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Abstract. Remote and objective assessment of the motor symptoms of Parkinson’s disease is an area of great interest
particularly since the COVID-19 crisis emerged. In this paper, we focus on a) the challenges of assessing motor severity
via videos and b) the use of emerging video-based Artificial Intelligence (AI)/Machine Learning techniques to quantitate
human movement and its potential utility in assessing motor severity in patients with Parkinson’s disease. While we conclude
that video-based assessment may be an accessible and useful way of monitoring motor severity of Parkinson’s disease, the
potential of video-based AI to diagnose and quantify disease severity in the clinical context is dependent on research with
large, diverse samples, and further validation using carefully considered performance standards.
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INTRODUCTION

The objective assessment of motor severity in
Parkinson’s disease (PD) is a major priority not only
for the clinical follow up of individual patients and
their objective response to drug changes, but also in
the evaluation of experimental approaches in clinical
trials. Since the COVID-19 crisis emerged, routine
in-person assessment of PD severity has become
impractical or undesirable in many cases; many older
patients diagnosed with PD are considered part of
the ‘at risk group’ and have been formally advised
to shield [1]. This has resulted in remote/video
approaches being encouraged to support patients suf-
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fering from chronic illnesses such as PD [2–4] as well
as in current clinical trials of PD [5].

Video assessments can also facilitate the evaluation
of patients in the absence of their regular dopaminer-
gic medication, which can be useful in the assessment
process for treatments such as deep brain stimulation
(DBS) surgery, where an “off” and “on” medication
assessment is required as standard practice. Avoid-
ing the need to travel to a clinic or hospital in the
“off medication” state can be far more comfortable
for patients, may reduce the duration of the time they
spend in a suboptimal state, and reduce expenses due
to travel costs and parking fees.

Alongside this, there have been a number of
attempts to develop the automated rating of PD sever-
ity using video-recordings and Artificial Intelligence
(AI)/Machine Learning techniques. This may provide
support to clinicians when identifying and diagnosing
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disease. Given this growing interest in using a) video
based/ remote assessments to assess PD severity, and
b) AI rating of PD, this review aims to discuss the
major issues that must be recognised as part of the
potential role of video assessment and analysis in
future management of PD patients, in the context of
the growing use of Digital Health Technologies in
PD.

CLINICAL TOOLS

The most widely used tool for the assessment of
PD is the Movement Disorder Society Unified Parkin-
son’s Disease Rating Scale (MDS UPDRS). Part 3
of the MDS-UPDRS is the gold standard assessment
tool for measuring motor signs of PD [6, 7]. Other
validated scales exist for the evaluation of dyskinesia
and tremor, but for the purpose of this review, dis-
cussion will be limited to the MDS UPDRS part 3,
although the same principles may apply to the other
scales.

LITERATURE SEARCH

We searched PUBMED, Web of Science and SCO-
PUS i) from 2000 to 2020 using “Video assessment”,
“Parkinson’s disease”, “Telemedicine”, “Telehealth”
and “MDS-UPDRS” and ii) from 2016 to 2020
using “Video assessment”, “Artificial Intelligence”,
“Machine Learning”, “Automated” and “Parkinson’s
disease” “Motor symptoms” as key words. Reference
lists from the identified articles were cross-checked
to identify any other potentially eligible studies.

STUDY SELECTION

We included observational and experimental stud-
ies conducted in PD patients in which i) items of
MDS-UPDRS part 3 measured by a clinician through
videos, were utilised as at least one of the outcome
measures and ii) studies that used motor symptoms of
PD measured by a machine learning algorithm rely-
ing on video-assessments. We excluded reviews and
studies written in languages other than English. All
retrieved abstracts were independently screened. The
full texts of potentially relevant articles were retrieved
for further assessment and were included if they met
the above criteria.

CAN PD MOTOR DISABILITY BE
ADEQUATELY CAPTURED ON VIDEO?

Direct comparisons of video-based and live
evaluations of the MDS-UPDRS

Before considering whether computer vision or
machine learning techniques can improve upon tradi-
tional human rating of PD patients, it is important to
consider the initial impact of using video rather than
live face to face examination. Video-based adminis-
tration of the MDS-UPDRS motor section has been
successfully explored as a way to measure motor
function of patients with PD [8–14], even among
older individuals with PD who have substantial dis-
ability [15]. Studies directly comparing video-based
and face-to-face scores of the MDS-UPDRS have
shown moderate-good agreement, with intraclass cor-
relation coefficients (ICC) ranging from 0.53–0.78 [9,
12, 15, 16].

Closer scrutiny of the studies comparing video-
based and face-to-face analyses of PD symptoms
reveals poor agreement however for specific elements
of the MDS-UPDRS. Whilst studies have shown
good agreement between live and video evaluations
for scores of postural stability and gait [17], the
same investigators have shown poor agreement for
items of bradykinesia [10, 17] and tremor [17]. It is
thought that because the tasks measuring bradyki-
nesia involve rhythmic and continuous movements,
technical difficulties such as poor internet connection,
time lags and motion blur could affect accurate scor-
ing [13]. In addition, multiple elements are included
in rating bradykinesia, which may add greater com-
plexity to assessing these tasks compared with rating
more uniform manifestations such as gait and balance
[18, 19]. There are also reports of difficulty rating rest
tremor via videos due to the manner of rating tremor
amplitude in centimetres, which may not be easily
discerned [13].

However, a recent study comparing video and in-
person assessments of upper limb function, which
utilised a series of standardized measures includ-
ing motor speed and tremor in 21 patients with PD,
found good agreement across all measures, with ICC
ranging from 0.75–0.99 [20]. It should be noted
here that participants had access to high speed Inter-
net and measures were completed in real time via
Skype. Data from the PREDICT-PD study corrobo-
rates this view, demonstrating that subtle subclinical
signs of PD can still be discerned from video assess-
ments [21]. Whilst much of the research discussed
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above demonstrates that video assessment can serve
the clinical management of PD [8–14], a recent
analysis of the STEADY-PD trial has shown that
virtual visits involving video-based assessments of
motor symptoms, is both feasible and comparable
to in-person assessments [15], which suggests that
video-assessments may also be of use in clinical
trials. The current research into video assessments
of PD motor symptoms has shown that video-based
assessments can be carried out in patients own homes
[12, 13, 16, 22] as well as in clinic [9, 17]. Method-
ological issues with conducting video assessments
in these respective environments are described in
Table 1 which also outlines some of the other chal-
lenges associated with video assessment of PD motor
severity.

It should be noted here that the majority of
studies were video telehealth consultations, where
video-based MDS-UPDRS part 3 assessments were
carried out as a secondary interest [8–16]. Stud-
ies conducting formal video-based MDS-UPDRS
motor assessments measured only some items of the
MDS-UPDRS [20] or did not compare scores with in-
person assessments [21]. No study to the best of our
knowledge has validated video-assessment against
in-person assessment of the MDS-UPDRS.

Incomplete assessment

During video administration of the MDS-UPDRS,
there is an inability to perform parts of the motor
exam such as assessment of rigidity and postural sta-
bility, which require a hands-on assessment. Asking
an untrained carer or family member to perform a Pull
test to assess postural stability may lead to falling and
injury. Many studies investigating video versus live
administration of the MDS-UPDRS therefore omit
these items from the assessment [9, 10, 12, 15].

The inability to assess patient rigidity may rep-
resent a major limitation for video assessment
especially among individuals in whom this is a major
feature. More importantly, the restricted examination
of patients (when limited to the MDS-UPDRS), may
not detect the presence of co-morbid signs contribut-
ing to a patients’ disability. An example may be a
patient with progressively worsening balance due to
cervical myelopathy or sensory neuropathy, which
may only be evident following examination of ten-
don reflexes or distal sensory examination. While
the MDS-UPDRS score is designed to be used with-
out direct interpretation whether a change in score
is due to PD progression or not, day to day clinical

evaluation of patients needs to consider whether other
explanations may exist for a change in PD severity
suggested by MDS-UPDRS part 3 scoring.

Despite these concerns, there are data to show that
a modified MDS-UPDRS, in which elements that
require a physical exam, including postural stabil-
ity and rigidity, are excluded from rating, can remain
a reliable and valid assessment of motor function.
In a secondary analysis of the CALM-PD clinical
trial, which compared a modified MDS-UPDRS to
the standard motor UPDRS (including all items),
found that the modified versus standard UPDRS
was cross-sectionally (ICC ≥ 0.92) and longitudi-
nally (ICC ≥ 0.92) reliable and valid [25].

Nonetheless, the use of objective measures such
as wearable sensors may be used in conjunction
with video assessment, to partially compensate for
the missing data from the MDS-UPDRS scores for
these items. A recent study with 32 patients with
PD found that patient-worn wearable sensors com-
bined with machine learning techniques were able to
accurately predict clinician-assigned MDS-UPDRS
scores for rigidity in 85.4% of cases [26]. Likewise,
wireless accelerometers have been shown to suc-
cessfully detect postural instability in patients with
PD, produce scores that correlate with scores from
gold standard assessments, and detect slight postu-
ral abnormalities in early PD [26–32]. Consequently,
video-based analyses in conjunction with the support
of wearable sensors may give us the means to create
an ecologically valid clinical picture remotely. Whilst
a discussion of wearable sensors is beyond the scope
of this article, wearable sensors have a large role in
Digital Health Technologies and will be covered in a
separate article in this issue.

COMPUTER VISION VIDEO ANALYSIS

Despite the challenges outlined, the recording of
movement using video opens the possibility of using
AI/Machine Learning techniques to quantitate human
movement, which may be potentially useful in the
diagnosis of movement disorders such as PD, and
their longitudinal assessment. This has the theoreti-
cal advantage of improved objectivity and access and
therefore improved signal to noise ratio in compari-
son to clinician ratings, inevitably subject to fatigue
and intra- and inter-rater variability.

Computer vision defines humans as articulated
objects with parts moving according to these artic-
ulation points. Detecting human poses from a
single viewpoint presents many challenges given the
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Table 1
Identified challenges and potential solutions associated with rating motor symptoms of Parkinson’s disease via video

Challenges Potential Solutions

Video quality In a recently completed study using state-of-the-art tablet technology in which the
MDS-UPDRS was conducted via Facetime on 10 participants with PD, neurologists still
reported difficulty in detecting quick involuntary movements and small amplitude tremor
due to the quality and resolution of videos [12].

Wifi/ 5G
Secure web based uploads.
High resolution video cameras

Patient Burden More elderly people are the most infrequent users of technology and the internet [23] and
therefore, patients may have issues accessing technology devices and the internet in their
own homes, particularly if they have cognitive impairment [24].

Assistance for remote monitoring of more disabled patients
with PD is essential. Moreover, these latter individuals
represent the group most at risk of poor outcomes if
exposed to infections such as COVID19.

The majority of the current research comparing video-based and face-to-face analyses of PD,
focuses on samples that are relatively younger, highly educated, familiar with the Internet
and present with milder symptoms of PD [8–10, 12, 13, 16, 17].

Replicate studies in the broader population living with PD.

Inadequate patient
visualisation

Studies conducting video-assessments of motor symptoms in patient’s own homes have
presented challenges with the environment such as space constraints [13, 22]. This may
make it difficult to visualise the patient’s entire body, which is required for full assessment
of the MDS-UPDRS [13] and their gait.

Ensure adequate camera position and request (if possible) a
family member to support the set up of video equipment.

Inconsistent Video
setting

Some studies are carried out at designated facilities with nurses on hand to assist with video
set-up and in-person administration of the MDS-UPDRS [9, 17], which may not be
conflated with findings from video assessments carried out in the home environment, which
is unlikely to have the presence of a qualified clinician. Other studies that demonstrate the
MDS-UPDRS conducted via videoconference in patient’s own homes [12, 13, 16, 22] is of
course of greater relevance in the context of patients potentially shielding from COVID-19.
On one hand, conducting an assessment in the patient’s natural environment may provide
ecological validity of the clinical picture. However, longitudinal comparisons of scores may
need to consider the context in which the video examination was performed.

Compromise may be necessary on occasion according to
disease stage/ purpose of evaluation.

Short-term
evidence

The majority of research considering video-based assessment of PD is limited by short-term
studies. Concrete conclusions cannot be made about the long-term use of videos to analyse
PD symptoms, nor the validity of video-based methods in replacing face-to-face
assessment.

Future longitudinal research may give insight into the
efficacy of longer-term video-based assessment of motor
symptoms with built in mechanisms to trigger face to
face clinical examinations when necessary.

By contrast, one longitudinal study that compared in-person assessments with virtual visits in
195 patients with PD found no difference between groups in MDS-UPDRS score changes
as well as no difference between groups in standardized measures of quality of life over 12
months [8]. This suggests that video-based analyses of PD can be used over a medium term
period with low risk to patient’s clinical outcomes or quality of care.
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complexity of human structure. Put simplistically,
computer vision uses low level features such as edges,
shapes, colour, texture, and combines these with
higher level features such as context and motion,
prior models of human body parts and enhanced deep
learning algorithms to assemble a human body model
from a two dimensional image (2D) [33].

Several companies and academic research labs are
attempting to develop machine-learning algorithms
to aid in the measurement of PD severity. Strate-
gic differences exist between them, either to provide
an AI estimate of the modified MDS-UPDRS, to
provide an AI estimate of sub-items of the MDS-
UPDRS, or to provide an AI estimate of movement
fluidity independently of the items incorporated in
the MDS-UPDRS. All of these commercial ventures
have challenges to overcome. The success of the
pose estimation depends on many factors, such as
the whole body being captured in the image as well
as many additional issues relating to the lighting
level, the background, the possible presence of other
people, all of which represent major challenges for
computer vision to recognise the human pose on a 2D
image. Additionally, there are challenges involved for
participants unable to follow the instructions appro-
priately leading to incomplete or inconsistent data.

In a recent study combining video-based analy-
ses with machine learning techniques, severe motion
blur and fluency issues with videos made it difficult
for the AI system to score aspects of bradykine-
sia in 60 patients with PD [34]. Rating items of
bradykinesia using the MDS-UPDRS requires scor-
ing the fluency and quality of movement, and likewise
characterising small amplitude tremor relies on dis-
cernment. Work utilising computer vision-based
methods should therefore consider that accurate scor-
ing of these items via video relies on the quality of
video. Table 2 summarises the progress made by dif-
ference commercial approaches to video analysis of
PD. Discussion of the machine-learning techniques
utilised in the examples presented in Table 2 are
beyond the scope of this review, please see [35] for
further reading.

Beyond the demonstration that technical diffi-
culties can be overcome, the interface has to be
acceptable to the users (both patients and clinicians)
and the data needs to be safely and securely stored
(with informed consent) while meeting data protec-
tion requirements. Ultimately the analysis pipeline
should be as automated as possible while still needing
quality control checks to ensure a patient has engaged
properly with the appropriate movement item. See

Figs. 1a and 1b that depict two example processes of
using automated video assessment tools.

The development of such tools and applications to
an illness such as PD requires extensive model opti-
misation using data from large numbers of individuals
and then complex validation with careful considera-
tion of the gold standard against which the tool should
be validated, given that our human clinical skills are
intrinsically flawed, and patient performance varies
according to fatigue, medication and time of day. In
addition, most machine learning techniques such as
those described above, are supervised, for example,
an AI model dedicated to scoring a video accord-
ing to the MDS-UPDRS is trained using clinician’s
scores of MDS-UPDRS [34]. Therefore, at best, the
accuracy of machine learning techniques will be as
good as the clinician assessment of MDS- UPDRS,
which already presents issues with inter/intra rater
variability, thus there is a need to demonstrate greater
inter/intra assessment reliability using AI tools which
would further the argument that AI can provide truly
objective ratings. In addition, a deep learning method
(utilised by multiple companies in Table 2), works by
training a model using example data that is inputted,
to be able to subsequently identify PD from novel data
and this heavily relies on large amounts of high qual-
ity labelled data, to ensure that the model achieves
state of the art accuracy. One caveat with the current
research into automated video-based assessments is
that often the models are trained using small samples
of cognitively intact, predominantly white partici-
pants, that are relatively younger, and present milder
symptoms of disease (Hoehn and Yahr stage 2) [34,
37, 38, 41], which may bias the automated assessment
framework and thus findings cannot necessarily be
generalised to the wider population of people living
with PD. One study has demonstrated that it is possi-
ble to apply automated video-based assessment to an
older population with lower cognitive status [42], but
this is yet to be demonstrated in the older population
of people with PD, who have a more severe disease
status.

So far, recent research developing computer vis-
ion-based methods for AI analysis have shown
success in scoring bradykinesia, gait and facial
expressions, as well as AI scores showing good cor-
relation with clinician ratings among these studies
[34, 38–44]. At present, the application of AI to diag-
nosis of movement disorder patients will likely only
ever be used in conjunction with human expert move-
ment disorders clinicians, since rigorous validation
of AI technology and subsequent regulatory approval
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Table 2
Commercial approaches to video-analyses of Parkinson’s disease

Company MDS-UPDRS task measured Description and method Examples and further reading

Parkinson’s
Analysis with
Remote Tasks
(PARK)

Measures some items of the
UPDRS to derive a composite
score that indicates disease
severity. This includes: facial
expression, speech, finger taps,
hand movements,
pronation/supination, postural
tremor, speech.

An online framework (available at
parktest.net) that uses deep
learning which allows patients to
perform this abbreviated version of
the MDS UPDRS score using a
computer from anywhere in the
world [36].

The framework can automatically
discriminate between PD vs.
non-PD with 82.5% accuracy [37].
They additionally inform subtle
differences in facial expressions
between PD and non-PD
individuals that are invisible to a
human eye, but possible for
machines to quantify.

The use of facial information to
diagnose and quantify PD is
acknowledged as a separate field
in the assessment of PD and is
beyond the scope of this review.

Machine Medicine
Technologies

Measures all items of UPDRS to
derive a composite score that
indicates disease severity

Incorporates the traditional clinician
rated MDS UPDRS onto a
smartphone/tablet capable of
recording segments of video
footage which can immediately be
quantified, using novel AI
algorithms, according to item e.g.
Right hand finger taps, with the
aim of deriving a modified AI
UPDRS score which they have
termed “Kelvin UPDRS” (See Fig.
1a).

https://machinemedicine.com/

Tencent Medopad Diagnoses and quantifies the
severity of PD using far fewer
items than the traditional
UPDRS.

This includes: upper and lower
limb movements.

Uses an AI system through a
smartphone app that assesses a
patient performing hand
movements by identifying
frequency and amplitude of
movement to generate a score for
the patient, which determines the
severity of their PD.

https://www.tencent.com/en-
us/articles/2200927.html

OpenPose Quantifies gait not based on the
MDS-UPDRS

Developed a deep learning-based
system capable of discriminating,
parkinsonian from normal gait,
based on estimating cadence of
periodic gait steps from sequential
gait features via 2D videos taken
on any accessible device

Estimated cadence of gait from the
sequential gait features using the
short-time pitch detection
approach and combined machine
learning algorithms and found
discrimination performance for
detecting mild PD gait from
healthy controls was 0.754– 0.957
(AUC). Furthermore, when
comparing gait sequences before
versus after DBS treatment had a
discrimination performance of
0.980 (AUC) [38].

OpenPose was able to estimate gait
parameters relative to gold
standard measures in healthy
adults with a high degree of
accuracy showing strong Pearson
and intra-class correlation
coefficients (0.671– 0.964) [39].

(Continued)

https://machinemedicine.com/
https://www.tencent.com/en-us/articles/2200927.html


K.G. Sibley et al. / Video-Based Analyses of Parkinson’s Disease Severity S89

Table 2
(Continued)

Company MDS-UPDRS task measured Description and method Examples and further reading

Convolutional
Pose Machines

Quantifies toe tapping and leg
agility items of the UPDRS
and derives dyskinesia severity
by quantifying dysfunction
during a communicating and
drinking task according to the
Unified Dyskinesia Rating
Scale (UDysRS).

A deep learning based system that
analyses 2D videos to a).
automatically quantify
parkinsonism according to toe
tapping and leg agility items of the
UPDRS and b) detect and estimate
the severity of levodopa induced
dyskinesia according to
communication and drinking tasks
measured by the Unified
Dyskinesia Rating Scale
(UDysRS).

Convolutional Pose Machines have
been used to identify features of
movement trajectories (e.g.,
kinematic, frequency) and these
features were used to train random
forests to score severity of
parkinsonism and levo-dopa
induced dyskinesia (LID). Found
AUC for detecting LID was 0.930,
severity estimation: r = 0.661. For
parkinsonism, leg agility was better
for severity estimation (r = 0.618)
while toe tapping was better for
detection (AUC = 0.773) [40].

Deep Lab Cut Quantifies finger taps based on
the MDS-UPDRS.

A system using transfer learning with
deep neural networks that
incorporates UPDRS measures of
bradykinesia, which can track
finger tapping in standard
smartphone video recordings and
automatically quantify speed,
amplitude and rhythm of
movements.

Computer measures derived from
coordinates produced by
DeepLabCut video tracking
correlated highly with clinical
ratings of bradykinesia (Spearmans
correlation coefficients: –0.56
speed, 0.61 amplitude, –0.50
rhythm for MDS-UPDRS, 0.69
combined for MDS-UPDRS) [41].

Microsoft Kinect Identifies gait features associated
with clinical scores of UPDRS
gait measures.

A motion sensing input device to
record standard colour videos and
provide coordinates of 25 body
joints in 3D space. Uses an inbuilt
depth sensor, containing a
monochrome Complementary
Metal Oxide Semiconductor
(CMOS) sensor and infrared
projector that creates 3D images,
combined with a measure that uses
infrared light to capture 3D
movement patterns.

Utilised clinically by incorporating
regression models for gait
assessment in neurological
diseases.

Videos of walking bouts of natural
gait were collected using a
Microsoft Kinect sensor and
onboard color camera which were
processed to extract 3D and 2D gait
features. Extracted features were
put into subsequent regression
models to identify features which
correlate with clinical scores. It was
found that measures of gait
extracted from videos were
significantly associated with
UPDRS-gait clinical measures with
regression models achieving
accuracies of 61.4% and 62.1% for
2D and 3D features, respectively
[42].

would be required. Nevertheless, with computer
vision-based analysis of PD there appears to be poten-
tial for repeated, longitudinal data collection, with
internal consistency.

FUTURE DIRECTIONS

In the future, in addition to video-based assess-
ment to measure MDS-UPDRS-part 3 scores, we
may even see more applications of passive sensing
towards early diagnosis and possible referral for PD.
For example, with users’ permission, any video feeds,
e.g., even from videoconferencing sessions could be
analysed for subtle variations of micro expressions

over time as an early detector of PD. The ethical
implications of this are of course potentially myriad.
While uncertainty around video quality and the noise
in the data diminishes the human performance on
measuring MDS-UPDRS score, with recent advances
in AI [45], it is possible to reduce the video band-
width usage to one-tenth, resulting in high quality
video despite having low-bandwidth. While many
irregularities in the data may appear noise to humans;
for an AI, these are patterns. With enough data, the
noise can be modelled and successfully decoupled.
In addition, future work could consider comparing
machine-generated scores with clinician assessments
of motor symptoms in blinded OFF and ON med-
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Fig. 1a. Example of Kelvin, a platform that allows the user to record 2D videos of patients with PD on any accessible device, and an inbuilt
AI system will analyse the clip and denote scores according to items of the UPDRS. Reproduced with permission.

Fig. 1b. Example of Park, a platform that allows the user to perform the UPDRS score at home. Reproduced with permission.

ication conditions to assess the AI ability to detect
different clinical status in the same patient, which
would provide detail into the sensitivity of AI as well
as further validate machine-learning techniques for
clinical purposes. Furthermore, large datasets rep-
resenting a wider population across race, gender,
geography and socio-economic boundaries would
be key in order to facilitate an equitable machine-
learning outcome.

CONCLUSION

In summary, the move towards remote video mea-
surement of PD severity has been greatly accelerated
by the COVID19 pandemic. As such, it is vital that
clinicians and researchers devise a valid and safe
way to continue support and monitoring of patients
with PD without exposure to infectious risks, while
also without losing important details currently cap-
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tured in face-to-face assessments. Whilst video-based
assessment of the MDS-UPDRS presents some chal-
lenges, it is likely that remote video capture is an
accessible means for neurologists to continually mon-
itor and support patients living with PD. However,
this process must also consider the circumstances in
which a face-to-face consultation should be triggered,
for example, to evaluate the emergence of atypical
features of parkinsonism or other causes for deteri-
oration in the clinical signs. At present, whilst the
growing use of Digital Health Technologies is full
of promise for supporting chronic neurological con-
ditions such as Parkinson’s disease, it seems that
using automated video assessments for diagnostic
purposes and to accurately quantify disease severity
depends on research with large, diverse samples and
further validation, in order to best represent and thus
be useful for the 10 million people worldwide with
Parkinson’s disease at present.
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