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From labels to priors in capsule 
endoscopy: a prior guided approach 
for improving generalization 
with few labels
Anuja Vats1*, Ahmed Mohammed1,2 & Marius Pedersen1

The lack of generalizability of deep learning approaches for the automated diagnosis of pathologies in 
Wireless Capsule Endoscopy (WCE) has prevented any significant advantages from trickling down to 
real clinical practices. As a result, disease management using WCE continues to depend on exhaustive 
manual investigations by medical experts. This explains its limited use despite several advantages. 
Prior works have considered using higher quality and quantity of labels as a way of tackling the lack 
of generalization, however this is hardly scalable considering pathology diversity not to mention 
that labeling large datasets encumbers the medical staff additionally. We propose using freely 
available domain knowledge as priors to learn more robust and generalizable representations. We 
experimentally show that domain priors can benefit representations by acting in proxy of labels, 
thereby significantly reducing the labeling requirement while still enabling fully unsupervised yet 
pathology-aware learning. We use the contrastive objective along with prior-guided views during 
pretraining, where the view choices inspire sensitivity to pathological information. Extensive 
experiments on three datasets show that our method performs better than (or closes gap with) the 
state-of-the-art in the domain, establishing a new benchmark in pathology classification and cross-
dataset generalization, as well as scaling to unseen pathology categories.

WCE has become indispensable for the diagnostic inspection and management of gastrointestinal diseases. The 
rise in its preference among clinicians and patients is due not only to being minimally intrusive, but also for 
allowing more comfortable outpatient procedures, reducing the need for unnecessary hospital admissions. How-
ever, the increase in its uptake as an alternative to traditional endoscopy comes with an overhead, large volumes 
of post-procedure data to be examined by clinicians. Computer-Aided Diagnosis (CADx) has shown promise 
in various clinical applications including WCE by automating cumbersome aspects of the traditional diagnostic 
pipeline as well as supplementing diagnoses with second objective  opinions1. However, in WCE, despite progress 
in imaging, reliable CADx remains largely  unaddressed2. Most deep learning based approaches for automatic 
detection and classification in WCE are fully supervised. The generalization ability for such supervised objectives 
critically depends on the size and diversity of samples in each class. Since procuring labels adequately enough to 
emulate real clinical scenarios with multiple pathologies is highly time and resource intensive, most studies in 
WCE focus on a particular class of abnormality such as  polyps3,4,  angiectasia5,  hookworm6,  bleeding7 etc. Multi-
pathology classification in WCE continues to be challenging even with supervised approaches and millions of 
 images8,9. This can be partially attributed to the challenges particular to this domain. A WCE image can be a mix 
of different elements like bubbles, fluids, local anatomy (shape, color, textures), varying illumination, etc. (these 
elements are hereby referred to as factors in the paper). Factors that characterize abnormalities like color, texture, 
scale, etc. exist locally with other normal factors like varying local anatomy, texture associated with normal tissue, 
constituents like gastrointestinal fluid, bubbles, food remnants, etc. and since all these factors interplay within 
a single frame, extracting reliable pathology-features for their classification has been a long-standing challenge 
in  WCE8. The need for generalization of CADx to multiple pathologies in WCE, but with accessability only to 
unlabelled data, motivates this approach for learning under complete unsupervision.

In the unsupervised paradigm, the core approach is that of discovering a sufficiently generalizable represen-
tation space corresponding to the unlabeled images such that the resulting space encodes information while 
exhibiting certain beneficial properties (properties discussed in detail in “Embedding space analysis” section). 
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Multi-view contrastive learning has recently become a powerful component for unsupervised representation 
 learning10–15. Here, in the absence of labels, representations are learned by maximizing the information shared 
between two views/crops of the same  image14. This translates to developing invariances (for factors not shared 
between the views) alongside feature extraction (for shared factors) and is guided by the choice: “what is mutual” 
between the views. Recent work by Tian et al.13 argues in favor of maximizing mutual information (MI) but 
selectively such that only the information of consequence is shared but no more. What this means for most 
large-scale datasets like  ImageNet16, STL-1017 etc. employed in contrastive pretraining is that since most images 
consist of one primary instance (for example one or many cars), the features of interest can be safely assumed 
to co-occur in two random crops or remain as the dominant factor in two randomly augmented versions of the 
image. By minimizing the distance between these crops in the latent space, features for mutual factors (car and 
its parts) are extracted and invariances to non-mutual factors (like background trees) are developed.

This assumption of mutual co-occurrence of instances may not hold true for some domains including WCE 
where multiple small-scale factors are prevalent. Random augmentations to create two views in such domains 
may share too much (uninteresting factors prevail in one or both crops) or too little (small scale pathology miss-
ing from one or both crops). Moreover, medical datasets as used in this work, may come from a true-unlabeled 
data corpus, with no a priori information on the samples per class or even the number of classes inherent in the 
data. In the absence of annotations and more so adequate representation of abnormality types and subtypes, 
an approach to tune the representations such that they can be preferential in attending to certain factors e.g. 
pathologies while exhibiting invariance to others e.g. normal variations, is the primary objective of this work. 
In keeping with the strict assumption of “no labels for pretraining” we propose an unsupervised approach that 
exploits simple domain priors for learning progressively selective representations. The main contributions of 
this work are:

• We propose an approach to reduce the labeling requirement through the use of simplistic domain priors to 
guide representation learning.

• We propose a new type of negative for contrastive learning: Within-Instance Negative (WIN).
• We present a framework (first to the best of our knowledge) for WCE classification that generalizes across 

datasets and to new pathology classes (including diseases with low prevalence). Tables 3 and 4 present multi-
dataset pathology classification benchmarks to further improve the ease of comparison of cross-dataset 
generalization in the field. In addition, the pretrained weights (to be publicly released) can be used for the 
creation of weak-labels on a number of WCE pathologies and capsule modalities. (weak labels can be seen 
in Fig. 4b and supplementary video).

• Our method surpasses traditional transfer-learning approaches such as pre-training on much larger ImageNet 
dataset in accuracy by 1.6% (94.7–93.1), as well as other recent works in multi-class classification by 1.4%18 
and 1.53%19 on CAD-CAP dataset, (refer Table 4). We also surpass random-augmentation based contrastive 
 learning12, indicating that prior-guided views are superior to random augmentation based views.

Related work
Wireless capsule endoscopy. Since polyps are precursors for cancer, the majority of CADx approaches in 
both colonoscopy and WCE have focussed on its detection in  images3,20,21. With the popularity of convolutional 
neural network based feature extractors, other pathologies like bleeding, erosions, ulcerations,  angiectasia5,7,22 
etc. have been increasingly included for automated diagnosis. However, all these approaches either tackle only 
one of many pathologies or consider all pathologies as a single class. A few approaches attempt multi-pathol-
ogy  classification9,18 using fully supervised approaches. These approaches typically use pretrained networks to 
compensate for overfitting on smaller WCE datasets. Surprisingly, even with large scale WCE  datasets8 multi-
pathology classification remains challenging. Earlier  works9,19 have identified the diverse characteristics in WCE 
images to be the challenge. Recently, a semi-supervised  approach19 performs multi-pathology classification 
using a combination of labeled and unlabeled data with dilated convolutional layers for attending to abnormal 
regions. In this work, we propose to expand this quest and pretrain with unlabeled data only, for multi-pathology 
classification.

Self supervised learning. The supervision in self-supervision comes from exploiting signals inherent 
within the data. The signal may come from predicting missing, corrupted, or future information or by estab-
lishing correspondence between  inputs23–25 or even from comparison between multiple views of an input 
 image10,14,15. In this multi-view contrastive learning, supervision arises from mapping two different views of 
an image, close together in the latent space. Although carefully constructed views have proven to be the key to 
good performance in downstream tasks like  classification26 in the natural domain, questions about its sufficiency 
have already been raised as newer domains are considered.  In13 the authors discuss challenges for multi-factor 
datasets in the context of natural images and propose using a subset of labels during pretraining to selectively 
tune for desirable factors. Another recent  work27 proposes initializing views randomly but using approximate 
heatmaps from higher level convolutional layers as guidance for curating better views adding a little computa-
tion overhead. In this work, we investigate how simple prior-knowledge from the domain can be used to do the 
same without additional components to the contrastive pipeline, enabling fully unsupervised but still guided 
pretraining.
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Methodology
As stated above, we propose the use of simplistic domain priors to guide the learning to be selective to pathol-
ogy factors in an image during pretraining. The priors should be such that the scale and attention of features 
attunes automatically to even slight, obscure signs of pathology within each image much like a selectivity filter, 
that activates more for some parts from multiple foreground objects. Since priors are key to achieving this, in 
favor of high generalizability (to many pathology classes even with low prevalence and irrespective of capsule 
modalities), the priors must be overly general. The priors are as follows:

 Redness prior This prior is based on a generic property that many pathologies are known to exhibit. It is shown 
that the presence of many pathologies tends to locally influence the appearance by exhibiting an increased 
level of redness along with other traits that may be pathology-specific28,29. The pathology-specific traits may 
be vastly varying, and many pathologies may be identified by means of other more conclusive traits. However, 
an area with increased redness can be associated with a high probability of occurrence of the abnormality 
itself or associated traits. We use redness to serve as an initial proxy to shift the scale and attention toward 
pathology-specific traits within an image (“Prior guided contrast (PGCon)” section).
 Locality prior Datasets with multiple local factors, such as in WCE, have an achilles heel that we exploit to 
create a new Within-Instance Negative (WIN). As a pathology can often be obscure and localized, it is sur-
rounded by normal tissue and its variations (normal mucosal folds, color, texture, vascular pattern, bubbles, 
etc.). Some pathologies like a polyp may share the same visual properties as the region it occurs in (texture, 
color, etc.), but despite the similarity, the actual polyp is local. We use the locality prior to inspire that differ-
ent local regions within an image must weight differently. We do this through a new type of negative (WIN) 
for within-instance contrast (“Within instance negative (WINCon)” section).

Prior guided contrast (PGCon). We use the redness prior to guide a shift in the scale (global to local) and 
attention (normal to pathology) of features such that they get progressively more selective to the pathology and 
its variation. We do this by creating two views for an image i : 

a. Prior-view ( vip)—based on the redness prior, we extract this view by cropping a fixed square centred around 
the highest value pixel in the a∗-channel (red-green) from the CIELAB space. vip is our main view and is only 
a small patch of the entire image, suspected of containing pathology traits. It undergoes random transforma-
tion sampled from a set of transforms Tp (details in Supplementary 1).

b. Distorted-view ( vid)—main purpose of this view is to encourage invariance, while keeping pathology 
information mutual with vip . The factors to be invariant to are an essential consideration in choosing those 
views that discard irrelevant details, and this is what vid helps achieve. Like natural images, even medical 
 representations30 benefit from invariance to low-level image transformations (random crop, color jitter, 
etc.), but such invariance in isolation fails to account for domain-related nuisance factors (for e.g., varying 
normal morphology, dynamic capsule orientation, floating residues, bubbles and varying anatomy of each 
segment of the  intestine31). Such irrelevant variations being more pervasive than small scale abnormalities 
seep through in the feature space, as reported in previous  literature8,9. A “good” representation must exhibit 
invariance to low-level transformations as well as such irrelevant domain variations, thus vid is a jigsaw puz-
zle composed of nine tiles from the input image. The transformation for tiles common with vip are sampled 
from Tp , the same as vip . In this way, randomly augmenting the shared tiles between the two views using 
transforms sampled from the same set Tp , promotes transformation invariance. The other tiles (those not 
shared between views), suspected of exhibiting irrelevant factors, are purposefully distorted using transforms 
sampled from another set Td (details in Supplementary 1). As there is no incentive for learning these non-
mutual tiles, this promotes invariance to specific domain variations. Figure 1 illustrates the two views.

Objective function. Let D be a dataset consisting of n instances, D = {x1, x2, ..., xn} , such that given an instance 
xi ∼ D , two views vip and vid can be constructed. Convolutional encoders f  and h , parametrized by θ and φ 
respectively, non-linearly transform these input views such that zip = fθ (v

i
p) and zid = hφ(v

i
d) in a 128-dimen-

sional vector space. Additionally, let a memory bank M of size n accumulate an exponential moving average for 
each fθ (vip) from all previous iterations of seeing image xi , this moving average is given by Ri . Since only a few 
Ri s (limited to batch-size) are updated at each iteration from M , Ri is a stale version of zip that will be updated in 
the current iteration. Figure 2a illustrates the PGCon objective.

We use InfoNCE  loss11,14,15 understood as maximizing the lower bound on mutual information I (·) , between 
two pairs: (zip,Ri) and (zip, zid) . Knowing that each of zip, zid and Ri are encoded from views of xi , we denote a sam-
ple from each joint distribution p(zip,Ri) and p(zip, zid) as positive, and a set of 2k independently drawn samples 
from the product of marginals p(zip)p(Rj) as negatives,where Rj ∈ RGlobalNegatives ( RGN in Fig. 2) and j  = i . The 
contrastive learning problem tries to optimize an objective LCo , such that, given the pairs sampled from the two 
distributions, a scoring function g (Eq. (4)) discriminates between samples from the two distributions (assigning 
a higher probability to samples from the joint than from the product of marginals). This can be formulated as 
the cross-entropy loss between the similarity scores of the positive and negative pairs as

(1)LCop = −E log
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The expectation in LCop is over all positive pairs {zip,Ri}ni=1 from the joint distribution p(z,R) and likewise 
for LCod . τ > 0 is a scalar temperature hyperparameter. The k-negatives: {Rj}j �=i

 are randomly retrieved from M 
and are the encodings of prior-views vp of other instances. These negatives are advantageous for two reasons. (a.) 
Over time, sampling Rj from M automatically allows mining harder negatives as over the course of training, the 
memory bank representations {Rj}nj=1 specialize in local pathological regions and discriminating between (zip,Rj) 
amounts to discriminating between finer features that characterize pathologies. (b.) When retrieving negatives 
from M instead of the input batch, the number of negatives gets decoupled from the batch size. The total objec-
tive is a weighted sum of losses in Eqs. (1) and (2) with scalar parameters α = β = 0.5 , shown in Eq. (3). The 
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Traditional contrastive approaches use random augmentation to 
create views. This leads to pathologies being encoded close to 
normal regions and away from other pathologies as seen here.      Conversely, we use pathology aware and ignorant views that result in 

more semantically meaningful embeddings.   

Other approaches Our approach

1

2

Embedding space

Embedding space

Figure 1.  Proposed approach: given an unlabeled WCE image vi , we use priors to create special views namely 
a pathology-aware view vip , a pathology-ignorant view viwin and a distorted view vid . z∗∗ denotes the encodings 
of these views. We use combinations of these views with contrastive objectives to strategically emphasize on 
pathology features during training. The resulting feature space (pink circle) shows how pathology-aware features 
zip and zj dominate the output space and push away from pathology-ignorant features zwin . We show the real 
contrastive space and analyze its properties Fig. 3 and “Embedding space analysis” section.

Figure 2.  Overview of proposed objectives. (a) Two views vpi  (prior view) and vdi  (distorted view) constructed 
from the same image are encoded as zip , zid respectively. The contrastive objective uses these as well as 
representations RGN and Ri from an evolving memory bank M to minimize distance between positives and 
maximize distance between negatives. (b) In addition to vpi  and vdi  , WINCon uses vwin derived from all images 
in the batch (B) by removing regions suspected of pathology. These vwin are transformed into zwin and used 
as additional negatives. Refer to “Prior guided contrast (PGCon)” and “Within instance negative (WINCon)” 
sections for more details.
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scoring function g (Eq. (4)) models the ratio of densities between the joint and the product of marginals where 
s is the commonly adopted cosine similarity score.

Within instance negative (WINCon). PGCon shifts attention within images so that the resulting rep-
resentations encode local regions corresponding to vip that is in simultaneous contrast with other “suspected” 
pathology instances in the dataset retrieved from M , i.e., it’s global negatives. Since most common abnormalities 
have local prevalence, we suspect the representations to also benefit from contrasting with the leftover image, 
after extracting vip . vwini  (refer Fig. 1) is created by zeroing the pixels of xi that form vip and applying Twin (Sup-
plementary 1) to the resulting image. We observe vwin s to be hard negatives at initial epochs (explained later in 
Fig. 3). This may be due to the continuity of normal or pathological patterns at the boundaries, as well as other 
possible visual similarities. Nevertheless, contrast with such WINs enable us to induce the idea that one local 
region within an image could be different from the rest despite boundary similarities. We verify this in the next 
objective: WINCon.

Objective function. Mathematically, it amounts to appending {zwin}Bi=1 , where zwin = fθ (vwin) and B is the batch 
size to the list of global negatives in Eqs. (1) and (2). The new formulation is given as:

The total objective is a weighted sum of losses in (5) and (6), with α = β = 0.5 . Figure 2b illustrates WINCon 
objective.

Datasets
Datasets for training. For contrastive pretraining, we use two different datasets: PS-DeVCEM dataset and 
OSF-Kvasir-Capsule dataset.

(3)Lco = αLCop + βLCod
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Figure 3.  Evolution of the embedding space: PCA of 128d feature vectors for zp , zd , Global Negatives (GN) and 
WIN. PGCon: initially the embeddings start as separate localized clusters corresponding to zp , zd and global 
negatives, but as the embeddings slowly specialize in pathology regions (start exhibiting invariance to other 
factors), the embeddings are seen to merge and spread out to a space of pathologies. WINCon: initially the 
WINs lie close to corresponding prior views ( zp ) due to being parts of the same image. However, interestingly, as 
the embeddings get more and more specialized in pathologies, the same WINs are pushed away from pathology 
based embeddings i.e., zp and GNs. Despite the WINs being very diverse, a dense WIN cluster suggests a 
tendency towards invariance to normal variations and high variance towards pathologies.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15708  | https://doi.org/10.1038/s41598-022-19675-7

www.nature.com/scientificreports/

PS‑DeVCEM dataset. PS-DeVCEM data is a subset of a private capsule dataset from Pillcam Colon2, 
 Medtronic™ with video level labels and has previously been used in another  study32. There are no image labels in 
the dataset. We gained this data with consent of the original authors and have used the label information only 
to check that the cleanliness level of the bowel is satisfactory so that videos with extremely low visibility of the 
muscosa are avoided as well as there is at least some abnormality in the selected study. No other information 
about the type/severity or prevalence of the pathology in the video has been considered. The PS-DeVCEM data 
consists of 80,946 images from short video segments of 12 examinations with normal and abnormal frames. 
Of these, a significant number of intermittent frames may comprise normalcy typically observed between epi-
sodes of gastrointestinal abnormality. The exact number of frames with pathologies as well as the classes is not 
known, and this corresponds to a true unlabeled setting. PS-DeVCEM data forms approximately 96% of total 
pre-training data.

OSF‑Kvasir dataset. OSF-Kvasir-Capsule  dataset33 with 3478 images from seven classes taken with the capsule 
modality Olympus EC-S10™. The original dataset is composed of 14 classes, out of which six (Pylorus, Ampulla 
of Vater, Ileocecal Valve, Normal, Reduced view Mucosa and foreign body) do not correspond to pathological 
findings and hence have been removed. In the remaining 8 classes, OSF-Kvasir dataset is imbalanced with just 
12, 55 and 159 samples in the classes hematin, polyp, and lymphangiectasia respectively, as opposed to 866, 854 
samples for other classes. In an attempt to balance the dataset, only class “hematin” with 12 samples has been 
removed, and the remaining seven classes have been used for both pretraining and downstream testing.

Datasets for evaluation. In addition, three other datasets have been used solely for evaluation, these are:

Few shot KID (FS‑KID). KID  dataset34,35, capsule modality MiroCam,  IntroMedic™. FS-KID is used for few-
shot classification as it comprises of a total of 77 images from seven categories with as few as five samples in 
some classes.

Few shot KID2 (FS‑KID2). KID2  dataset34,36 capsule modality MiroCam,  IntroMedic™, similar to the OSF-
Kvasir Dataset, non-pathological classes (ampulla of vater and normals from the esophagus and stomach) have 
been removed from FS-KID2. The final dataset consists of four classes (inflammation, normal, polypoid, and 
vascular) that has been class balanced (between 17 and 22 samples in each class). This is also used for few-shot 
classification.

CAD‑CAP dataset. CAD-CAP is a balanced dataset with 1812 images in three classes (inflammatory lesion, 
vascular lesion, and normal) as part of the GIANA Endoscopic Vision Challenge 2018. We use this dataset for 
evaluation to facilitate comparison with other works on pathology  classification9,18. The split for all datasets 
except CAD-CAP follows a 60:40 train-val split (due to very few samples in a few classes, some with just two). 
In CAD-CAP an 80:10:10 train-val-test split is used as the dataset is balanced and sample-sufficient in each class 
and traditional 1%, 10% and 100% label-subsets are evaluated. The CAD-CAP val-set is used for finding the opti-
mum epoch for test/inference on all datasets. We observed a consistent epoch-accuracy behavior for each subset 
of data (100 epochs—1%, 200 epochs—10%, 300 epochs—100% even between different datasets). Once this was 
fixed, the reported accuracy is averaged over three runs for the checkpoint with the best validation accuracy for 
OSF-Kvasir, FS-KID and FS-KID2, for CAD-CAP dataset we report the test accuracy. Table 1 summarizes the 
additional dataset details.

Experiments
We evaluate PGCon and WINCon by transferring them to pathology classification tasks under different policies 
on four datasets. Through this we test cross-dataset and cross-capsule modality transfer including generalization 
to new, unseen pathology categories like apthae, chylous, inflammatory lesion, etc. We compare against ImageNet 
pretrained R50, ImageNet pretrained Densenet161 (a significantly bigger architecture), random augmentation 
based pretraining in  PIRL12, and recent fully and semi-supervised approaches for pathology  classification18,19.

Table 1.  Dataset details. Attribute vip size indicates the initial crop size of vip for each dataset. vip is resized to 
120 × 120 irrespective of the dataset before input to the network.

Dataset Classes Image size # Total images used vip size (train datasets only)

PS-DeVCEM Unknown 576 × 576 80,946 150

OSF-Kvasir Angiectasia, blood, erosion, erythematous, lymphoid 
hyperplasia, polyp , ulcer 336 × 336 3498 100

KID Vascular, polypoid, lymphangiectasia, inflammation, 
aphtha, bleeding, chylous 360 × 360 77 –

KID2 Inflammatory, normal, polypoid, vascular 360 × 360 142 –

CAD-CAP Inflammatory lesion, vascular lesion, normal 576 × 576 1812 –
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Training details. We perform contrastive pretraining on ResNet-50 encoder (R50)37 with same architecture 
as  PIRL12 for ease of comparison, with proposed loss and views (using Td , Tp , Twin ). To obtain zip we pass vip 
through the R50 encoder up to the global average pooling layer followed by a 128-dim fully-connected (fc) layer. 
For vid after obtaining 128-dim embeddings for each of the nine tiles, we use an additional fc-layer to produce a 
compressed 128-dim zid . We train with batch-size 64, negatives 2k = 400 (k per loss term) and 600 epochs across 
all pretraining experiments. Similarly  to12, we use the mini-batch SGD optimizer. The learning rate schedule is 
cosine annealing with an initial and final value of 0.012 and 1.2 × 10−5 , we start from 0.012 for all experiments, 
including our adaptation of PIRL to WCE. Temperature τ is fixed at 0.07 for all experiments.

Task 1: zero shot image classification. Setup. It is argued that transferability in large-scale feature 
extractors comes from the knowledge of concepts that lend easy adaptation in the face of new categories and 
tasks such that few examples are sufficient for generalization. We investigate, if such fundamental knowledge 
exists, which in our domain translates to visual concepts relating to pathologies, then there may inherently exist 
weak discrimination within the feature space. To test cross-dataset and new category generalization, we use the 
kNN based clustering approach also used  in10 on CAD-CAP data (not used in pretraining). Since the evaluation 
occurs directly with contrastive pretraining weights derived from other datasets, with no additional labels from 
CAD-CAP, we call this zero-shot classification. The same setup  as10 is adapted with τ = 0.1 and number of top-
neighbors k = 290.

Table 2.  Top-1 accuracies using weighted kNN-classifier over out-of-distribution samples from CAD-
CAP data to obtain an estimate for inherent discrimination and generalization to new classes. Clustering is 
performed over normalized 128-dimensional zip embedding from R50 encoder. To our surprise, PGCon and 
WINCon outperforms fully supervised classification on CAD-CAP  data9. Significant values are in bold.

Unsupervised clustering on out of distribution dataset

PIRL 55.0

Vats et al. (supervised)9 58.7

PGCon 68.0

WINCon 66.0

Table 3.  Top-1 linear n-way classification accuracy (n being the number of classes) evaluated with a linear 
classification head (2-fc layers) over frozen encoder weights on datasets OSF-Kvasir, FS-KID, FS-KID2 and 
CAD-CAP. All results are with the R50 encoder. Significant values are in bold.

OSF-Kvasir FS-KID FS-KID2

CAD-CAP

1% 10% 100%

Random R50 56.8 24.5 51.6 33.3 38.5 71.4

INet pretrained R50 67.0 44.9 66.1 39.6 79.3 93.2

PIRL 61.8 40.8 62.2 29.6 50.7 88.7

Ours PGCon 66.0 44.9 68.3 52.9 75.1 91.01

Ours WINCon 63.3 45.2 62.7 47.0 76.2 92.0

Table 4.  Pathology classification with full fine tuning on OSF-Kvasir and CAD-CAP dataset. All methods 
except DenseNet-161 are on ResNet-50 (R50) and full fine tuning includes BatchNorm training. The baseline 
ImageNet Pretrained R50 refers to supervised ImageNet pretraining with full fine-tuning. CAD-CAP: both 
PGCon and WINCon match or outperform ImageNet pretraining as well as fully supervised learning (with 
Imagenet pretraining) on DenseNet-16118 , OSF-Kvasir: both methods close the gap with baselines. Significant 
values are in bold.

OSF-Kvasir CAD-CAP

Top-1 accuracy AUC Precision Recall Top-1 accuracy AUC Precision Recall

Random R50 56.6 87.0 61.0 55.0 71.4 84.0 75.0 71.0

ImageNet Pretrained R50 66.6 88.0 68.0 67.0 93.1 98.0 94.0 94.0

DenseNet-16118 – – – – 93.3 87.0 94.0 93.0

PIRL12 59.3 84.0 75.0 59.0 91.1 97.0 91.0 90.0

Guo et al.19 – – – – 93.17 – – –

(Ours) PGCon 66.2 85.0 69.0 66.0 94.7 99.0 95.0 95.0

(Ours) WINCon 62.3 81.0 69.0 61.0 93.7 99.0 95.0 94.0
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Observations. As in Table 2, our fully unsupervised performance surpasses the supervised performance  in9 by 
9% and unsupervised PIRL  performance12 by almost 13% indicating that the representations are robust enough 
to directly discriminate between classes of pathology without requiring any fine-tuning on target dataset .

Task 2: downstream linear classification. Setup. Next we perform linear evaluation where the en-
coder weights are frozen and only the linear classification layers are trained. Table 3 presents the first of such 
evaluation in WCE across all four datasets for pathology classification. As discussed earlier, the evaluation on 
FS-KID and FS-KID2 is few-shot due to few samples per class and in CAD-CAP we explicitly test few-shot with 
1% and 10% label subsets.

Observations. We consistently perform better than  PIRL12 across all datasets and label-subset regimes with a 
difference in accuracy of up to 18% observed for CAD-CAP-1% (2 to 3 samples per class). In comparison with 
ImageNet pretraining, we close the gap in OSF-Kvasir, FS-KID, FS-KID2 and CAD-CAP datasets. As earlier, the 
improvement over Imagenet pretraining (1 million natural images against 80k unbalanced, roughly 12 times 
less) is more discernible in low data regimes (FS-KID, FS-KID2, CAD-CAP-1%). We believe this to be due to our 
representations encoding concepts of pathologies, even before fine-tuning, that are superior to out-of-domain 
representations like those from Imagenet.

Task 3: full fine tuning. Setup. Next, we evaluate the performance with full fine-tuning on OSF-Kvasir 
and CAD-CAP (sample sufficient datasets), all layers including batch-norm are trained.

Observations. As seen in Table 4, PGCon closely matches or surpasses the baselines on both datasets, with 
higher pathology sensitivity, while WINCon only outperforms PIRL and matches the ImageNet pretraining on 
CAD-CAP.

Embedding space analysis. Recently, Wang et al.38 proposed alignment and uniformity as two metrics 
optimized by contrastive loss in the limit of infinite negatives. We apply these metrics to evaluate the alignment 
(distance between samples of the same category) and uniformity (total information preservation) of our encod-
ers. In Fig. 4a we see that PIRL exhibits high uniformity with low alignment, where high uniformity encoders 
are those that are highly informative of many (ideally all) the different features (less selective to some features). 
This is in line with the initial expectation, as PIRL does not prefer any factors over others in a dataset. PGCon, 
which is selective in factors, shows improved alignment but slightly reduced uniformity compared to PIRL, 
meaning that not all features are considered equally important to be preserved. We conjecture that the improved 
alignment in PGCon comes at the cost of slightly reduced uniformity and the higher performance of PGCon 
suggests that uniformity may be beneficial only as long as the preserved information is task relevant. The missing 
information may be pertaining to domain factors unnecessary for the task. We see the activations in Fig. 4b sup-
plementing this, with PIRL exhibiting spurious activations whereas PGCon shows more localized activations.
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Figure 4.  (a) Alignment and uniformity: the graph illustrates Lalign vs Luniform for different encoders 
evaluated for OSF-Kvasir, CAD-CAP and subset of train data. The points in the plot are color coded for full fine 
tuning accuracy. (b) Activation map: visualization using  ScoreCAM39 shows the effectiveness of our approach 
for non-red (polyp, ulcer) and low prevalence (in train and test sets) pathologies. It also shows that WINCon 
exhibits higher locality compared to PGCon. For more visualizations refer to the supplementary video.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15708  | https://doi.org/10.1038/s41598-022-19675-7

www.nature.com/scientificreports/

Interestingly, WINCon is comparable to PIRL in alignment, but exhibits an even lower uniformity than 
PGCon, this could be due to WIN-contrast leading to further invariances in the domain. This observation is also 
supported by the smaller activation maps for WINCon compared to PGCon in Fig. 4b, as the overall uniformity 
decreases, the activations become more local. Furthermore, the performance indicates that WINCon is almost 
borderline beneficial in terms of domain invariance, we suspect it is possible to go too far and plan to investigate 
this aspect in future work.

Figure 3 shows screenshots of the feature space as it evolves during training, for PGCon and WINCon (we 
recommend zooming in for clarity). Recall here that the Global Negatives (GN) for an image in PGCon are 
prior-views of other images, i.e. other pathologies. The contrastive objective therefore starts by pulling close same 
image crops ( zp , zd ) and pushing apart different image crops (GN,zp ) (Epoch 0). Over time with pulling and 
pushing as embeddings specialize in pathologies, contrast in the space amounts to contrasting between different 
pathologies. Epoch 500 shows the final space where instances lie based on pathological similarity (indicated by 
good clustering performance (Table 2)).

On the other hand, we see in WINCon that initially WINs lie close to the corresponding prior views ( zp ) as 
the training begins (Epoch 0), this is expected as they are from the same image. However, as training matures 
(epoch 500), they push away from the prior views ( zp ). This corresponds to the desirable scenario from Fig. 1. This 
is because WINs encode normal variations, whereas ( zp ) are pathologies, further it is seen that ( zp s) approach 
proximity with GN, which are also pathologies.

Weak labels. In Fig. 4 we demonstrate the generalizability of the proposed approach on a wide range of 
WCE pathologies. We use  ScoreCam39 to visualize the activation maps on red as well as non-red pathologies, that 
vary in structural and other visual characteristics (for more visualizations refer to our supplementary video). 
Our method is also more robust to domain distractors as seen in relatively unclean images (rows 2–4). We see 
that WINCon activations are more local, an effect arising from contrast with normal regions within the instance, 
whereas PGCon activations being more robust. Apart from the contributions discussed already, we believe this 
work to be of significant contribution in systematically arriving at weak labels (Fig. 4) without any supervision 
on a variety of intestinal pathologies, the use of which would benefit un/semi-supervised learning in the field.

Conclusion
In this paper, we investigate a somewhat overlooked aspect of learning under multiple-factors in datasets and 
discuss the challenge in preferential learning from such multi-factor datasets in a practical context, completely 
unsupervised. We also introduce a methodology for exploiting domain priors to guide such preferences. We hope 
our benchmark promotes for improved generalization, with more multi-pathology as well as multi-modality 
comparisons in the future, as opposed to single pathology benchmarks that limit practicality in real clinical 
scenarios. Our pretrained weights can be utilized for weak labeling of many different types of WCE patholgies 
for guiding un/semi-supervised algorithms for diagnosis.

Limitations and future work. The term generalization can be interpreted in a variety of ways from one 
domain to another. In WCE classification, first-stage generalization applies to counteracting the domain shift 
arising from using different capsule endoscopes, different organs (small bowel, colon, esophagus) as well as to 
different pathologies in these environments. In this paper we test generalization with respect to capsule modality 
as well as pathologies (of small bowel and colon), however, in the future, we plan to expand generalization out-
side this premise and expand the generalization to tasks like localization, organ classification etc. Furthermore, 
we aim to investigate robust-priors that can be attuned to different medical domains, to broaden the scope of 
such preferential learning. This study is in accordance with relevant guidelines and regulations.

Data availability
The datasets OSF Kvasir, KID, KID2 are publicly available (for direct links see supplementary), information about 
datasets CAD-CAP40, Ps-DeVCEM32 is available upon request by Anuja Vats (or authors  in32,40).
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