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Abstract

Pathogens cause significant challenges to global food security. On annual crops, pathogens must re-infect from environmental 
sources in every growing season. Fungal pathogens have evolved mixed reproductive strategies to cope with the distinct challenges 
of colonizing growing plants. However, how pathogen diversity evolves during growing seasons remains largely unknown. Here, we 
performed a deep hierarchical sampling in a single experimental wheat field infected by the major fungal pathogen Zymoseptoria 
tritici. We analysed whole genome sequences of 177 isolates collected from 12 distinct cultivars replicated in space at three time 
points of the growing season to maximize capture of genetic diversity. The field population was highly diverse with 37 SNPs per 
kilobase, a linkage disequilibrium decay within 200–700 bp and a high effective population size. Using experimental infections, we 
tested a subset of the collected isolates on the dominant cultivar planted in the field. However, we found no significant difference 
in virulence of isolates collected from the same cultivar compared to isolates collected on other cultivars. About 20 % of the isolate 
genotypes were grouped into 15 clonal groups. Pairs of clones were disproportionally found at short distances (<5 m), consistent 
with experimental estimates for per-generation dispersal distances performed in the same field. This confirms predominant leaf-
to-leaf transmission during the growing season. Surprisingly, levels of clonality did not increase over time in the field although 
reproduction is thought to be exclusively asexual during the growing season. Our study shows that the pathogen establishes vast 
and stable gene pools in single fields. Monitoring short-term evolutionary changes in crop pathogens will inform more durable 
strategies to contain diseases.

DATA SUMMARY
All Illumina sequence data are available from the NCBI SRA 
BioProject number PRJNA596434 (https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​PRJNA596434). Tables S1–S3 (available 
in the online version of this article) list the exact strain names, 
collection location, genotype and genetic diversity indices.

INTRODUCTION
Infectious diseases have a major impact on plant and animal 
populations including humans. Designing effective strate-
gies for disease prevention requires knowledge of the evolu-
tionary dynamics of pathogens. The evolutionary responses 

of pathogen populations to novel resistance factors and 
changing environmental conditions are critical [1]. Responses 
are often a function of genetic diversity in pathogens with 
consequences for disease severity and spread in heteroge-
neous host populations [2–4]. Highly resistant host popula-
tions tend to harbour the most virulent pathogens, whereas 
less virulent pathogens dominate susceptible populations [3]. 
In addition to selection by host genotypes, pathogen popula-
tions are subject to selection at life cycle stages outside of 
the host [5–7] and other environmental factors including 
the application of chemical compounds such as fungicides 
[8, 9]. Pathogens of annual plants must survive periods of 
time in the absence of a host and succeed in re-infecting 
new plants [10, 11]. During the growing season of the host, 
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pathogens are selected to colonize additional plants. Hence, 
evolutionary trajectories are expected to vary in space and 
time depending on selective pressures imposed by both the 
host and the environment [12, 13]. Beyond selection, small 
pathogen populations may experience genetic bottlenecks or 
gene flow. Hence, it remains largely unknown how pathogen 
populations evolve over short periods [14].

In agricultural crop–pathogen systems, infections begin with 
the exposure of a susceptible host to pathogen strains at the 
beginning of the growing season. The intensity of an infec-
tion depends on the level of host resistance, the amount of 
pathogen inoculum and environmental factors [15, 16]. If 
the infection is successful, pathogens complete their life cycle 
within the host and then transmit to another host. The genetic 
architecture of traits to successfully passage between infection 
stages is likely to be distinct [17, 18]. Entering a host plant 
requires manipulation of the host immune system [19–21]. 
Proliferation and reproduction inside the plant depend 
probably on optimal resource exploitation and continued 
suppression of immunity [22, 23]. Dispersal between hosts 
is governed by propagule properties [24, 25]. Therefore, 
pathogen populations probably experience complex selec-
tion pressures over the life cycle. Depending on the mode 
of between-season transmission and environmental condi-
tions, plant pathogen populations with annual infection 
cycles may experience severe demographic bottlenecks 
during the off-season, restricting the transmission of genetic 
variation between growing seasons [14, 26]. After a filtering 
of genotypes for persistence in the off-season environment, 
the surviving genotypes undergo selection for infectivity and 
spread among hosts during the subsequent epidemic phase. 
In any such scenario, pathogens must re-infect crops annually 
and successfully spread among plants in a field. Therefore, 
considering the time-scale of pathogen population turnover 
and demographic effects is important.

The mode of dispersal is often tightly associated with specific 
reproductive modes. Pathogens often have mixed reproduc-
tive strategies, meaning that sexual and asexual reproduction 
can alternate over the course of the life cycle adding to the 
complexity of recognizing species and challenging genetic 
diversity analyses [27, 28]. Fungal crop pathogens often 
reproduce asexually during the growing season to maximize 
dispersal at low population density. In turn, asexual repro-
duction during the epidemic phase probably has a strong 
influence on the genetic structure of pathogen populations 
[14]. On senescent plants, sexual reproduction can lead to 
favourable allele combinations for long-distance dispersal and 
survival [29]. An important pathogen with a mixed reproduc-
tive strategy is the fungal wheat pathogen Zymoseptoria tritici. 
This fungus is a haploid ascomycete and one of the most 
destructive pathogens of wheat with yield losses of 5–30 % 
[30]. Populations worldwide harbour significant variation in 
pathogenicity and diversity at loci underlying host specificity 
[31–34]. The pathogen follows typically a sequential regime 
of sexual and asexual cycles of reproduction over the growing 
season. During the sexual stage, the pathogen produces asci 
containing four pairs of genetically distinct ascospores, which 

are thought to be the source of primary infection in the field 
and can disperse over long distances [35, 36]. Once infections 
are established in a field, Z. tritici produces asexual pycn-
idiospores, which can disperse with rain splash and initiate 
secondary infections nearby. Spread within fields during 
the growing season is thought to be predominantly clonal 
[35]. Population genomics analyses of worldwide pathogen 
samples showed high genetic diversity within fields and 
extensive gene flow [32, 37–39]. Multi-year studies of Z. tritici 
populations have revealed trade-offs between the intra- and 
interannual scales in the evolution of aggressiveness [40] with 
re-infections at the beginning of the growing season imposing 
no detectable genetic bottleneck [41]. Consistent with the 
maintenance of high levels of diversity, individual wheat 
leaves are frequently infected by multiple different genotypes 
[42]. However, whole genome analyses of hierarchical field 
collections to resolve the spatial and temporal changes in 
genotypic diversity have been lacking.

In this study, we used whole-genome sequencing of 177 
distinct isolates of Z. tritici from a single wheat field covering 
three time points over the growing season. We analysed 12 
distinct cultivars replicated in space to maximize capture of 
genetic diversity. Based on genome-wide polymorphisms, we 
analysed standing levels of genetic diversity based on linkage 
disequilibrium and chromosomal presence/absence varia-
tion. Using information about the spatial organization in the 
field and experimental assessments of dispersal distances, we 
quantified the extent of clonal spread in space and time.

 

Impact Statement

Microbial pathogens threaten crop production worldwide. 
A large body of work has investigated genetic factors 
contributing to the success of a pathogen attacking 
plants. Similarly, pathogen species have been investi-
gated for levels of genetic diversity across their distri-
bution range. However, how individual crop fields are 
colonized from pathogen inoculum and how this process 
influences genetic diversity at the field level remains 
poorly understood. Here, we performed a deep sampling 
and whole-genome sequencing of 177 isolates of the 
wheat pathogenic fungus Zymoseptoria tritici collected 
within the span of weeks in a single wheat field. The 
pathogen population is highly diverse, showing extensive 
signatures of recombination and a high effective popu-
lation size. The pathogen managed to spread through 
asexual reproduction at the metre scale within the field 
without noticeably leading to reduced genetic diversity 
overall. Our study provides a detailed picture of how indi-
vidual crop fields become colonized, with implications for 
how the spread of the pathogen could be more sustain-
ably managed in the future.
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METHODS
Field collection and storage
Z. tritici isolates were collected from the Field Phenotyping 
Platform (FIP) site of the ETH Zurich, Switzerland (47.449° 
N 198 8.682° E) [43]. A total of 335 European winter wheat 
varieties were grown in two replicates (Fig. 1b) during the 
2015–16 growing season separated each by approximately 
100 m. During the collection season in 2016 the following 

fungicide applications were made: 4–8 April (300 g l–1 Spirox-
amin, 160g l–1 Prothioconazole), 25 May (Aviator Xpro with 
75g l–1 Bixafen + 150g l–1 Prothioconazol), 6 June (Osiris with 
56.25g l–1 epoxiconazole and 41.25g l–1 metconazole). Wheat 
was also subjected to regular applications of fertilizers and 
herbicides. A total of 177 isolates of Z. tritici were isolated 
from 12 winter wheat cultivars that are commonly grown in 
Switzerland [44] over three collection time points (Fig. 1a). 

Fig. 1. Genome sequencing of 177 Zymoseptoria tritici isolates from a single field. (a) Time scale showing the three collection points from 
May to July. The experimental field was treated with fungicides three times (see Methods for details). (b) Graphical representation of 
the experimental wheat field showing the sampled cultivars (coloured background). Each number indicates a plot of 1.2×1.7 m. Wheat 
cultivar colour codes are maintained throughout the paper. Sampled cultivar numbers are also shown in Table S4. (c) Number of isolates 
collected from each of the 12 cultivars at each collection time point. (d) Trimmed read count for each isolate. Lines represent the mean 
(blue) and median (red) read counts. (e) Genotyping rate of all the 177 isolates (% loci genotyped). The blue line represents the mean 
genotyping rate. (f) Minor allele frequency (frequency at which the second most common allele occurs in a given population) spectrum of 
1 496 037 SNPs genotyped in 177 isolates. (g) Boxplot showing the number of segregating SNPs in subsets of the 177 isolates. Error bars 
show 10 replicates of resampled isolates. (h) Estimates of temporal changes in effective population size (N

e
) over time. The simulated 

generations range from the present (0) to 800 generations in the past.
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To isolate strains, individual cirri from pycnidia identified 
on infected leaves were streak-plated on a yeast sucrose 
broth (YSB) solid media plate and incubated at 18 °C for a 
week. Media were supplemented with 50 µg ml−1 kanamycin 
to prevent bacterial growth. After the incubation period, a 
single colony from the media plate was inoculated into 35 ml 
YSB liquid medium and incubated on a shaking incubator at 
18 °C for 8 days (140–180 r.p.m.). After the incubation period, 
a dense culture of blastospores was obtained. The culture 
was washed twice with sterile distilled water. The spores 
were stored as both glycerol or silica stock for future use. For 
the preparation of glycerol stocks, equal amounts of washed 
blastospores and sterile glycerol were mixed in a cryotube 
and stored at −80 °C for future use. For the preparation of 
silica stocks, 200 µl of washed blastospores was poured onto 
1 ml of sterile silica powder in a cryotube. Silica stocks were 
stored at 80 °C.

Culture preparation and seedling infection assay
Isolates were revived from glycerol stock by adding 50 µl stock 
solution to a 50 ml conical flask containing 35 ml liquid YSB 
medium. The inoculated flasks were incubated in the dark 
at 18 °C and 140–180 r.p.m. After 8 days of incubation, the 
cultures were passed through four layers of meshed cheese-
cloth and washed twice with sterile water to remove traces 
of media. The filtering step also largely eliminated hyphal 
biomass but retained spores. We analysed pathogenicity 
profiles for a subset of 120 isolates out of the total number of 
isolates analysed in this study. The pathogenicity assay dataset 
was generated to perform genome-wide association studies 
[45]. In summary, seedlings of the cultivar Claro were grown 
under controlled conditions as follows: 16/8 h day/night 
periods at 18 °C throughout the experiment. The growth 
chamber was maintained at 70 % humidity. Plants were grown 
for 3 weeks before infection with Z. tritici. To establish infec-
tions, washed spores were diluted to 2×105 spores ml–1 in 
15 ml of sterile water containing 0.1 % TWEEN20. Twenty-At 
21 days post-inoculation, the second leaf of each plant was cut 
and fixed on a barcoded white paper. Leaves were scanned 
immediately using a flatbed scanner at 1200 dpi. The scanned 
images were batch-processed using automated image analysis 
[46]. We recorded the percentage leaf area covered by lesions 
and pycnidia counts.

Whole-genome sequencing and variant calling
Approximately 100 mg of lyophilized spores was used 
to extract high-quality genomic DNA using the Qiagen 
DNeasy Plant Mini Kit, according to the manufacturer’s 
protocol. We sequenced paired-end reads of 100 bp each 
with an insert size of ~550 bp on the Illumina HiSeq 4000 
platform. Raw reads are available on the NCBI Short Read 
Archive under the BioProject PRJNA596434 [47]. We 
performed sequencing quality checks using FastQC v.0.11.9. 
[48] and extracted read counts. Sequencing reads were then 
trimmed for adapter sequences and sequencing quality 
using Trimmomatic v.0.39 [49] using the following settings: 
illuminaclip=TruSeq3 ​PE.​fa:2 : 30 : 10, leading=10, trailing=10, 

sliding-window=5 : 10 and minlen=50. Trimmed sequencing 
reads were aligned to the reference genome IPO323 [50] using 
Bowtie2 v.2.4.1 [51]. Multi-sample joint variant calling was 
performed using the HaplotypeCaller and GenotypeGVCF 
tools of the GATK package v.4.0.1.2 [52]. We retained only 
SNP variants (excluding indels) and proceeded to hard-
filtering using the GATK VariantFiltration tool based on 
the following cutoffs: QD <5.0; QUAL<1000.0; MQ <20.0; 
−2>ReadPosRankSum>2.0; −2>MQRankSum>2.0; −2>Base-
QRankSum>2.0. After filtering for locus-level genotyping rate 
(>80 %) and minor allele count (MAC) of 1 using VCFtools 
v.0.1.15 [53], we analysed genotyping rate at the isolate level 
using the --missing function of PLINK v.1.07 [54]. PLINK 
analyses were possible only for bi-allelic sites.

Population genetic analyses
We performed a down-sampling analysis to estimate the effect 
of sample size on the total number of segregating SNPs in the 
population. We randomly created subsets of 177 isolates from 
the population and counted the number of segregating SNPs 
in the subset. Presence–absence polymorphism of accessory 
chromosomes was analysed based on chromosome-level 
coverage using BAMstats v.1.25 (https://​sourceforge.​net/​
projects/​bamstats/). We calculated the standardized coverage 
of all chromosomes by normalizing to the mean coverage of 
the core chromosomes. We categorized a chromosome as 
present in an isolate if the standardized coverage was within 
the range of 0.625–1.5. Otherwise, the chromosome was 
categorized as partially deleted (coverage of 0.25–0.625), 
absent (coverage <0.25) or duplicated (coverage >1.5). We 
estimated SNP density on each accessory chromosome by 
adjusting the ‘--max-missing’ filter for SNPs to 80 % of the 
total number of observed chromosomes. We used the loess 
model implemented in the geom_smooth function from the 
R package ggplot2 [55].

Linkage disequilibrium and population structure 
analyses
We analysed the decay in linkage disequilibrium for each 
chromosome separately. For this, we used all SNPs with a 
minor allele frequency >5 % in the population. We calculated 
the linkage disequilibrium r2 between marker pairs using the 
option –hap-r2 in VCFtools v.0.1.15 [53] with --ld-window-bp 
of 10 000. The decay of linkage disequilibrium with physical 
distance was estimated using a non-linear regression model 
[56, 57]. To perform PCAs, we processed the filtered SNPs using 
the R packages vcfR v.1.8.0 [58] and PCs were calculated using 
the function ​dudi.​pca() of the R package ade4 v.1.7-16 [59]. The 
graph was visualized using ggplot2 v.3.1.0 [55]. We generated 
an unrooted phylogenetic network using SplitsTree v.4.14.6 
using uncorrected p distances [60]. We performed a pairwise 
homoplasy index (Phi) test for recombination using SplitsTree 
v.4.14.6 [60]. File format conversions were performed using 
PGDSpider v.2.1.1.5 (Lischer & Excoffier, 2011). To identify 
groups of clonal genotypes, we calculated the pairwise genetic 
distances between all genotypes using the function ​dist.​dna() 
included in the R package ape v.5.3 [61]. Isolate pairs with a 

https://sourceforge.net/projects/bamstats/
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pairwise genetic distance below 0.01 were considered as clones 
for further analyses. The Simpson diversity index was calculated 
using the R package vegan v.2.5 [62].

We estimated effective population sizes (Ne) using a linkage 
disequilibrium approach. The genetic optimization for Ne 
estimation (GONE) approach infers the recent demographic 
history of a population based on contemporary individuals 
and dense polymorphism data [63]. The genetic algorithm 
searches for a sequence of historical Ne values that best 
explains the observed linkage disequilibrium spectrum. We 
defined the data as known phase because Z. tritici is haploid 
and defined the recombination rate as 50 cM Mb–1 approxi-
mating the average recombination rate assessed for the species 
using crosses [64]. We used Haldane distance corrections and 
performed the simulations for 2000 generations and a bin 
number of 400 following recommended settings [63]. The 
SNP dataset was subset with a minor allele frequency filter 
of 0.05 and contained only genetically distinct isolates (a 
single isolate per clone group was randomly selected). The 
simulations were replicated 100 times. Following recommen-
dations, we capped the maximum permissible recombination 
rate (hc) at 0.005 to reduce artefacts from recent immigrants 
and physical gaps in the SNP panel [63]. We focused on core 
chromosome SNPs only and capped the maximum number 
of analysed SNPs per chromosome to 50 000. GONE was 
retrieved from https://​github.​com/​esrud/​GONE (version 
from 21 June 2021).

Spatial analyses and dispersal kernel estimation
The spatial coverage of isolate sampling and distances between 
the observed clonal isolate pairs were analysed. First, distances 
between all possible isolate pairs were calculated based on 
distance between plots: 2 m along the columns and 1.5 m 
along the rows (plot dimensions plus gaps between plots). 
The expected distribution of distances between isolates was 
calculated assuming balanced sampling of isolates from each 
plot. The distribution of detected clonal pairs was compared 
to expected dispersal distances in successive generations of 
asexual propagation. The dispersal distance distribution was 
calculated assuming an exponential dispersal location kernel 
parametrized with dispersal kernel estimate from Karisto et 
al. [65]. In brief, the dispersal kernel estimates were obtained 
by analysing an experimentally set up infection focus in 
the same experimental wheat field at the beginning of the 
growing season. The infection was started from a previously 
genotyped isolate. Over the course of the growing season, 
infected leaves in immediate proximity (metre scale) of the 
infection focus were genotyped to determine the presence 
of the isolate introduced during the experiment. The shape 
parameter of the exponential dispersal location kernel was 
estimated to be α=13.5 cm. The expected total dispersal 
distance distribution was calculated as convolutions of the 
dispersal distance kernel neglecting dispersal direction. The 
analyses were implemented in Python 3.7, using packages 
NumPy v.1.17.3 [66], SciPy v.1.3.1 [67], pandas v.0.25.3 [68] 
and Matplotlib v.3.2.1 [69].

RESULTS
Pathogen field population shows extensive 
sequence variation
A total of 177 isolates of Z. tritici were collected from an 
experimental wheat field in Switzerland planted with 335 
wheat cultivars in 1.2×1.7 m plots (Table S1 [46]). The wheat 
field was planted with elite European winter wheat to assess 
cultivar performance using an automated phenotyping plat-
form. We collected isolates at three time points during the 
wheat growing season representing different phases in the 
infection life cycle of the pathogen (Fig. 1a) [46]. The isolates 
from the first collection (C1) were exposed to the application 
of demethylation inhibitor (DMI) fungicides. Isolates from 
the second and third collection were exposed additionally to 
a succinate dehydrogenase inhibitor (SDHI) and additional 
DMIs (Fig. 1a). We collected isolates from 12 winter wheat 
cultivars (n=1–43 isolates per cultivar) which were planted in 
two replicate plots separated by ~100 m (Fig. 1b, c). Cultivar 
Claro was sampled on two additional plots. Collection was 
performed when the wheat plants were in growth stages GS 41 
(C1), GS 75 (C2) and GS 85 (C3) [46, 70]. We used Illumina 
sequencing of whole genomes for all 177 isolates, producing 
0.8–15 million reads per isolate with an average read count of 
4.2 million (Fig. 1d). The isolates were sequenced to a depth 
of 5–77 and a mean coverage of 21.4×. We detected a total of 
1 496 037 high-confidence SNPs. The average genotyping rate 
was 97.85 % across loci (Fig. 1e). We detected on average 37 
SNPs per kb, showing that the field population is highly poly-
morphic. In line with this, we found that the minor allele (i.e. 
the less frequent allele at a locus) frequency spectrum showed 
a strong skew towards rare alleles in the population, which 
suggests that the population did not experience any recent 
bottlenecks (Fig. 1f). Population bottlenecks are expected to 
generate an excess of high-frequency alleles. Based on the 
finding that our population shows substantial genetic vari-
ation, we aimed to estimate the total genetic diversity in the 
field. For this, we performed random down-sampling analysis 
and we found that subsets of 10 and 50 % of the population 
harboured on average 763 765 and 1 234'846 segregating 
SNPs representing 51 and 82.5 % of the total detected SNPs, 
respectively (Fig. 1g). We observed only a weak plateau effect 
for subsets close to 100 % indicating that the total polymor-
phism in the field population is likely substantially higher. We 
simulated historic trends in the effective population size (Ne) 
using a linkage disequilibrium based approach. We found that 
the Ne fluctuated between 1968 and 13 067 over the past 800 
generations (Fig. 1h). The simulations indicated a drop from 
the maximum Ne to the contemporary minimum within ~100 
generations.

Accessory chromosome polymorphism
Z. tritici harbours the most extensive set of accessory chro-
mosomes known for plant pathogens [71]. We analysed 
chromosome-wide read coverage to identify chromosomal 
presence–absence variation. All core chromosomes (1–13) 
were consistently detected in all isolates as expected. In 
contrast, we found 139 isolates (~79 %) missing one or more 

https://github.com/esrud/GONE
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Fig. 2. Genome-wide polymorphism and accessory chromosomes. (a) Total number of accessory chromosomes per isolate. The 
numbers above the bars indicate the isolates missing at least one accessory chromosome or carry all chromosomes. (b) Percentage 
presence of all the accessory chromosomes within the population calculated based on normalized chromosome coverage. (c) Heat 
map showing the presence–absence variation in accessory chromosomes across isolates assessed by normalized read depth. (d) SNP 
count and (e) SNP density per chromosome. (f) Correlation plot of SNP density and chromosome size. (g) Pairwise linkage disequilibrium 
decay among all pairs of SNPs within a fixed window size of 10000 bp for each chromosome. A non-linear model was fitted using the 
equation of Ingvarsson [56]. The grey shading indicates the maximum distance needed for all chromosomes to reach r2=0.2. (h) Linkage 
disequilibrium r2 for each chromosome at 500 bp. Light shade: chromosome 14 was omitted from per-chromosome genetic diversity 
analyses due to the heterogeneous distribution of regions with robust SNP calls.
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accessory chromosomes (Fig. 2a). We found no isolate that 
lacked all accessory chromosomes, but we identified two 
isolates with only a single accessory chromosome out of eight. 
Accessory chromosome 16 was the most frequent (174/177 
isolates) and chromosome 18 was the rarest being present in 
fewer than half of the isolates (Fig. 2b). We identified several 
accessory chromosomes showing evidence for partial dele-
tions or duplications based on normalized read coverage 
(Fig. S1). Specifically, we identified two partial deletions of 
chromosomes 17 and 20 (Fig. 2c), as well as chromosomal 
duplications of chromosomes 17, 18, 19 and 21 (Fig. 2c). In 
a next step, we analysed how polymorphism was structured 
among core and accessory chromosomes. We found that the 
accessory chromosomes show higher SNP densities but lower 
total SNP counts compared to core chromosomes (Fig. 2d, 
e). Overall, smaller chromosomes tend to have higher SNP 
densities (Fig. 2f). This is consistent with relaxed selection 
leading to accumulation of mutations on these chromosomes 
[72]. It is important to note, however, that short read-based 
SNP calling is not feasible in highly repetitive chromosomal 
regions. Consistent with this, we found gaps in high-
confidence SNP calls along all chromosomes, but the effect 
was particularly pronounced on accessory chromosomes (Fig. 
S2). Hence, our polymorphism analyses probably underesti-
mate SNP densities on accessory chromosomes.

Another important component of genetic variation is the 
extent of linkage disequilibrium. We estimated linkage 
disequilibrium decays for each chromosome separately and 
found that most accessory chromosomes showed a faster 
decay compared to core chromosomes (r2=0.2 within 100 bp, 
Fig. 2g), except chromosomes 16 and 18 showing a decay of 
r2 to 0.2 within 300 and 900 bp. Interestingly, chromosome 
7 showed the slowest decay of all core chromosomes (r2=0.2 
at~700 bp, Fig. 2h). This chromosome was proposed to have 
originated at least partially from an accessory chromosome 
[73]. Chromosome 18 shows a particularly low degree of 
collinearity among genomes of the same species [74] (Fig. 
S3). It remains to be investigated whether structural varia-
tion had an impact on linkage disequilibrium assessments on 
accessory chromosomes. Together, we show that the acces-
sory chromosomes accumulated more sequence variation 
compared to core chromosomes, but the level of conservation 
varies substantially among accessory chromosomes.

Population clonality in space and time
To track the evolution of genotypic diversity in space and 
time, we first constructed an unrooted phylogenetic network 
based on SplitsTree and found that most pairs of genotypes 
are at a similar genetic distance (Fig. 3a). The predominantely 
star-like shape with little reticulation is in principle consistent 
with a clonally reproducing population. However, the high 
effective population size, the rapid decay in linkage disequi-
librium and the pairwise homoplasy index (Phi; P<0.0001) 
show strong signatures of recombination. Hence, the star-like 
shape is most likely explained by extensive recombination 
generating nearly identical distances between genotypes. 
Interestingly, a subset of genotypes showed much shorter 

genetic distances, suggesting recent ancestry or clonal repro-
duction. We also performed a principal components analysis 
(PCA) to determine the degree of differentiation in the 
population (Fig. 3b). We detected no meaningful population 
subdivision except for seven isolates, which clustered into 
three groups (Fig. 3b). Interestingly, all seven isolates were 
collected from cultivar CH Combin (arrows in Fig. 3b). To 
clarify how clonal reproduction impacts the genetic structure 
within the field, we identified groups of clonal genotypes 
based on pairwise genetic distances. We found that most 
isolates were at a relative pairwise distance of more than 
0.15, where a value of 1 corresponds to a genetic difference at 
every analysed SNP position (Fig. 3c). We defined isolate pairs 
with a genetic distance of <0.01 as being clones (Fig. 3d). We 
assigned groups of clones into four categories according to the 
distance between field plots and collection time point: clones 
originating from the same plot and same collection time point 
(category A), different plot but same collection time point 
(category B), same plot but different collection time point 
(category C), and different plot and different collection time 
point (category D; Fig. 4a, Table S2).

We identified a total of 15 distinct groups of clones (~8.5 % of 
the isolates; Fig. 4b, Table S2). The proportion of clones ranged 
from 8.9 % in first collection to 12.1 % in third collection, but 
the difference was not statistically significant (Fisher's exact 
test, P=0.244; Fig. 4b). The majority of the clone groups (n=9) 
were sampled from the same plot and same collection time 
point (category A; Fig. 4c, Table S2). Interestingly, isolates 
collected from the cultivar CH Combin showed a high degree 
of clonality (Table S2). We also found that three clonal groups 
each were either collected from the same plot at different time 
points or different plots at the same time point (categories B 
and C; Fig. 4c). The maximum distance at which we identified 
clonal pairs was 20 ms (Table S2) although distances between 
plots ranged up to 120 m (Fig. 5a).

Estimating dispersal distances of clonal genotypes
We analysed all pairwise distances of isolate sampling locations 
across the field. Given the spatial arrangement of the analysed 
plots, we found a bimodal distribution of pairwise distances 
(Fig. 5a). Next, we used data collected from an asexual spore 
dispersal experiment conducted in the same field [65]. In 
this experiment, a focal infection with a known genotype 
was established and the radiation of the infection focus was 
monitored. Disease intensity decreased substantially already 
at the scale of 1 m (Fig. 5c). Based on this information, we 
compared the distribution of the detected clonal pairs against 
the experimentally estimated dispersal distances in successive 
generations of asexual propagation (Fig. 5b) [65]. We could 
not re-estimate the dispersal kernel of the pathogen due to 
low number of clonal isolates and low spatial resolution of 
the sampling. Comparing the distances between the observed 
clonal isolates to the expected dispersal distance distributions 
suggests that most clonal pairs are probably originating from 
recent asexual dispersal. However, the longest distance of 
20 m between clones is very unlikely to have occurred by 
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Fig. 3. Genetic differentiation and clonality within the field. (a) Phylogenetic network constructed using SplitsTree. Groups of clonal 
genotypes are marked with highlights identifying the collection of origin. (b) The first two principal components (PC) from a PCA. Isolates 
are colour coded by the cultivar of origin. (c) Histograms showing the distribution of pairwise genetic distances among genotypes. A 
distance of 1 corresponds to the total number of SNPs. (d) Histogram of pairwise genetic distances <0.01.
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splash dispersal. Human or animal movements within the 
field are the most likely explanations.

Genotypic diversity assessments
We analysed the genotypic diversity in the field across time 
points using diversity indices. Overall, we found less diver-
sity in the third collection compared to the first collection 
(Fig. 4e, Table S3). The second collection contained too few 

isolates for comparison. Genotypic diversity was highest for 
cultivar Claro (0.97, Fig. 4f) constituting also the best sampled 
cultivar in the field. Isolates from cultivar Combin had the 
lowest diversity (0.86, Fig. 4f) because almost all recovered 
genotypes were clones. Both field plots of cultivar Combin 
showed low diversity with a Simpson index of 0.78 and 0.66, 
respectively (Fig. 4g). We did not consider the wheat cultivar 
Aubusson due to low sample size (n=1). Overall, clonal 

Fig. 4. Genetic diversity through space and time. (a) Schematic representation of different clone categories with pairs identified from 
the same or different plots and time points. (b) Pie chart showing the change in clonality over time. The dotted line indicates the average 
clonality of the whole population. (c) Number of clone groups categorized based on differences in space and time. The numbers indicate 
the clone groups in each category. (d) Analyses of all possible pairwise comparisons of isolates with the distance between collection 
points shown as a histogram. The proportion of clone pairs is shown as a proportion of the total number of isolate pairs. (e) Simpson 
diversity index between collections C1 and C3, (f) between cultivars and (g) between plots.
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genotypes are an important constituent of the genetic struc-
ture in the field. However, the exclusive asexual reproduction 
during the growing season does not meaningfully affect the 
trajectory of genetic diversity.

Experimental analyses of virulence on cultivar 
Claro
Using greenhouse assays we tested whether isolates sampled 
from different time points or cultivars showed differences 
in virulence on the most frequent cultivar (CH Claro) 
planted in the field. For this, we analysed data generated 
for a genome-wide association study from a subset (n=120) 
of the isolates [45] (Table S5). We found that isolates from 
the third collection produced significantly more pycnidia 
(a proxy for pathogen reproduction) compared to earlier 
collection (one-way ANOVA, P=0.002) (Fig. 6a, b). Clonal 
isolates recovered from the cultivar CH Combin were found 
to be causing significantly less lesion damage (i.e. percentge 
leaf area covered by lesions; one-way ANOVA, P=0.003) and 
produced fewer pycnidia (one-way ANOVA, P=0.046; Fig. 6c, 
d). However, we found no significant difference in virulence 
traits between isolates sampled from CH Claro compared to 
other wheat cultivars (Fig. 6e, f). We found no significant 
difference in virulence traits between isolates found in clone 
groups or not (Fig. 6g, h)

DISCUSSION
The mode of reproduction and levels of genetic diversity 
play an important role in the rapid evolution of plant 
pathogens. Here we analysed a large collection of Z. tritici 
genomes obtained from a single wheat field and found that 
the population was highly diverse with a rapid decay in 
linkage disequilibrium. We also found a minor degree of 
clonal structure probably driven by splash dispersal among 
neighbouring wheat plants.

Genome-wide levels of genetic diversity in a single 
field
The analysed field population shows a dominant sexual 
reproduction regime and is highly polymorphic. Using 
hierarchical sampling from the same field plots and wheat 
cultivars across different time points, we found that ~80 % 
of the isolates were genetically distinct. The allele frequency 
spectrum and the rapid decay in linkage disequilibrium 
suggest that there has been no obvious recent population 
bottleneck. Linkage disequilibrium decayed to r2 <0.2 within 
1.5 kb across all chromosomes and often at a much shorter 
distance. Since the average distance between genes in the 
genome of Z. tritici is approximately 1 kb [50], polymorphism 
in any gene is expected to evolve largely independently. 
Hence, polymorphism in genes playing roles in adaptation 

Fig. 5. Estimation of dispersal distances. (a) Observed distribution of distances between all isolates (grey) and the expected distribution 
assuming a uniform sampling (orange). The bimodal distribution results from the two-block design of the experiment. (b) Experimental 
assessment of dispersal distances based on data generated by Karisto et al. [65] showing the observed primary disease gradient from 
an infected source (orange) to measurement lines (red) at specific distances from the source. (c) Spatial distribution of clonal pairs (grey) 
compared to distributions of the expected dispersal distances after successive generations.
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to either host resistance or environmental adaptation should 
respond independently to selection pressures, allowing the 
population to adapt very rapidly [75, 76]. In addition, the 
effective population size estimated for the field was high with 
the contemporary Ne ~2000. This estimate is comparable with 
estimates from other field populations of Z. tritici around the 
world using a different algorithm to estimate population size 
from linkage disequilibrium patterns [31]. The historical 
population size simulations suggest that a gradual reduction 
in population size started approximately 100 generations ago. 
Ne estimates are sensitive to recent immigration generating 
linkage disequilibrium, and hence some of the reduction may 
be attributable to the genetic algorithm used here [63]. In Z. 
tritici, there is typically a single sexual generation per year. 
Hence, beyond effects of immigrants, the fluctuations in the 
field population size rather reflect historical bottleneck events 
at the scale of dozens to hundreds of years. Environmental 
drivers may be changes in agriculture [77] or climate change 
rather than annual bottleneck events due to the recolonization 
of wheat fields.

We have also shown that the rate of linkage disequilibrium 
decay is not the same in all chromosomes, with accessory 
chromosomes showing faster decays. In Z. tritici, accessory 
chromosomes are small, low in G+C and gene content, and 
have higher degrees of repetitive DNA [50]. In line with this, 
accessory chromosomes have been shown to have higher 
recombination rates than core chromosomes [64]. Analyses 
of polymorphism and linkage disequilibria may have been 
affected by the low degree of synteny (or collinearity) among 
accessory chromosomes and the high repetitive sequence 

content [74] [78]. Genotyping using short read data is 
generally only possible in the least repetitive sections of 
accessory chromosomes. Substantial insertion and deletion 
polymorphism changes the physical distances among SNP 
loci, which could also have affected estimates of linkage 
disequilibrium. Rapid decay in linkage disequilibrium is an 
important property also in other rapidly evolving pathogens 
such as Leptosphaeria maculans causing blackleg disease in 
oilseed rape. Rapid allelic diversification of avirulence genes 
driven by sexual reproduction can lead to resistance break-
downs of the host [79]. Similarly, the poplar rust Melampsora 
larici-populina shows signs of rapid sweeps of virulent alleles 
associated with population replacements [80].

Clonal genotype contributions in space and time
Sexual ascospores originating from crop residues of the 
previous cropping season are thought to be the source of 
primary infections in the field [35, 81]. As a result of this, a 
wheat field infected by Z. tritici is expected to carry essentially 
no clonal genotypes at its initial colonization stage. Clonal 
genotypes are expected to increase in frequency because of 
splash-dispersed asexual pycnidiospores. However, we found 
no significant increase in clonality even though asexual 
reproduction should dominate over the course of a growing 
season. In addition to the sampling period, we found that the 
likelihood of observing clonal genotypes did not meaning-
fully change with the cultivar or physical distance. This means 
that even at the level of individual plots of ~2 m2, wheat was 
colonized nearly entirely by genetically distinct isolates. It is 
important to note that we defined clonal genotypes as having 

Fig. 6. Experimental assessment of virulence on the wheat cultivar CH Claro. Percentage of leaf area covered by lesions (PLACL) and 
pycnidia counts are shown. (a, b) Isolates from different collection time points. (c, d) Isolates originally collected from the wheat cultivar 
CH Combin compared to isolates collected from other cultivars. (e, f) Isolates originating the from wheat cultivar CH Claro compared to 
isolates collected from other cultivars. (g, h) Isolates with a genotype grouped into a clone group compared to other isolates.
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differences at less than 1 % of all polymorphic sites detected 
among all isolates in the field. Polymorphism levels below this 
threshold could well be the outcome of spontaneous mutations 
arising within the growing season [15, 26, 82]. Sequencing 
errors are unlikely to explain a meaningful amount of the 
detected differences as SNP candidates were stringently 
filtered based on previous method validations [38]. However, 
we cannot exclude the possibility that some divergence among 
clone pairs is older than the onset of the wheat field coloni-
zation. The persistence of clone pairs between years would 
imply though that the primary inoculum of the field was not 
purely a set of recombined offspring genotypes generated in 
previous years.

The pairs of clonal isolates found at the shortest distance 
(0 and 2–3 m distance classes) are probably the result of 
splash dispersal. This contrasts with wind-dispersed sexual 
spores of Z. tritici and other pathogens travelling much 
longer distances. The observed distances between clone 
pairs were consistent with our experimental assessment of 
splash dispersal distances in the same field. The experiments 
indicated a per-generation dispersal distance of well under 1 
m. Notable exceptions included the clonal genotypes associ-
ated with the cultivar CH Combin and clonal genotypes on 
different cultivars physically separated by as much as 20 m. 
Given our estimates of splash dispersal distances, human (or 
animal) movement within the field is a more plausible expla-
nation for these unusual dispersal events. We also identified 
clone groups with isolates collected in the same plot but from 
different collection time points. Hence, successful genotypes 
can persist in individual field plots at high enough levels 
through time to be resampled.

It is currently unknown how adaptation to environmental 
factors (including host genotypes) influences the evolution of 
genetic diversity in infected fields. Selection due to seasonal 
changes can lead to short-term increases in aggressiveness 
at the annual scale [83], but this effect can disappear at the 
interannual scale [40]. Genotypes carrying beneficial alleles 
to overcome host immunity should increase in frequency. 
However, evolutionary constraints may slow down the rise 
of such beneficial alleles [84]. In the absence of sexual recom-
bination during the growing season, this should lead to the 
expansion of successful clonal genotypes. We found overall no 
signature of clonal expansion except for clones associated with 
cultivar CH Combin. The expansion of clones on CH Combin 
may indeed be the result of highly successful genotypes rising 
in frequency. Host damage (lesions) caused by these isolates, 
however, is lower compared to other isolates when tested 
on a different cultivar. Neutral processes such as population 
bottlenecks could well underlie the observed clonal expan-
sion associated with the cultivar CH Combin. Consistent 
with selection on (asexual) pathogen reproduction over the 
course of the growing season is the significantly increased 
pycnidia production of isolates collected at C3 compared to 
C1. Matching changes in genotype frequencies with changes 
in frequencies of beneficial alleles for host colonization over 
the course of a growing season will help to disentangle neutral 
from selective processes.

The high degree of genotypic diversity originating from 
sexual reproduction is consistent with recent studies based 
on microsatellite markers showing spatial genetic structure 
but no meaningful loss in diversity over consecutive growing 
seasons [85, 86]. Uniformity in host genotypes in agricultural 
ecosystems enables clonal pathogen populations to establish 
infections [87]. However, the introduction of new host resist-
ance genes can trigger the local extinction of such pathogen 
populations [88]. Similarly, the application of fungicides can 
lead to local extinctions of clonal populations if populations 
lack resistance mutations. In contrast, in sexually reproducing 
populations recombination produces a multitude of new 
genotypes, increasing the likelihood for adaptive traits to 
evolve [89]. Recent work on Z. tritici shows that pathogen 
populations maintain substantial polymorphism underlying 
fungicide and virulence traits despite years of directional 
selection [84]. The maintenance of such adaptive genetic vari-
ation is probably because of trade-offs among traits. This may 
also explain why no ‘super genotypes’ arise that are virulent 
on all cultivars or are fully resistant to fungicides. Managing 
virulence and fungicide resistance emergence in pathogens 
remains a pressing issue to ensure sustainable agricultural 
production [90]. Hence, understanding how pathogen popu-
lations respond in the short term (i.e. over the scale of weeks 
during the growing season) to challenges becomes a critical 
area of investigation. Detecting changes in pathogen popu-
lations in situ may become a powerful approach to identify 
the emergence of previously unknown adaptive mutations, 
changes in reproductive modes or the introduction of foreign 
genotypes. Deep population sequencing approaches revealing 
rapid changes in allele frequencies and population structure 
will become key tools in such endeavours.
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