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Abstract

Despite widespread influenza vaccination programs, influenza remains a major cause of morbidity and mortality in
older adults. Age-related changes in multiple aspects of the adaptive immune response to influenza have been
well-documented including a decline in antibody responses to influenza vaccination and changes in the cell-
mediated response associated with immune senescence. This review will focus on T cell responses to influenza and
influenza vaccination in older adults, and how increasing frailty or coexistence of multiple (≥2) chronic conditions
contributes to the loss of vaccine effectiveness for the prevention of hospitalization. Further, dysregulation of the
production of pro- and anti-inflammatory mediators contributes to a decline in the generation of an effective CD8
T cell response needed to clear influenza virus from the lungs. Current influenza vaccines provide only a weak
stimulus to this arm of the adaptive immune response and rely on re-stimulation of CD8 T cell memory related to
prior exposure to influenza virus. Efforts to improve vaccine effectiveness in older adults will be fruitless until CD8
responses take center stage.
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Background
Despite widespread influenza vaccination programs
and > 60% vaccination rates in the population age 65
years and older in many countries, influenza remains a
serious threat to the health of older people. In the US,
the over 65 population accounts for two-thirds of the
200,000 influenza-related hospitalizations independent
of whether they are at high or low risk for serious com-
plications of influenza [1], and older people make up
90% of the 36,000 deaths each year [2, 3]. Further, the
length of hospital stay for older adults is almost 3-fold
higher than 50–64 year olds and 6-fold higher than
younger adults [1]. Recent global estimates of seasonal
influenza-associated respiratory deaths have shown

mortality rates of 50–100 per 100,000 in the over 75
population; non-respiratory causes of influenza-
associated mortality require further investigation [4].
The aim of this article is to highlight those age-
associated changes in the immune response to influenza
vaccination that are due to multiple chronic conditions,
their associated inflammatory effects, and increasing
frailty. These changes go beyond what can be explained
by immune senescence and are associated with the in-
creased risk for serious complications of influenza in-
cluding catastrophic disability. Our search of the existing
literature in the preparation of this article included the
terms: influenza, influenza vaccination, multiple chronic
conditions or multi-morbidity, frailty, inflammation, dis-
ability, and humoral and cell-mediated immune re-
sponses. Current research efforts will require a deeper
understanding of how the health of the ‘usual’ older per-
son affects the cell-mediated immune response and how
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adjuvants may play a role in enhancing cellular immune
mechanisms in the development of more effective influ-
enza vaccines for older adults.

Burden of influenza
Older adults are particularly susceptible to severe out-
comes of influenza. This is especially true during seasons
when A/H3N2 is the predominant circulating strain
where dramatic increases in hospitalization rates occur
in the population age 65 and older [5, 6]. Cardiovascular
events are the most common extra-pulmonary complica-
tions of influenza (i.e., myocardial infarction, congestive
heart failure, and strokes) with long-term consequences
including cardiovascular disease and cognitive decline
[7–9]. Dysregulated immune responses associated with
multiple chronic conditions result from the chronically
elevated levels of circulating inflammatory cytokines,
often characterized as ‘inflammaging’ [10], and could
very well be the mechanistic link to these complications
of influenza. Specifically, the six leading causes of cata-
strophic disability including strokes [11, 12], congestive
heart failure [13, 14], pneumonia and influenza [15–25],
ischemic heart disease [8, 11, 26, 27], cancer and hip
fracture [28, 29], have all been linked to influenza illness.
Furthermore, 15% of older adults admitted with
laboratory-confirmed influenza will experience cata-
strophic disability with a loss of independence in more
than two basic self-care activities [30] and older adults
are also vulnerable to diminished quality of life due to
loss of independence following hospitalization with in-
fluenza [25]. In fact, influenza accounts for nearly 30%
of all disability-adjusted life years lost to infectious dis-
ease [31], and influenza hospitalization is estimated to
cost more than 2 billion dollars in Canada over the next
decade [32]. Older adults, especially those living with
chronic conditions and/or frailty, are highly susceptible
to severe outcomes of influenza; however, the correlates
of protection in this vulnerable population are not well
investigated.

Limitations of current influenza vaccines
Despite recent advances in the development of high-
dose, adjuvanted, and subunit vaccines, there remain sig-
nificant challenges to the development of more effective
influenza vaccines for older adults, particularly for pre-
venting the most serious complications. Influenza vac-
cines are annually formulated to stimulate strain-specific
neutralizing antibody responses to the predicted circu-
lating strains of influenza. These changes in the circulat-
ing strains are the result of antigenic drift wherein new
strains emerge with human transmission due to the high
mutation rates of the influenza A virus and the selection
of strains with epitopes on the hemagglutinin (HA) head
that are resistant to antibody binding. Vaccine strain

mismatch may also result from the loss of glycosylation
sites on the HA head in the process of adaptation of the
vaccine strains for optimal growth in eggs. These
neutralizing antibodies are stimulated in the response to
influenza vaccination and thus prevent infection by
binding to the HA head and neutralizing the virus to
prevent virus entry into the host cell, so-called “steriliz-
ing immunity”. Vaccine strain mismatch leads to a loss
of strain-specific antibody binding to the critical
protective epitopes surrounding the receptor-binding
domain of the globular head of hemagglutinin. The
hemagglutination inhibition (HAI) assay is the standard
measure of strain-specific antibody titers and the rise in
HAI antibody titers with vaccination is usually used to
estimate vaccine efficacy in clinical trials. Much of the
decline in vaccine efficacy with aging has been attributed
to “immune senescence”, wherein the decline in the anti-
body response to influenza vaccination is attributed to
age-related changes in B cell and T cell development
and function (reviewed in [33–35]). These studies typic-
ally enroll healthy older adults who would be considered
non-frail. Similarly, the older adult population repre-
sented in large Phase 3 clinical trials is generally health-
ier than those at an elevated risk and these trials are
statistically powered to measure protection against mild
to moderate influenza disease not requiring hospital ad-
mission. In this case, the antibody response to influenza
vaccination may indeed be a good correlate of protection
but may not predict “clinical protection” against severe
influenza illness and hospitalization in the general popu-
lation of older adults. A recent study of adults undergo-
ing elective hip replacement has also shown the
importance of the bone marrow environment in main-
taining memory and effector cells and how the accumu-
lation of both highly differentiated and terminally
differentiated CD8 T cells is associated with declining
serum antibody titers against diphtheria. This appears to
be related to increased numbers of terminally differenti-
ated CD8 T cells which negatively affect the mainten-
ance of B cells and plasma cells, while increases in
highly differentiated CD8 T cells lead to heightened pro-
inflammatory cytokine levels and potentially toxic effects
on B cell maintenance [36].

Impact of frailty on outcomes of influenza
Frailty is a geriatric syndrome which is multifactorial in
etiology, involves complex and dynamic interactions
with the elements of biopsychosocial health, and reflects
the loss of the adaptive capacity to respond to acute
health challenges [37–39]. It has been generally recog-
nized to be age-associated and common in older adults.
The frailty phenotype (e.g. the Fried Frailty Score) pro-
vides a ternary (three category) view of frailty that con-
siders weakness, slowness, inactivity, exhaustion and
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weight loss, and is associated with adverse outcomes in-
cluding risk of mortality [40]. In contrast, the Frailty
Index is a broader conceptualization [41], which relates
to the accumulation of deficits across multiple domains
of health and functional status [42], and is a more sensi-
tive measure of the degree of frailty and strongly pre-
dicts mortality risk [43] and adverse outcomes [44]. For
comparison, standard cutoffs for the frailty index are FI
0–0.1 = non-frail; > 0.1–0.21 = pre-frail; > 0.21–0.45 =
frail; > 0.45 = most frail, and in community-based sam-
ples approximately 24% of older adults are frail [45].
Influenza illness is associated with increases in frailty,

measured using a 40-item Frailty Index, among hospital-
ized older adults. Importantly, frailty is also an import-
ant confounder of vaccine effectiveness, and vaccine
effectiveness declines with increasing frailty [46]. Our
hospital-based influenza surveillance studies using a 40-
item Frailty Index (FI) in adults age 65 years and older
have found that older adult inpatients with laboratory-
confirmed influenza have an average FI of 0.2 [30] indi-
cating that this is a frail population [46] at high risk for
catastrophic disability as a consequence of influenza ill-
ness. Further, recent studies suggest that the disabling
outcomes of influenza [30] are not limited to the over 65
population. In the setting of critical illness, 50% of pa-
tients with pre-existing frailty are under age 65 [47].
Most of these patients are in the 50–64 year-old age
range suggesting that multiple chronic conditions are a
significant contributor to pre-existing frailty. More im-
portantly, disability and mortality outcomes were
dependent on the level of frailty as assessed by the Clin-
ical Frailty Scale [48] and independent of chronological
age. The ‘response’ to influenza vaccination can be mea-
sured as a serologic or cell-mediated immune responses
but the impact of frailty on these responses has yet to be
studied in a manner that captures its dynamic nature
reflecting loss of resilience [49–51]. In addition, a pro-
tective response to vaccination may differ depending on
the outcome studied; protection from mild to moderate
illness may be very different from the response needed
to prevent severe illness and the pulmonary and extra-
pulmonary complications of influenza.
In our community studies of the response to influenza

vaccination in older adults, using the same 40-item
Frailty Index, older adults on average have a Frailty
Index of 0.1 (Non-frail are < 0.1) (unpublished observa-
tions). A systematic review of high-dose relative to
standard-dose influenza vaccine trials, showed that the
better antibody responses to high-dose influenza vaccine
was independent of sex, age > 75 years old, frailty, and
chronic conditions [52]. This is supported by individual
studies from Singapore [53], Germany [49], and the U.S.
[54], all of which reported that frailty did not have a sig-
nificant effect on antibody titres following standard dose

vaccination in adults 60 and over. Another study origin-
ating from the U.S. found the opposite, where antibody
responses were significantly impaired in adults that were
frail [55]. In apparent contrast, in our randomized trial
of high-dose vs. standard-dose vaccine, increasing frailty
increased absolute titres post-vaccination as well as the
likelihood of being a vaccine responder (i.e., a four-fold
rise in HAI antibody titers) [56]. This was similarly ob-
served by Moehling and colleagues, specifically in adults
between 50 and 65 years old [51]. A systematic review of
MF-59 adjuvanted vs. unadjuvanted influenza vaccine
also showed an enhanced antibody response with the
adjuvanted formulation in older adults but an analysis of
the effects of sex, older age, frailty or chronic conditions
was not performed [57]. The disagreement within the lit-
erature is perplexing, and at the moment, the underlying
reasons are not clear. One possibility is that the relation-
ship between vaccine antibody responses and frailty (if
one does indeed exist) depends on the manner in which
frailty is measured and also the manner in which
changes to antibody titres are classified as indicating re-
sponder status. Thus, the studies referred to above, in-
cluding our own, generally use either the Frailty
Phenotype [40] or Frailty Index [42] approach, and treat
the measure as either a categorical or continuous man-
ner. Another possibility is that the frailty relationship de-
pends on the vaccine formulation, both the dose and
strains targeted. Findings from our clinical trial, which
included more than 600 participants, suggest that all of
these factors play an important role and should be con-
sidered more closely in future studies. Further, these fac-
tors may be associated with a loss of reliability of the
antibody response to influenza vaccination as a measure
of vaccine efficacy and correlate of protection in more
frail individuals.
Test-negative case control design studies are another

way to investigate the effect of frailty on laboratory-
confirmed influenza-related hospitalizations, an outcome
of vaccination that cannot be captured in sufficient
numbers in clinical trials to demonstrate the enhanced
benefit of newer vaccines. All patients admitted with an
acute respiratory illness are included in these studies
where those patients with laboratory-confirmed influ-
enza are compared to those patients who are test-
negative for influenza [58]. These studies provide annual
estimates of influenza vaccine effectiveness for the pre-
vention of hospitalization in Canada through the Serious
Outcomes Surveillance (SOS) Network of the Canadian
Immunization Research Network [46, 59–61]. More re-
cently, a test-negative case control design incorporating
the 40-item Frailty Index in SOS Network studies has
demonstrated the importance of considering the level of
frailty as a major contributor to the decline in influenza
vaccine effectiveness in older adults [46]. This is
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supported by work of Petrie and colleagues [62], which
showed that vaccine efficiency in frail older adults is
17%, as compared to 48% for all adults over 65 years old.
These results also suggest that frailty is a major con-
tributor to the risk for serious complications of influ-
enza, even in vaccinated older adults. Understanding the
determinants of T-cell mediated clinical protection
against serious influenza illness, as a paradigm shift in in
the scientific community and US Food and Drug
Administration approval pathways remains a major
challenge [63].

Cell-mediated immune protection against influenza
When antibodies fail to protect against influenza infec-
tion by providing sterilizing immunity, “clinical protec-
tion” relies on cell-mediated immune mechanisms to the
clear the virus from infected host cells and prevent the
pulmonary and extrapulmonary complications of influ-
enza. Previous studies have shown that heterosubtypic
immunity (i.e., cross-protective across multiple influenza
A strains) induced in the mucosal tissue of the respira-
tory tract by influenza infection is mediated by CD8
cytotoxic T lymphocyte (CTL) responses [64] and by
broadly non-neutralizing antibodies (bNA) through
antibody-dependent phagocytosis by alveolar macro-
phages [65]. Influenza infection stimulates both naïve
and memory B cells and CD4 and CD8 T cells (reviewed
in [66]), and is required to establish influenza-specific
CD8 T cell immunologic memory. In contrast, current
standard seasonal influenza vaccination (inactivated
virus) primarily stimulates B cells and CD4 T cells, while
the CD8 T cell response relies on re-stimulation of im-
munologic memory from prior exposure to the virus –
inactivated influenza vaccines provide only a weak
stimulus to virus-specific CD8 T cells. In young adults
with low HAI titers, the CTL response to influenza in-
fection has been shown to correlate with protection
against influenza illness [67]. More recently, increased
levels of interferon (IFN)γ-producing CD4 T helper type
1 (Th1)) and CD8 CTL cells responding to the con-
served internal proteins of influenza virus, matrix (M1)
and nucleoprotein (NP), have been shown to correlate
with protection against influenza A strains [68, 69]. Im-
portantly, these internal proteins are shared across the
A/H3N2 and A/H1N1 subtypes of influenza A, thus pro-
viding heterosubtypic immunity whereby the response to
these internal proteins provides protection across mul-
tiple strains of influenza. We have shown in multiple
studies that the T cell response following influenza vac-
cination with split-virus vaccine (SVV) formulations
using ex vivo influenza challenge of peripheral blood
mononuclear cells (PBMC) correlates with protection in
older adults [70–72]. In contrast, a randomized clinical
trial of four subunit vaccines (containing no internal

proteins) demonstrated an enhanced HAI antibody re-
sponse to the M59-adjuvanted formulation over the
unadjuvanted vaccines [73], but there was no difference
in the T-cell response across the four vaccines [74]. Al-
though antibody-dependent phagocytosis as a correlate
of protection against influenza illness in humans has not
been studied, observations from studies of macrophage
function in the context of aging suggest these investiga-
tions may be warranted.

Role of innate immune cells in influenza infection
Comparisons of young and old mice have yielded con-
flicting results, possibly arising from discrepancies in ex-
perimental design, macrophage type studied, and exactly
how “old” is defined [75], but at least two studies have
shown that peritoneal phagocytic function is impaired
with age [76]. Similarly, many studies have revealed age-
associated differences in macrophage functionality in
humans (reviewed in [77]). We are unaware of any stud-
ies that have investigated changes in human macrophage
phagocytic function with age, but a relatively recent
study did find that the uptake of opsonized bacteria was
significantly reduced in CD14+ monocytes from older
adults [78]. This becomes important as influenza infec-
tion has been shown to induce inflammation causing
lung injury and life-threatening pneumonia, either
primary viral pneumonia or secondary bacterial infection
[79]. This acute inflammation in response to influenza
infection is mediated by lung monocytes and monocyte-
derived dendritic cells that are involved in the detection
and clearance of influenza virus and influenza pathogen-
esis in the lungs [80]. These innate immune cells are not
only susceptible to influenza-induced apoptotic and
necrotic cell death [81], influenza infection has a direct
effect on monocytes which results in the downregulation
of Th17-mediated immunity necessary for protection
against secondary pneumococcal pneumonia [82]. This
effect of influenza infection on the monocyte function
necessary for the clearance of pneumococcus has re-
cently been demonstrated in a human challenge model
[83].
Natural killer (NK) cells have also been shown in

mouse models to contribute to the control of influenza
during the early stage of infection through granule-
mediated (granzyme B and perforin) killing of virus-
infected cells [84–87], but can also be killed themselves
by the influenza virus. Aged mice show a decline in the
numbers and function of NK cells with more immature
and less fully mature NK cells. These age-related
changes may impair the ability of NK cells to contribute
to a strong antiviral response during the early phase of
influenza infection [88]. In humans, fatal influenza cases
show low numbers of NK cells in the lungs [89, 90] and
this has been associated with the effects of influenza
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infection in NK cells which inhibits the cytolytic func-
tion and cytokine and chemokine secretion [91].
However, there is limited knowledge as to how these
age-related changes found in mouse models or in fatal
cases of human influenza in young adults relate to out-
comes of influenza in older adults [92].

Toll-like receptor agonists as influenza vaccine adjuvants
Appropriate selection of TLR agonists which stimulate
dendritic cells (DC) is needed to improve the CD8 T cell
response to influenza challenge in older adults. The pri-
mary targets for TLR agonists are the TLR on myeloid
(mDC) and plasmacytoid (pDC) dendritic cells but stud-
ies have shown that the age-related decline in the en-
gagement of TLR1/2, TLR2/6, TLR3, TLR5, and TLR8
in mDCs and TLR7 and TLR9 in pDCs, may be medi-
ated by dysregulated cytokine production [93]. These re-
sults are consistent with our unpublished experiments in
which we screened different TLR agonists and found
that glucopyranosyl lipid adjuvant formulated in a stable
emulsion (GLA-SE, a TLR4 agonist) provided a superior
stimulus in terms of cytokine production and that the
cytokine response (IL-6, TNF, IL-12) was mainly in
mDC [94]. More recent global analyses using
commercially-available TLR agonists such as lipopoly-
saccharide (LPS) to stimulate TLR4 have also demon-
strated age-related changes in innate immune responses
after stimulation with different TLR agonists [95]. Using
frozen PBMC in these experiments, it was concluded
that the delay in the response to TLR agonists in older
adults is not due to differences in numbers of DC and
monocytes but rather is due to an impairment of down-
stream signalling events in monocytes and DC. Our
studies have shown that functional mDC do not survive
freezing very well and that immune cells may be stripped
of important receptors after cryopreservation, both of
which could have contributed to the above findings
using frozen PBMC. In a comparative systems analysis
of the molecular signatures of clinically-tested, non-TLR
vaccine adjuvants, GLA-SE was shown to provide better
stimulation of different B and T cell subsets [96]. Both
components of the GLA/SE adjuvant were found to be
required to achieve optimal responses in both arms of
the adaptive immune response: specifically, SE for neu-
tralizing antibodies and GLA for induction of T cell re-
sponses [97].
Vaccine adjuvants including TLR agonists have been

used to enhance Th and CTL responses to influenza
vaccination. Different vaccine adjuvants can stimulate
Th1 (e.g. MF59 [squalene based] + CpG [TLR9 agonist])
vs. Th2 (e.g. MF59 alone) responses to influenza vaccin-
ation according to the relative degree of Th1 production
of IFNγ vs. Th2 production of IL-5; these actions con-
tribute to antibody and cell-mediated protection against

influenza [98]. However, mice that received MF59 + CpG
adjuvanted influenza vaccine were better protected
against influenza illness with less weight loss and better
survival compared to mice that received MF59-
adjuvanted vaccine. In addition, these mice showed bet-
ter resistance to a subsequent bacterial superinfection. It
remains to be determined whether vaccine-induced T-
helper cells contributed to viral clearance via secretion
of immune-activating cytokines and/or via direct effector
functions. In aged mice, we have shown that the addition
of inflammatory cytokines (IL-1, IL-6 and TNF or IL-2
plus IL-6 can reverse age-related defects in Th1 cytokine
production, proliferation and function [99]. In contrast,
human PBMC cultured with influenza vaccine and in-
flammatory cytokines (IL-1, IL-6 and TNF) showed a
suppressed T cell response to a subsequent influenza
challenge [94]. However, the addition of IL-2 and IL-6
to influenza H3N2-challenged PBMC cultures restored
the proliferative response and function of influenza-
specific CD8 CTL in aged mice and humans to that of
their young counterparts [100]. Importantly, our studies
have shown that the CTL response to ex vivo influenza
challenge is dependent on the presence of CD4 T cells
in the PBMC cultures [100, 101].

T cell correlates of protection
To the best of our knowledge, we have published the
only prospective studies of T cell correlates of protection
against influenza in vaccinated older adults. In multiple
studies, we have shown in PBMC that the ratio of IFNγ
to interleukin (IL)-10 (IFNγ:IL10) in supernatants of
stimulated PBMC and biological activity of the cytolytic
mediator, granzyme B (GrB), in lysates of ex vivo influ-
enza challenged PBMC correlate with protection against
influenza illness [70, 71] and disease severity in older
adults [72]. This GrB activity at 4-weeks post-
vaccination as a correlate of protection can be demon-
strated even among frail older adults [102]. Importantly,
we have shown that stimulation of immunologic mem-
ory during an influenza infection can subsequently be
restimulated by influenza vaccination and these flu+
cases show an enhanced response to vaccination com-
pared to non-infected older adults [71]. These results
suggest that the decline in the CTL response to influ-
enza vaccination with aging is a limitation of current
vaccines NOT a compromised immune system per se.

The role of influenza internal proteins and adjuvants in
new vaccine development
Novel strategies for stimulating CD8 CTL responses
have long been a priority for new vaccine development
to provide heterosubtypic immunity across serologically
distinct strains of virus [64, 94, 103–105]. Since the
current inactivated influenza vaccine formulations
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provide only a weak stimulus to CD8 T cell responses,
adjuvanted formulations that enhance T cell help and
antigen presentation to CD8 T cells are being pursued.
Because the response to influenza M1 and NP, correlates
with protection in both CD4 [68] and CD8 T cells [69],
these internal proteins will be a necessary component of
new vaccines for older adults. These internal proteins
are absent in influenza subunit vaccines (HA +/− neur-
aminidase), so alternative mechanisms including
antibody-mediated protection [106] may explain the en-
hanced protection of adjuvanted [57] and recombinant
HA [107] formulations in older adults. A large random-
ized clinical trial of an AS03-adjuvanted influenza vac-
cine in older adults also showed enhanced protection
against the influenza A/H3N2 vaccine strain compared
to the unadjuvanted formulation [108], and this en-
hanced protection was comparable to that found in the
randomized trial of high-dose influenza vaccine [109].
The importance of including influenza internal viral

proteins such as M1 and NP in vaccines has been
highlighted in experiments in the mouse model showing
that sequential immunization with whole-inactivated in-
fluenza vaccine (containing influenza internal proteins),
but NOT a subunit vaccine (no internal proteins), could
alleviate the severity of infection with antigenically drifted
viruses from the vaccine strains and potentially improve
protection to unpredictable seasonal infection [110]. Im-
portantly, depletion of T cells prior to challenge revealed
that CD8 T cells, but not CD4 T cells, contributed to
cross-protection. However, CD4 T cells are needed to pro-
vide cytokine-mediated ‘help’ to optimize the generation
of a CD8 T cell response. Similarly, human PBMC stimu-
lated with different inactivated influenza vaccines showed
statistically significant differences in the numbers of acti-
vated IFNγ-producing cells depending on the amount of
internal proteins contained in the vaccine [111]. These re-
sults are consistent with a clinical study showing that
vaccine effectiveness for the prevention of hospitalization
in older adults was 77.8% in recipients of SVV (containing
M1 and NP) but only 44.2% in subunit vaccine (surface
glycoproteins only) recipients, giving a difference in
vaccine effectiveness of 33.5% [112]. A randomized study
of four subunit vaccines (which did not contain M1 and
NP) confirmed that while an MF59 adjuvant could stimu-
late higher antibody responses compared to unadjuvanted
influenza vaccines [73], we showed that there was no
difference in T cell responses to adjuvanted vs. non-
adjuvanted subunit formulations [74]. Taken together,
these results suggest that M1 and NP will need to be in-
cluded in vaccine formulations designed to prevent the
serious complications of influenza in older adults, particu-
larly those who are frail.
Importantly, we have shown in in vitro experiments

that there was an increase in the IFNγ:IL-10 ratio and

GrB activity in response to influenza challenge when the
TLR4 agonist GLA-SE was combined with SVV. This re-
sponse appears to be mediated by a 10-fold reduction in
IL-10 levels when older adult PBMC are stimulated with
GLA-SE plus SVV compared to SVV alone prior to in-
fluenza challenge [94]. Our unpublished results show
that SVV stimulates IL-2 production and GLA-SE stimu-
lates IL-6 production in these PBMC cultures. Further-
more, we have shown that the combined effects of IL-2
and IL-6 as a supplement in ex vivo influenza-
challenged PBMC restores the CD8 T cell response to
that seen in younger adults; the problem is that older
adults have a lower frequency of CD8 T cells at baseline
[100]. These results suggest a mechanism that can be
targeted using vaccine adjuvants to develop more effect-
ive influenza vaccines for older adults.

Conclusions
Current research efforts to support the development of
new influenza vaccines have largely focused on
hemagglutination inhibition antibody responses. Defin-
ing those changes that occur with immune senescence
requires studies of relatively healthy older adults who
are not generally representative of the over 65 popula-
tion with multiple chronic conditions, particularly those
age 75 years and older. While antibody responses to in-
fluenza vaccination may predict protection against influ-
enza infection in community-dwelling older adults, it
does not explain the significant increases in their
hospitalization rates that occur during influenza seasons
where A/H3N2 (relative to A/H1N1 and B strains) is the
predominant circulating strain. Immunologic priming
with the first exposure to influenza in childhood (i.e. A/
H1N1 for the current older adult cohort) may explain
the low hospitalization and death rates during A/H1N1
years, with only the most frail being susceptible to the
serious complications of influenza. Further, dysregulated
immune responses characterized as ‘inflammaging’ in
the context of multiple chronic conditions and frailty ap-
pear to be the mechanistic link to these complications,
and go beyond those changes in lymphocyte develop-
ment and function attributed to immunosenescence.
More studies are needed in older adults with multiple
chronic conditions to determine how varying levels of
frailty lead to the loss of adaptive capacity or resilience
and are reflected in multiple measures of the interaction
of innate and adaptive immune function. Current influ-
enza vaccines are poor stimulators of the heterosubtypic
cell-mediated immunity needed to prevent the serious
complications of influenza. We propose that there is a
requirement to translate new insights into how cell-
mediated immune responses to influenza A/H3N2
strains can be enhanced in the design of new influenza
vaccines. To address this unmet need, we must first
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understand the interaction between circulating proteins
associated with inflammatory processes, the phenotype
and function of different immune cells subsets respond-
ing to influenza challenge, and prove that cell-mediated
immune correlates of protection are valid in older adults.
It will also be necessary to better understand how
broadly-neutralizing antibodies contribute to heterosub-
typic immunity. Finally, our in vitro system using older
adult PBMC to simulate the effect of different vaccine/
adjuvants on the response to influenza challenge using
our established correlates of protection, and our choice
of adjuvants currently in clinical development, serves as
a model for pre-clinical testing and an accelerated path-
way through the clinical development pipeline.
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