte solutions
distinctly differ from each other, there is a significant
overlap between them, namely the change of the shape of
the polymers upon varying the volume fraction. The

essential features that determine the shape of these macro-
molecules are the following ones: (1) The bare main chain
molecules, i.e., without grafted side chains in the case of
the brushes and without charges in the case of the
polyelectrolyte chains, are rather flexible coils. (2) In dilute
solution, the macromolecules adopt a worm-like configura-
tion due to the steric interaction between the side chains in
the case of the polymer brushes and due to the electrostatic
repulsion in the case of the polyelectrolyte chains. (3) For
both systems the contribution of the intermolecular inter-
actions to the total free energy increases upon increasing
the volume fraction. In order to reduce this contribution a
softening of the stiffness of the macromolecules occurs
because for a flexible macromolecule the excluded volume
that is not available for the other macromolecules is smaller
than the corresponding one of a rigid macromolecule.

Within a self-consistent integral equation theory [32–39]
based on a variational method [39] the volume fraction-
dependent persistence length lp(�) can be obtained from the
self-consistent equation

G lp
�

fð Þ; lp 0ð Þ� � ¼
Z1

0

dq q2
W q; fð Þ
kBT

ZL

0

ds1

ZL

0

ds2 s1 � s2ð Þ2 exp � q2a s1 � s2; fð Þ
6

� �

ð10Þ
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Fig. 7 Measured scattering intensity of I q; fð Þ of polymer brush
solutions normalized to their volume fraction φ which increases from
top to bottom (φ =0.002, 0.006, 0.013, 0.038). The three lowermost
intensities are shifted down by a factor of 10, 100, and 1,000
respectively. The dashed lines represent the corresponding intensities
as obtained from the PRISM integral equation theory (Eqs. 8, 9 and 1)
and assuming a volume fraction-independent shape of the polymers.
The solid lines represent the scattering intensities as obtained from the
PRISM integral equation theory using the volume fraction-dependent
persistence lengths shown in Fig. 8 with the same symbol code (solid
circle, triangle, square and cross). For φ =0.002 the dashed and solid
curve coincide because the same persistence is used for both curves.
The short dashed lines represent the scattering intensity calculated
according to Eq. 1 with S q; fð Þ ¼ 1 for φ =0.002, 0.006, and 0.013
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with

W q; fð Þ
kBT

¼ � f
Vp

c2 q; fð Þ P q; fð Þ þ f
Vp

h q; fð Þ
� �

ð11Þ

and

a s; fð Þ ¼ 2lP fð Þ sj j � 2lP fð Þ2 1� exp � sj jð =lP fð Þð ÞÞ: ð12Þ

The functional G[lp(�),lp(0)] is discussed in detail in
reference [39] and a schematic presentation of the medium-
induced interaction W(q,�) between two monomers of a
polymer due concentration fluctuations of the surrounding
polymers is given in Fig. 1 of reference [33]. Although the
Fourier transform of the sum of the intramolecular two-
point correlation functions P(q,�) and the particle-averaged
total correlation function h(q,�) of polymer brush solutions
and polyelectrolyte solutions differ from each other, the
persistence length may exhibit a similar volume fraction
dependence due to the fact that the term on the right-hand
side of Eq. 10 represents an integrated quantity. We have
confirmed this hypothesis by performing additional numer-
ical calculations for semi-flexible polyelectrolyte chains
within the PRISM integral equation theory.

It is worthwhile to mention that in the case of rather rigid
polymer brushes or polyelectrolyte chains an isotropic to
nematic phase transition occurs upon increasing the volume
fraction. In this case the contribution of the intermolecular
interactions to the total free energy is reduced due to
orientational order while the contribution of the orienta-
tional entropy to the total free energy is increased.

Finally we emphasize that our measurements corroborate
the softening of the stiffness of polymer brushes due to
mutual interactions predicted by Borisov et al. [12]. We
have demonstrated that the volume fraction dependence of
the radius of gyration Rg (see Eq. 4) is in agreement with
scaling considerations for polymer brush solutions [14]. A
similar decrease of the radius of gyration with increasing
volume fraction has also been measured for flexible
polystyrene chains in solution [40] and calculated for
neutral polymer chains modeled as pearl necklaces of freely
jointed tangent hard spheres [34, 41].

Dynamic properties

In addition to static properties we have investigated dynamic
properties of the polymer brushes using dynamic light
scattering and depolarized dynamic light scattering. The
measured time-dependent DLS intensity autocorrelation
function is a single exponential function of time for volume
fractions � ≤0.002 signaling pure translational diffusion of
the polymers. No contributions of internal modes such as
rotation, bending, or stretching to the dynamics have been
found. Hence, one may describe the experimental data in

terms of a decay rate Γ(q) according to Γ(q)=q2D, where D
is the translational diffusion coefficient of the polymer in
dilute solution. Figure 9 shows the measured decay rate
(CONTIN analysis) as a function of q2 for the volume
fraction � =0.002. The inset shows the CONTIN plots at 90°
scattering angle at various concentrations.

Moreover, we have determined the hydrodynamic radius
Rh=39±2 nm from the measured translational diffusion
coefficient using the Stokes–Einstein relation Rh=kBT/
(6πηD), where the temperature T and the viscosity η
characterize the solvent. It is instructive to compare the
measured hydrodynamic radius with the results for a
semiflexible chain model which has been used to interpret
quasi-elastic neutron and dynamic light-scattering measure-
ments on various natural and synthetic macromolecules such
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Fig. 9 Measured decay rate Γ(q)=q2D of the time-dependent
intensity autocorrelation function of the polymer brush in dilute
solution at the volume fraction �=0.002 as function of the square of
the scattering vector q2 (symbols). The resulting translational diffusion
coefficient D is given by D=1.1·10–11 m2/s (slope of the solid line).
Inset CONTIN plot at 90° scattering angle for �=0.002 (dashed line),
0.006 (symbols), and 0.009 (solid line)

Table 1 The experimental normalized diffusion coefficient
D exð Þ fð Þ�D 0ð Þ together with the theoretical calculations D thð Þ fð Þ�
D 0ð Þ according to Eq. 13 and using a volume fraction-dependent
shape of the polymer brush. An additional measured slow diffusive
process is characterized by the normalized diffusion coefficient
D slð Þ fð Þ�D 0ð Þ
� 0.006 0.008 0.01

D exð Þ fð Þ�D 0ð Þ 1.42 1.53 1.72
D thð Þ fð Þ�D 0ð Þ 1.49 1.64 1.85
D slð Þ fð Þ�D 0ð Þ 0.28 0.24 0.22
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as denaturated ovalbumin, DNA, F-actin [42], gellan [43],
polystyrene [44], xanthan [45], and worm-like micelles [46].
The numerical evaluation according to [42]

1

Rh
¼ 2 1þ

ffiffiffi
3

p
ffiffiffi
p

p
L

ZL

2R

ds
L� s

a s; fð Þ exp � 3R2

2a s; fð Þ
� �0

@
1
A ð13Þ

yields Rh=38.5 nm which is comparable with the experi-
mentally determined value. In the calculations the contour
length L=380 nm, the persistence length lp=17.5 nm, and
the radius of the cross-section R ¼ ffiffiffi

2
p

Rc ¼ 7 nm have been
used. Moreover, we have calculated the full time-dependent
intensity autocorrelation function and we have found that
internal modes do not contribute for the scattering vectors
used in the DLS experiments. However, internal modes do
contribute for stiffer polymers confirming our findings
concerning the stiffness of the polymer brushes. The DDLS
intensity signal is too low to measure an intensity autocor-
relation function as expected for rather flexible worm-like
cylinders in contrast to rigid rods.

Finally, we study dynamic properties of the polymer
brushes at higher volume fractions. The time-dependent
scattering intensity may be written as

I q; f; tð Þ ¼ I q; f; 0ð Þ exp �* q; fð Þtð Þ ð14Þ

with the decay rate [47]

* q; fð Þ ¼ kBT

4p2h

Z1

0

dq1 q
2
1

I q1; fð Þ
I q; fð Þ

q21 þ q2

2q1q
log

q1 þ q

q1 � q

����
����� 1

� �
:

ð15Þ

The volume fraction-dependent diffusion coefficient D(φ)
can be calculated according to

D fð Þ ¼ lim
q!0

* q; fð Þ
q2

: ð16Þ

This diffusion coefficient increases upon increasing the
volume fraction of the cylindrical polymer brushes due to
an increasing restoring force for concentration fluctuations
as is illustrated in Table 1, where the calculated normalized
diffusion coefficient D(th)(�)/D(0) is shown together
with the corresponding measured diffusion coefficient
D(ex)(�)/D(0) for three volume fractions.

In the calculations according to Eqs. 15 and 16 the
volume fraction-dependent persistence lengths and the
corresponding static scattering intensities I(q,�) have been
used (solid lines in Fig. 7). The deviations between the
theoretical and experimental might be due to the fact that
the hydrodynamic interaction has been taken into account
in terms of the Oseen tensor in order to derive Eq. 15 [47].

Using the Rotne–Prager tensor [48] as a first correction
to the Oseen tensor will improve the results. However, we
emphasize that using the volume fraction-independent
persistence length lp=17.5 nm and the corresponding static
scattering intensities I(q,�) as input into Eqs. 15 and 16
does not lead to an agreement with the experimental data.
The calculated diffusion coefficients are larger than both the
experimental and theoretical values shown in Table 1. In
addition we have observed experimentally a slow diffusive
process at higher volume fractions D(sl)(�) in Table 1 which
might be associated with long-range concentration fluctua-
tions. The contribution of the slow mode to the time-
dependent intensity autocorrelation function increases upon
increasing the volume fraction as it is apparent from the
inset of Fig. 9.

Conclusion

We presented the full analysis of a cylindrical polymer brush
in the dilute and semi-dilute regime by a combination of
small-angle neutron scattering, static and dynamic light
scattering. At first, the limit of infinite dilution was established
by careful extrapolation to vanishing concentration. The
evaluation of the SANS data taken at finite concentration
then demonstrated that the persistence length is decreasing
from 17.5 nm (infinite dilution) to 5.3 nm at ca. 4 wt.%. This
finding is in full agreement with the analysis of the data
obtained by dynamic light scattering. The marked decrease of
the persistence length with concentration is hence comparable
to the decrease of this quantity of linear polyelectrolytes in the
same concentration regime.
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