metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

The monoclinic form of di-*u*-agua-bis-[diaguabis(thiocyanato-*kN*)iron(II)]-1,4bis(4H-1,2,4-triazol-4-yl)benzene (1/3)

Yuan-Yuan Liu, Pan Yang and Bin Ding*

Tianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300071, People's Republic of China Correspondence e-mail: qsdingbin@yahoo.com.cn

Received 10 May 2012; accepted 9 June 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; R factor = 0.050; wR factor = 0.132; data-to-parameter ratio = 12.5.

The title complex, [Fe₂(NCS)₄(H₂O)₆]·3C₁₀H₈N₆, comprises two Fe^{II} atoms octahedrally coordinated and bridged by two aqua O atoms that straddle a crystallographic inversion center, forming a quadrilateral core. The water ligands of the core are involved in hydrogen bonds with the triazole N atoms of the organic molecules, which generates a layer motif in the *ab* plane. There are $\pi - \pi$ stacking interactions between benzene rings of 3.490 (6) Å, and between triazole rings of 3.543 (8) and 3.734 (7) Å in neighboring layers, forming a threedimensional network.

Related literature

For details of compounds containing similar diiron centers, see: Hsu et al. (1999); Zheng et al. (1999); MacMurdo et al. (2000); Yoon et al. (2004). For information on multicomponent dioxygen dependent enzymes including toluene monooxygenase, see: Sazinsky et al. (2004), and for those that include the R_2 subunit of ribonucleotide reductase, see: Nordlund & Eklund (1993); Stubbe & Van der Donk (1998). For the triclinic form of the title compound, see: Yang et al. (2012).

Experimental

Crystal data

[Fe2(NCS)4(H2O)6]-3C10H8N6 $M_r = 1088.79$ Monoclinic, P2/c a = 7.828 (2) Å b = 14.198(4) Å c = 19.846 (5) Å $\beta = 97.212 \ (4)^{\circ}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.851, T_{\max} = 0.866$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	1 restraint
$wR(F^2) = 0.132$	H-atom parameters constraine
S = 1.04	$\Delta \rho_{\rm max} = 0.89 \text{ e } \text{\AA}^{-3}$
3865 reflections	$\Delta \rho_{\rm min} = -0.56 \text{ e} \text{ Å}^{-3}$
309 parameters	

Fe1-O3

Table 1

Fe1-N12

Selected bond lengths (Å).

Fe1-N11 2.098 (3) Fe1-O2 Fe1-O1 2.099 (2) Fe1-O2ⁱ

2.080(3)

Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.

Table 2		_	
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1A···N3 ⁱⁱ	0.84	2.00	2.833 (4)	176
$O1 - H1B \cdot \cdot \cdot N6^{iii}$	0.84	2.00	2.841 (4)	178
$O2-H2A\cdots N10$	0.84	2.00	2.834 (3)	176
$O2-H2B\cdots N8^{iv}$	0.84	2.00	2.836 (4)	174
$O3-H3A\cdots N2^{i}$	0.84	1.95	2.784 (4)	176
$O3-H3B\cdots N5^{v}$	0.84	1.92	2.761 (4)	179

Symmetry codes: (i) $-x, y, -z + \frac{1}{2}$; (ii) $-x + 1, y, -z + \frac{1}{2}$; (iii) $-x + 1, y - 1, -z + \frac{1}{2}$; (iv) $x, y - 1, z; (v) - x, y - 1, -z + \frac{1}{2}$

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

This present work was supported financially by Tianjin Educational Committee (20090504) and Tianjin Normal University (1E0402B).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2413).

Z = 2Mo Ka radiation $\mu = 0.93 \text{ mm}^{-1}$ T = 173 K $0.18 \times 0.17 \times 0.16 \; \mathrm{mm}$

 $V = 2188.3 (10) \text{ Å}^3$

10801 measured reflections 3865 independent reflections 2796 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.058$

ed

2.106(2)

2.258 (2)

2.271 (2)

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Hsu, H. F., Dong, Y., Shu, L., Young, V. G. Jr & Que, L. Jr (1999). J. Am. Chem. Soc. 121, 5230–5237.
- MacMurdo, V. L., Zheng, H. & Que, L. Jr (2000). Inorg. Chem. 39, 2254–2255.

Nordlund, P. & Eklund, H. (1993). J. Mol. Biol. 232, 123-164.

- Sazinsky, M. H., Bard, J., Di Donato, A. & Lippard, S. J. (2004). J. Biol. Chem. 279, 30600–30610.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
 - Stubbe, J. & Van der Donk, W. A. (1998). Chem. Rev. 98, 705-762.
 - Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
 - Yang, P., Ding, B. & Du, G.-X. (2012). Acta Cryst. E68, m1038–m1039.
 - Yoon, S., Kelly, A. E. & Lippard, S. J. (2004). Polyhedron, 23, 2805–2812.
 Zheng, H., Zang, Y., Dong, Y., Young, V. G. Jr & Que, L. Jr (1999). J. Am. Chem. Soc. 121, 2226–2235.

supplementary materials

Acta Cryst. (2012). E68, m1036-m1037 [doi:10.1107/S160053681202613X]

The monoclinic form of di- μ -aqua-bis[diaquabis(thiocyanato- κN)iron(II)]-1,4-bis(4*H*-1,2,4-triazol-4-yl)benzene (1/3)

Yuan-Yuan Liu, Pan Yang and Bin Ding

Comment

The diiron unit, with a carboxylate-rich coordination environment, continues to attract considerable attention due to its role in enzyme catalysis activity, which occurs in related multicomponent dioxygen dependent enzymes, including toluene monooxygenase (Sazinsky et al., 2004), the R_2 subunit of ribonucleotide reductase (Stubbe & Van der Donk, 1998; Nordlund & Eklund, 1993). With the development of compounds that contain the diiron center, the structure of a series of Fe2(II,II) (MacMurdo et al., 2000), Fe2(III,III) (Zheng et al., 1999) and Fe2(III,IV) (Hsu et al., 1999) complexes with a central Fe_2O_2 quadrilateral have been obtained. In comparison to other compounds with similar di-iron species, it is rare for the quadrilateral center to include two water molecules, as most contain carboxylic oxygen atoms. In order to explore further details of the coordination environment of the diiron system, the title complex was synthesized. As shown in Fig. 1, the structure comprises two distorted octahedral iron(II) centers that straddle a crystallographic inversion center bridged by two aqueous oxygen atoms to form a quadrilateral core. The separation between the iron atoms is 3.498 (4) Å, which is remarkably different from the 3.0430 (7) Å reported previously, owing to the absence of carboxylate ligands (Yoon et al., 2004). Moreover, the distance of Fe-Fe is different from that in complexes that contain higher valence iron (MacMurdo et al., 2000; Zheng et al., 1999; Hsu et al., 1999). The bond lengths of Fe—O2 and Fe—O2A are 2.258 (3) and 2.271 (5) Å, and the angles of O2—Fe—O3 and Fe1A—O2—Fe are 92.09 (1)° and 101.12 (9)°. Each Fe(II) center resides in a six-coordinated octahedron of two nitrogens and four waters. Two waters bridge the iron atoms in the equatorial plane to form the quadrilateral core with a mean Fe-O distance of 2.272 (2) Å. The other waters (O1 & O3) act as terminal ligands with the bond lengths 2.106 (4) Å and 2.099 (4) Å. The axial positions are occupied by two N atoms from the NCS⁻ anions with the distances 2.080 (1) Å and 2.098 (1) Å to iron. Selected bond distances are listed in Table 1. As indicated in Fig. 2, classical intermolecular O-H···N H-bonds are formed between the triazole nitrogen atom supplied by the uncoordinated organic ligand 1,4-Bis(4H-1,2,4-triazol-4-yl)benzene and aqueous oxygen atoms supplied by the bridging and terminal water ligands to generate a two-dimensional ladder-like structure with the O. N separation ranging from 2.761 (4) Å to 2.861 (4) Å. In addition, there are intermolecular π - π stacking interactions between the organic species within the crystal that form a three-dimensional network. The interlayer distance between triazole moieties and benzene rings of neighboring layers is 3.490 (6) Å. There are also π - π stacking interactions between the triazole moieties within one layer, the corresponding distance are 3.543 (8) Å and 3.734 (7) Å. Details of the hydrogen bonds are given in Table 2.

Experimental

The compound was synthesized under hydrothermal conditions. A mixture of L (L = 1,4-bis(4H-1,2,4-triazol-4-yl)benzene) (0.3 mmol, 0.0636 g), FeSO₄.7H₂O (0.1 mmol, 0.028 g), KSCN (0.2 mmol, 0.019 g) and water (10 ml) was placed in a 25 ml acid digestion bomb and heated at 433 K for two days, then slowly cooled to room temperature over

three days. After washing twice with 5 ml water, colorless block crystals of the compound were obtained.

Refinement

The water H atoms were located in a Fourier difference map and refined subject to an O—H distance restraint of 0.88 (1) Å and an H···H distance restraint of 1.42 (2) Å. Other H atoms were allowed to ride on their parent atoms with C—H distances of 0.93 Å ($U_{iso}(H) = 1.2Ueq(C)$). All of the non-hydrogen atoms were refined anisotropically.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

The structure of the title complex, showing 30% probability displacement ellipsoids. Unlabelled atoms of the inversion-related parts have symmetry code: (-x, y, -z + 1/2).

Figure 2

The two-dimensional layer structure of the title complex viewed approximately along the crystallographic c axis. Purple dashed lines indicate O—H···N hydrogen bonds.

Di-μ-aqua-bis[diaquabis(thiocyanato-κN)iron(II)]- 1,4-bis(4H-1,2,4-triazol-4-yl)benzene (1/3)

Crystal data

 $[Fe_{2}(NCS)_{4}(H_{2}O)_{6}] \cdot 3C_{10}H_{8}N_{6}$ $M_{r} = 1088.79$ Monoclinic, P2/cHall symbol: -P 2yc a = 7.828 (2) Å b = 14.198 (4) Å c = 19.846 (5) Å $\beta = 97.212$ (4)° V = 2188.3 (10) Å³ Z = 2

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.851, T_{\max} = 0.866$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.132$ S = 1.043865 reflections 309 parameters F(000) = 1116 $D_x = 1.652 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2057 reflections $\theta = 2.5-27.8^{\circ}$ $\mu = 0.93 \text{ mm}^{-1}$ T = 173 KBlock, colourless $0.18 \times 0.17 \times 0.16 \text{ mm}$

10801 measured reflections 3865 independent reflections 2796 reflections with $I > 2\sigma(I)$ $R_{int} = 0.058$ $\theta_{max} = 25.0^\circ, \theta_{min} = 1.4^\circ$ $h = -8 \rightarrow 9$ $k = -16 \rightarrow 16$ $l = -21 \rightarrow 23$

1 restraint H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0585P)^2 + 0.4735P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.89 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.56 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х v Ζ Fe1 0.05963 (6) 0.16467 (3) 0.33793 (2) 0.01446 (18) **S**1 0.05329(11) 0.50871 (6) 0.35618 (5) 0.0211(2)S2 0.05068 (11) -0.17806(6)0.35648 (5) 0.0203(2)01 0.3101 (3) 0.16590 (15) 0.39010(12) 0.0196 (5) 0.029* H1A 0.3708 0.2145 0.3972 H1B 0.3752 0.1195 0.3998 0.029* 02 0.1789(3)0.16476 (14) 0.24007 (11) 0.0161 (5) H2A 0.2438 0.2119 0.2407 0.024* H₂B 0.2393 0.024* 0.2417 0.1169 03 -0.0890(3)0.16644 (15) 0.41931 (12) 0.0203 (5) H3A 0.030* -0.14730.2146 0.4255 -0.1482H3B 0.030* 0.1196 0.4278 N1 0.3789 (4) 0.47023 (19) 0.06694 (14) 0.0183 (7) N2 0.2966 (4) 0.3219 (2) 0.06431 (16) 0.0258 (7) N3 0.4698(4)0.3241(2)0.08670 (14) 0.0202(7)N4 0.3743(4)0.8658(2)0.05758 (14) 0.0174 (7) N5 0.2863 (4) 1.0131 (2) 0.05359 (15) 0.0224 (7) 0.07812 (14) N6 0.0209(7)0.4616(4)1.0122 (2) N7 0.5000 0.8633(3)0.2500 0.0154 (9) N8 0.4102(4)1.0106 (2) 0.24412 (14) 0.0214(7)N9 0.5000 0.4665(3)0.2500 0.0145(9)N10 0.4106(4)0.31863 (18) 0.24409 (14) 0.0168 (6) N11 0.0567 (4) 0.3124(2)0.33920 (14) 0.0183 (7) N12 0.0565(4)0.0182(2)0.34003 (14) 0.0196(7) C1 0.2475(5)0.4088(3)0.05327 (19) 0.0261 (9) H1 0.1326 0.4268 0.0374 0.031* 0.4124 (3) C2 0.5163 (5) 0.08729 (17) 0.0216 (9) H2 0.6307 0.4339 0.1002 0.026* C3 0.3775 (4) 0.5706(2) 0.06257 (17) 0.0169 (8) C4 0.2300(5)0.6193 (3) 0.03582 (18) 0.0198 (8) H4 0.1292 0.5851 0.0193 0.024* C5 0.2278(5)0.7155 (2) 0.03294 (18) 0.0187 (8) H5 0.1260 0.7478 0.0147 0.022* C6 0.3744(4)0.7656(2)0.0158 (8) 0.05673 (17) C7 0.5252(4)0.7171 (3) 0.08215 (17) 0.0194 (8) H7 0.023* 0.6272 0.7513 0.0972 C8 0.0170 (8) 0.5258(4)0.08527(17)0.6211(2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H8	0.6278	0.5887	0.1030	0.020*	
C9	0.2403 (5)	0.9256 (2)	0.04204 (18)	0.0212 (8)	
H9	0.1269	0.9063	0.0249	0.025*	
C10	0.5096 (5)	0.9249 (2)	0.07933 (17)	0.0201 (8)	
H10	0.6239	0.9043	0.0934	0.024*	
C11	0.3611 (5)	0.9233 (2)	0.24117 (18)	0.0207 (8)	
H11	0.2443	0.9034	0.2339	0.025*	
C12	0.5000	0.7624 (3)	0.2500	0.0139 (10)	
C13	0.3455 (4)	0.7139 (2)	0.23747 (16)	0.0151 (8)	
H13	0.2401	0.7475	0.2290	0.018*	
C14	0.3453 (4)	0.6164 (2)	0.23733 (17)	0.0178 (8)	
H14	0.2396	0.5830	0.2286	0.021*	
C15	0.5000	0.5672 (3)	0.2500	0.0161 (11)	
C16	0.3622 (5)	0.4059 (2)	0.24096 (18)	0.0199 (8)	
H16	0.2454	0.4256	0.2333	0.024*	
C17	0.0552 (4)	0.3932 (2)	0.34653 (17)	0.0155 (8)	
C18	0.0545 (4)	-0.0633 (2)	0.34701 (17)	0.0159 (8)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	<i>U</i> ¹²	U ¹³	U^{23}
Fe1	0.0105 (3)	0.0110 (3)	0.0222 (3)	0.0003 (2)	0.0035 (2)	-0.0001 (2)
S1	0.0128 (5)	0.0146 (5)	0.0355 (5)	0.0013 (4)	0.0016 (4)	-0.0022 (4)
S2	0.0134 (5)	0.0110 (5)	0.0363 (6)	-0.0011 (4)	0.0024 (4)	0.0023 (4)
O1	0.0137 (12)	0.0117 (12)	0.0329 (14)	0.0002 (10)	0.0011 (10)	0.0002 (10)
O2	0.0116 (11)	0.0094 (12)	0.0273 (13)	0.0001 (10)	0.0027 (10)	0.0005 (10)
O3	0.0154 (12)	0.0151 (13)	0.0318 (14)	-0.0017 (10)	0.0087 (10)	-0.0010 (10)
N1	0.0179 (16)	0.0148 (16)	0.0220 (16)	0.0038 (13)	0.0017 (13)	0.0006 (12)
N2	0.0175 (17)	0.0259 (19)	0.0356 (19)	-0.0038 (15)	0.0096 (14)	-0.0005 (15)
N3	0.0170 (16)	0.0218 (18)	0.0219 (16)	0.0009 (14)	0.0032 (13)	0.0026 (13)
N4	0.0153 (16)	0.0153 (15)	0.0220 (16)	-0.0004 (12)	0.0045 (13)	-0.0010 (12)
N5	0.0171 (16)	0.0194 (18)	0.0322 (18)	-0.0028 (14)	0.0088 (13)	-0.0003 (14)
N6	0.0216 (17)	0.0161 (17)	0.0254 (17)	-0.0034 (14)	0.0043 (13)	-0.0040 (13)
N7	0.010 (2)	0.009 (2)	0.027 (2)	0.000	0.0032 (17)	0.000
N8	0.0170 (15)	0.0242 (18)	0.0238 (16)	0.0008 (14)	0.0055 (13)	-0.0015 (14)
N9	0.012 (2)	0.015 (2)	0.017 (2)	0.000	0.0041 (16)	0.000
N10	0.0179 (15)	0.0117 (16)	0.0218 (16)	-0.0027 (12)	0.0062 (13)	-0.0014 (12)
N11	0.0131 (16)	0.0175 (18)	0.0251 (17)	0.0012 (12)	0.0056 (12)	-0.0001 (12)
N12	0.0148 (16)	0.0166 (18)	0.0276 (17)	-0.0017 (13)	0.0041 (13)	-0.0012 (13)
C1	0.016 (2)	0.026 (2)	0.037 (2)	0.0022 (17)	0.0070 (17)	0.0015 (17)
C2	0.018 (2)	0.025 (2)	0.022 (2)	0.0054 (16)	0.0028 (16)	0.0033 (16)
C3	0.0150 (19)	0.0174 (19)	0.0188 (19)	0.0012 (15)	0.0036 (15)	0.0013 (14)
C4	0.0099 (19)	0.023 (2)	0.026 (2)	-0.0004 (15)	0.0001 (15)	-0.0012 (16)
C5	0.0122 (19)	0.0158 (19)	0.028 (2)	0.0026 (15)	0.0010 (15)	0.0012 (15)
C6	0.0147 (19)	0.0156 (19)	0.0179 (18)	-0.0023 (14)	0.0055 (14)	-0.0029 (14)
C7	0.0107 (19)	0.026 (2)	0.0211 (19)	-0.0022 (15)	0.0005 (15)	-0.0027 (16)
C8	0.0112 (19)	0.021 (2)	0.0188 (19)	0.0020 (15)	0.0032 (15)	0.0015 (15)
С9	0.0134 (19)	0.020 (2)	0.031 (2)	-0.0017 (16)	0.0069 (16)	-0.0036 (16)
C10	0.017 (2)	0.019 (2)	0.025 (2)	-0.0038 (15)	0.0042 (16)	-0.0002 (15)
C11	0.018 (2)	0.020 (2)	0.025 (2)	-0.0030 (16)	0.0054 (16)	-0.0005 (15)

supplementary materials

C12	0.014 (3)	0.013 (3)	0.015 (2)	0.000	0.005 (2)	0.000
C13	0.0118 (19)	0.0142 (19)	0.0195 (19)	0.0029 (14)	0.0034 (14)	0.0013 (14)
C14	0.0100 (19)	0.021 (2)	0.023 (2)	0.0008 (15)	0.0021 (15)	-0.0005 (15)
C15	0.017 (3)	0.015 (3)	0.016 (3)	0.000	0.004 (2)	0.000
C16	0.0164 (19)	0.021 (2)	0.022 (2)	-0.0039 (16)	0.0032 (15)	-0.0008 (15)
C17	0.0083 (18)	0.016 (2)	0.0226 (19)	-0.0017 (14)	0.0019 (14)	0.0054 (15)
C18	0.0075 (17)	0.022 (2)	0.0189 (19)	-0.0007 (15)	0.0021 (14)	-0.0040 (15)

Geometric parameters (Å, °)

Fe1—N12	2.080 (3)	N8—N8 ⁱⁱ	1.396 (6)
Fe1—N11	2.098 (3)	N9—C16 ⁱⁱ	1.374 (4)
Fe1—O1	2.099 (2)	N9—C16	1.374 (4)
Fe1—O3	2.106 (2)	N9—C15	1.430 (6)
Fe1—O2	2.258 (2)	N10—C16	1.294 (4)
Fe1—O2 ⁱ	2.271 (2)	N10—N10 ⁱⁱ	1.390 (6)
S1—C17	1.652 (4)	N11—C17	1.156 (4)
S2—C18	1.641 (4)	N12—C18	1.166 (4)
O1—H1A	0.8400	C1—H1	0.9500
O1—H1B	0.8400	С2—Н2	0.9500
O2—Fe1 ⁱ	2.271 (2)	C3—C8	1.390 (5)
O2—H2A	0.8401	C3—C4	1.392 (5)
O2—H2B	0.8401	C4—C5	1.367 (5)
O3—H3A	0.8399	C4—H4	0.9500
O3—H3B	0.8400	C5—C6	1.382 (5)
N1—C1	1.350 (4)	С5—Н5	0.9500
N1—C2	1.373 (4)	C6—C7	1.405 (5)
N1—C3	1.428 (4)	C7—C8	1.364 (5)
N2—C1	1.303 (4)	С7—Н7	0.9500
N2—N3	1.373 (4)	C8—H8	0.9500
N3—C2	1.304 (4)	С9—Н9	0.9500
N4—C9	1.355 (4)	C10—H10	0.9500
N4—C10	1.378 (4)	C11—H11	0.9500
N4—C6	1.423 (4)	C12—C13	1.387 (4)
N5—C9	1.306 (4)	C12—C13 ⁱⁱ	1.387 (4)
N5—N6	1.397 (4)	C13—C14	1.385 (5)
N6—C10	1.295 (4)	С13—Н13	0.9500
N7—C11 ⁱⁱ	1.376 (4)	C14—C15	1.393 (4)
N7—C11	1.376 (4)	C14—H14	0.9500
N7—C12	1.432 (6)	C15—C14 ⁱⁱ	1.393 (4)
N8—C11	1.296 (4)	C16—H16	0.9500
N12—Fe1—N11	177.62 (11)	N1—C1—H1	123.9
N12—Fe1—O1	90.63 (10)	N3—C2—N1	111.4 (3)
N11—Fe1—O1	89.82 (10)	N3—C2—H2	124.3
N12—Fe1—O3	89.29 (10)	N1—C2—H2	124.3
N11—Fe1—O3	88.33 (10)	C8—C3—C4	119.1 (3)
O1—Fe1—O3	101.16 (9)	C8—C3—N1	119.7 (3)
N12—Fe1—O2	91.43 (9)	C4—C3—N1	121.2 (3)
N11—Fe1—O2	90.93 (9)	C5—C4—C3	121.2 (3)

O1—Fe1—O2	87.86 (9)	C5—C4—H4	119.4
O3—Fe1—O2	170.94 (8)	C3—C4—H4	119.4
N12—Fe1—O2 ⁱ	90.20 (9)	C4—C5—C6	119.6 (3)
N11—Fe1—O2 ⁱ	89.90 (9)	C4—C5—H5	120.2
O1—Fe1—O2 ⁱ	166.73 (9)	С6—С5—Н5	120.2
O3—Fe1—O2 ⁱ	92.09 (9)	C5—C6—C7	119.7 (3)
O2—Fe1—O2 ⁱ	78.88 (9)	C5—C6—N4	121.1 (3)
Fe1—O1—H1A	124.3	C7—C6—N4	119.1 (3)
Fe1—O1—H1B	127.5	C8—C7—C6	120.2 (3)
H1A—O1—H1B	107.0	С8—С7—Н7	119.9
Fe1—O2—Fe1 ⁱ	101.12 (9)	С6—С7—Н7	119.9
Fe1—O2—H2A	107.6	C7—C8—C3	120.2 (3)
Fe1 ⁱ —O2—H2A	117.0	С7—С8—Н8	119.9
Fe1—O2—H2B	108.7	С3—С8—Н8	119.9
Fe1 ⁱ —O2—H2B	114.9	N5—C9—N4	111.5 (3)
H2A—O2—H2B	106.9	N5—C9—H9	124.2
Fe1—O3—H3A	119.0	N4—C9—H9	124.2
Fe1—O3—H3B	121.1	N6—C10—N4	111.6 (3)
H3A—O3—H3B	107.0	N6—C10—H10	124.2
C1—N1—C2	102.8 (3)	N4—C10—H10	124.2
C1—N1—C3	129.3 (3)	N8—C11—N7	111.2 (3)
C2—N1—C3	127.9 (3)	N8—C11—H11	124.4
C1—N2—N3	106.9 (3)	N7—C11—H11	124.4
C2—N3—N2	106.8 (3)	C_{13} C_{12} C_{13}	120.5 (4)
$C_{2} - N_{4} - C_{10}$	103.4 (3)	C13 - C12 - N7	119.8 (2)
C9—N4—C6	128 7 (3)	$C13^{ii}$ — $C12$ —N7	119.8(2)
C10—N4—C6	1277(3)	C14-C13-C12	119.0(2) 119.9(3)
C9—N5—N6	106.9(3)	C_{14} C_{13} H_{13}	120.1
C10-N6-N5	106.6 (3)	C12—C13—H13	120.1
$C11^{ii}$ N7—C11	103.4(4)	C_{13} C_{14} C_{15}	120.1 120.0(4)
$C11^{ii}$ N7—C12	103.1(1) 128.3(2)	C_{13} C_{14} H_{14}	120.0 (1)
C11 - N7 - C12	120.3(2) 128 3 (2)	C_{15} C_{14} H_{14}	120.0
$C11 - N8 - N8^{ii}$	120.3(2) 107 1 (2)	C_{14} C_{14} C_{15} C_{14} C_{14}	119 9 (5)
$C16^{ii}$ N9 C16	107.1(2) 102.4(4)	C14 - C15 - N9	119.9(3)
$C16^{ii}$ N9 $C15$	102.4(4) 128.8(2)	$C14^{ii}$ $C15$ N9	120.1(2)
$C_{10} = N_{9} = C_{15}$	128.8(2)	N10 C16 N9	120.1(2)
$C_{10} = N_{10} = C_{13}$	126.0(2) 106.0(2)	N10 C16 H16	124.0
C17 N11 Ec1	100.9(2) 173.5(2)	$N_{10} = C_{10} = H_{10}$	124.0
C17— $N11$ — $Fe1C18$ $N12$ $Ee1$	173.3(3) 174.2(2)	$N_{11} = C_{10} = H_{10}$	124.0 170.4(3)
C_{10} N_{12} $-re_1$	1/4.5(3) 1122(3)	N12 C18 S2	179.4(3)
$N_2 = C_1 = N_1$	112.2 (3)	N12-C10-52	1/9./ (4)
N2—C1—H1	125.9		
N12—Fe1—O2—Fe1 ⁱ	89.86 (10)	C9—N4—C6—C7	-172.9(3)
N11—Fe1—O2—Fe1 ⁱ	-89.78 (10)	C10—N4—C6—C7	1.9 (5)
O1—Fe1— $O2$ —Fe1 ⁱ	-179.56 (9)	C5—C6—C7—C8	-2.0(5)
O3—Fe1— $O2$ —Fe1 ⁱ	-4.6 (6)	N4—C6—C7—C8	176.5 (3)
$O2^{i}$ —Fe1—O2—Fe1 ⁱ	-0.06 (11)	C6-C7-C8-C3	0.7 (5)
C1—N2—N3—C2	-0.6 (4)	C4—C3—C8—C7	0.9 (5)
C9—N5—N6—C10	0.4 (4)	N1—C3—C8—C7	-179.1 (3)

N12—Fe1—N11—C17	33 (4)	N6—N5—C9—N4	0.2 (4)
O1—Fe1—N11—C17	-67 (2)	C10—N4—C9—N5	-0.7 (4)
O3—Fe1—N11—C17	34 (2)	C6—N4—C9—N5	175.1 (3)
O2—Fe1—N11—C17	-155 (2)	N5—N6—C10—N4	-0.8 (4)
O2 ⁱ —Fe1—N11—C17	126 (2)	C9—N4—C10—N6	0.9 (4)
N11—Fe1—N12—C18	-32 (5)	C6—N4—C10—N6	-174.9 (3)
O1-Fe1-N12-C18	69 (3)	N8 ⁱⁱ —N8—C11—N7	-0.4 (4)
O3—Fe1—N12—C18	-32 (3)	C11 ⁱⁱ —N7—C11—N8	0.16 (17)
O2-Fe1-N12-C18	157 (3)	C12—N7—C11—N8	-179.84 (17)
O2 ⁱ —Fe1—N12—C18	-124 (3)	C11 ⁱⁱ —N7—C12—C13	-177.4 (2)
N3—N2—C1—N1	0.1 (4)	C11—N7—C12—C13	2.6 (2)
C2—N1—C1—N2	0.4 (4)	C11 ⁱⁱ —N7—C12—C13 ⁱⁱ	2.6 (2)
C3—N1—C1—N2	-178.8 (3)	C11—N7—C12—C13 ⁱⁱ	-177.4 (2)
N2—N3—C2—N1	1.0 (4)	C13 ⁱⁱ —C12—C13—C14	-0.1 (2)
C1—N1—C2—N3	-0.9 (4)	N7—C12—C13—C14	179.9 (2)
C3—N1—C2—N3	178.4 (3)	C12—C13—C14—C15	0.2 (4)
C1—N1—C3—C8	174.0 (3)	C13—C14—C15—C14 ⁱⁱ	-0.1 (2)
C2—N1—C3—C8	-5.0 (5)	C13—C14—C15—N9	179.9 (2)
C1—N1—C3—C4	-6.1 (6)	C16 ⁱⁱ —N9—C15—C14	177.6 (3)
C2—N1—C3—C4	174.9 (3)	C16—N9—C15—C14	-2.4 (3)
C8—C3—C4—C5	-1.4 (5)	C16 ⁱⁱ —N9—C15—C14 ⁱⁱ	-2.4 (3)
N1—C3—C4—C5	178.6 (3)	C16—N9—C15—C14 ⁱⁱ	177.6 (3)
C3—C4—C5—C6	0.2 (5)	N10 ⁱⁱ —N10—C16—N9	0.1 (4)
C4—C5—C6—C7	1.5 (5)	C16 ⁱⁱ —N9—C16—N10	-0.04 (17)
C4—C5—C6—N4	-176.9 (3)	C15—N9—C16—N10	179.96 (17)
C9—N4—C6—C5	5.5 (5)	Fe1—N11—C17—S1	176 (100)
C10—N4—C6—C5	-179.7 (3)	Fe1—N12—C18—S2	126 (70)

Symmetry codes: (i) -x, y, -z+1/2; (ii) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1A····N3 ⁱⁱ	0.84	2.00	2.833 (4)	176
O1—H1 <i>B</i> ···N6 ⁱⁱⁱ	0.84	2.00	2.841 (4)	178
O2—H2A…N10	0.84	2.00	2.834 (3)	176
$O2$ — $H2B$ ···· $N8^{iv}$	0.84	2.00	2.836 (4)	174
O3—H3A···N2 ⁱ	0.84	1.95	2.784 (4)	176
O3—H3 <i>B</i> ···N5 ^v	0.84	1.92	2.761 (4)	179

Symmetry codes: (i) -x, y, -z+1/2; (ii) -x+1, y, -z+1/2; (iii) -x+1, y-1, -z+1/2; (iv) x, y-1, z; (v) -x, y-1, -z+1/2.