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Abstract
Patterns of species associations have been commonly used to infer interactions 
among species. If species positively co‐occur, they may form predominantly neutral 
assemblages, and such patterns suggest a relatively weak role for compensatory 
dynamics. The main objective of this study was to test this prediction on tempo‐
ral samples of bird assemblages (n = 19, 10–57 years) by the presence/absence and 
quantitative null models on assemblage and guild levels. These null model outcomes 
were further analyzed to evaluate the effects of various data set characteristics on 
the outcomes of the null models. The analysis of two binary null models in com‐
bination with three association indices revealed 20% with significant aggregations, 
61% with random associations, and only 19% with significant segregations (n = 95 
simulations). The results of the quantitative null model simulations detected more 
none‐random associations: 61% aggregations, 6% random associations, and 33% seg‐
regations (n = 114 simulations). Similarly, quantitative analyses on guild levels showed 
58% aggregations, 20% segregations, and 22% random associations (n = 450 simula‐
tions). Bayesian GLMs detected that the outcomes of the binary and quantitative 
null models applied to the assemblage analyses were significantly related to census 
plot size, whereas the outcomes of the quantitative analyses were also related to 
the mean population densities of species in the data matrices. In guild‐level analy‐
ses, only 9% of the GLMs showed a significant influence of matrix properties (plot 
size, matrix size, species richness, and mean species population densities) on the null 
model outcomes. The results did not show the prevalence of negative associations 
that would have supported compensatory dynamics. Instead, we assume that a simi‐
lar response of the majority of species to climate‐driven and stochastic factors may 
be responsible for the revealed predominance of positive associations.
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1  | INTRODUCTION

Compensatory dynamics are believed to play an important role 
in community organization and functioning especially under 
environmental stress (Gonzalez & Loreau, 2009). It involves re‐
peated phases of population growth and decline among species 
in response to continuous environmental pulses, where pulses 
represent high‐frequency environmental fluctuations (Gonzalez 
& Loreau, 2009). Repeated phases of population growth and de‐
cline of species are also characteristic for correlated dynamics 
depending on fluctuating resources (e.g., Clotfelter et al., 2007; 
Enemar, Sjöstrand, Anderson, & Proschwitz, 2004; Holmes, 
Sherry, & Sturges, 1986), but these are primarily climate‐driven 
neutral community processes rather than competition. The con‐
cept of compensatory dynamics came from the notion of density 
compensation in island faunas by MacArthur, Diamond, and Karr 
(1972). This concept was originally understood as part of compe‐
tition theory as a process driving temporal fluctuations of species 
within communities.

The theory of compensatory dynamics assumes that if competi‐
tive interactions are important in driving year‐to‐year fluctuations in 
abundance, then changes in the abundance of one species should be 
generally accompanied by compensatory changes in the abundances 
of other members of community (Houlahan et al., 2007). However, 
based on meta‐analyses of 41 data matrices from various taxonomic 
groups except birds, Houlahan et al. (2007) concluded that compen‐
satory dynamics are rare in natural ecological communities. Korňan 
and Svitok (2018) tested this concept on 19 long‐term data sets 
of bird assemblages, and their pairwise null model analyses led to 
similar conclusions. Testing the general applicability of the compen‐
satory dynamics concept in natural communities showed more con‐
tradictory than supporting conclusions (Gonzalez & Loreau, 2009; 
Houlahan et al., 2007; Korňan & Kropil, 2014b; Korňan & Svitok, 
2018). A predominance of correlated and random dynamics can indi‐
cate a common response of the majority of species within communi‐
ties to climate and stochastic drivers of community dynamics rather 
than competition.

In our current study, we test the general applicability of the con‐
cept of compensatory dynamics in bird assemblages. Up to now, 
world‐wide meta‐analyses of temporal patterns of bird assemblages 
testing this concept have not been published in the ecological lit‐
erature (see reviews Dhondt, 2012; Mikusiński et al., 2018; Wiens, 
1989a) except our previous study based on interactions among in‐
dividual species pairs (Korňan & Svitok, 2018). Here, we go beyond 
pairwise relationships and focus on assembly processes at commu‐
nity and foraging guild levels with a focus on both qualitative and 
quantitative data.

Testing whether communities are driven by compensatory, cor‐
related, or random dynamics can be based on analyses of species 
associations (Houlahan et al., 2007; Korňan & Svitok, 2018; Schluter, 
1984). Negative species associations (segregations) may indicate 
compensatory dynamics, positive species associations (aggregations) 
correlated dynamics and random associations random dynamics. We 

here applied null model analysis to test for nonrandom species asso‐
ciations. Null model analysis is a frequently used tool in searching for 
species associations (co‐occurrence) patterns in spatial and temporal 
data sets (Gotelli & McCabe, 2002; Gotelli & Ulrich, 2010; Korňan & 
Svitok, 2018; Ulrich & Gotelli, 2010). Gotelli and Graves (1996) and 
Gotelli and Ulrich (2012) defined null model analysis as a pattern‐
generating model that is based on randomization of ecological data 
or random sampling from a known or specified distribution. Certain 
elements of the data are held constant, and others are allowed to 
vary stochastically to create a random assemblage pattern. The ran‐
domization is designed to produce a pattern that would be expected 
in the absence of a particular ecological mechanism. Null models are 
used in combination with various binary or quantitative species as‐
sociation indices, of which the checkerboard score (Stone & Roberts, 
1990) is probably the most popular.

Analyses of species associations are commonly done on com‐
munity‐level matrices in which a community‐level species associa‐
tion index is computed for all species combined. Such analyses may 
suffer from dilution effects (Diamond & Gilpin, 1982). This effect 
is expected because species from various guilds are combined in 
the analysis of a community‐level matrix, which produces diluted 
index values by covering noncompeting species and could bias the 
results. Therefore, guild‐level analysis is needed to overcome these 
problems.

Guilds are understood as basic structural units of communities 
sensu Root (1967). In the original “Rootian” sense, guilds were de‐
fined as a group of species that exploit the same class of environ‐
mental resources in a  similar way. Environmental resources may 
include diet, foraging substrates, and breeding sites. Due to similar 
niche requirements among guild members, a higher level of inter‐
specific competition is assumed than among all members or random 
species groups of assemblages (Blondel, 2003; Korňan & Kropil, 
2014a; Mac Nally, 1983; Simberloff & Dayan, 1991). Consequently, 
guilds can be used as natural species groupings for studies of species 
associations to test assumptions of competition theory.

In our previous study using pairwise null model analysis of 
species association on 19 long‐term data sets (>10 years) of bird 
assemblages, we detected the overall very low frequency of sig‐
nificant species pairs with a strong predominance of positive as‐
sociations (Korňan & Svitok, 2018). In this study, with the same 
19 long‐term data sets of bird assemblages, we tested species as‐
sociations at higher hierarchical levels (guilds and assemblages). 
Having conducted analyses of three basic levels of community or‐
ganization (species pairs, guilds, and whole assemblage), we can 
develop much stronger interferences about the general applica‐
bility of the compensatory dynamic concept for bird assemblages. 
This is the first such study testing species associations in temporal 
bird data sets. In addition, we tried to test effects of matrix prop‐
erties and null model setting on the null model outcomes and thus 
enhance generality of our conclusions and target possible weak‐
nesses in the results. In particular, we (a) examined the frequency 
of different species association patterns revealed by null model 
simulations (aggregation, random, segregation) and (b) assessed 
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the relationships between various data set characteristics (such as 
matrix size, duration of study, and proportion of zero in a matrix) 
and the outcomes of the null model simulations.

2  | MATERIAL AND METHODS

2.1 | Sources of data

We  used the scientific reference and citation databases Clarivate 
Analytics Web of Science and SCOPUS for an extensive global 
search for long‐term bird assemblage studies in which data sets 
were published. We also searched for this type of studies in cited 
references in scientific papers on the topic. We only selected studies 
in which the mapping method as a bird census technique was ap‐
plied. Mapping method is a standard census technique primarily de‐
signed for estimating abundances of territorial and noncolonial birds 
in a study plot (Bibby, Burgess, Hill, & Mustoe, 2000; IBCC, 1969; 
Williams, 1936). As a selection procedure, the minimum census plot 
size requirement was 7 ha. In total, we found 19 long‐term studies 
(≥10 years) of this type from three habitat types: 15 forests, 3 open 
habitats, and 1 city park (Appendix S1). Time periods of censuses 
ranged from 10 to 57 years while the studies spanned the period 
from 1927 to 2014. Species richness of the plots across census pe‐
riods ranged from 14 to 78 species. Ten of the forest plots had close 
to primeval character, and five were second growth. Close to pri‐
meval forests (pristine, virgin, old‐growth) are primary forests with 
the original composition of plant communities that have never been 
cut and can be only negatively affected by atmospheric pollution or 
overgrazing by game. Seventeen studies were conducted in Europe, 
and two studies in North America. Details and literature sources of 
the data sets are given in Appendix S1.

2.2 | Preparation of data matrices

Published data sets were organized as quantitative (abundance) data 
matrices in which each row represents a species and each column 
represents a year. Population abundances from mapping method 
estimates are expressed as the number of occupied territories on a 
census plot. Each territory is equivalent to one breeding pair; there‐
fore, breeding pairs or territories have exactly the same meaning and 
can be used interchangeably. In both binary and quantitative matri‐
ces, all species within bird assemblages were included (Appendix S1). 
For example, the densities of some species (e.g., some woodpeckers, 
corvids, owls, birds of prey) that have very large territories cannot 
be estimated on small study plots and were marked “+” in the source 
papers as breeding species with tracing densities which means that 
densities of these species are impossible to estimate due to their very 
low abundance, but their abundance is lower than 0.5 territories per 
census plot. These species are called tracing species and their popu‐
lation densities tracing densities. Because we did not want to lose 
the information on tracing species, we added small assumed density 
value constants (0.1 p/10 ha for woodpeckers and smaller passer‐
ines; 0.05 p/10 ha for smaller raptors and corvids; 0.004 p/10 ha for 

large raptors) to all year presences that varied among species, re‐
flecting their assumed population densities in a habitat.

To analyze foraging guilds, we classified all species from all as‐
semblages into guild categories by means of an a priori approach 
(see below and Appendix S2). Species classifications of all European 
and North American birds in matrices can be found in Appendix S2. 
Foraging guild matrices also included species with tracing densities 
by adding density values constants exactly as in case of whole as‐
semblage matrices.

For each data set, we measured several characteristics that could 
influence the results of the null model simulations. Those characteris‐
tics were the size of the census plots (area in hectares, spatial extent), 
the size of the matrix (number of rows × number of columns), the du‐
ration of the study in years, the total number of species, the proportion 
of zeroes that were in the matrix, mean species density, and coeffi‐
cient of variation (CV) of species density.

2.3 | Classification of foraging guilds

We applied an a priori approach (Wiens, 1989a) to classify 
European and North American birds into foraging guilds. We used 
number of published papers and monographs with descriptions 
of feeding tactics, diet niches, and use of foraging substrates 
(e.g., Reif, Hořák, Krištín, Kopsová, & Devictor, 2016). We based 
detailed classification of individual bird species on the dominant 
feeding strategy during the breeding period, and it is given in the 
Appendix S2. The basic criteria of how birds were classified are 
as follows:

Insectivorous birds: primary diet consists of invertebrates 
(>50%); less important could be also other food types, for example, 
seeds, berries, and leaves. Insectivorous birds were further divided 
into the following guilds, considering >50% of time spent by feeding 
on a particular substrate or feeding on a particular dietary type:

1.	 Trunk foragers: species taking invertebrate prey mainly on tree 
trunks, less commonly larger branches as foraging substrates. 
Bark gleaners (creepers, nuthatches) and trunk probers (wood‐
peckers) cover this foraging guild.

2.	 Foliage foragers: the most species diverse guild in forest habi‐
tats. Species prey on invertebrates (caterpillars, flies, butterflies, 
beetles, etc.) from leaves, twigs, or smaller branches, using vari‐
ous prey‐capture strategies as gleaning, hovering, and snatching. 
Among typical foliage gleaners are tits, sylviid warblers, icteriid 
warblers, phylloscopiid warblers, crests, etc.

3.	 Aerial foragers: species preying on invertebrates mainly by sally, 
sweep, or hawk tactics from air and less frequently from other 
types. Some species may use arboreal substrates in relatively high 
frequency, for example genus Ficedula, for example during cater‐
pillar or aphid outbreaks (Krištín, 1992). Members of this guild are 
muscicapiid flycatchers, swifts, martins, and swallows.

4.	 Ground foragers: species foraging in the lower strata such as 
litter of herb layer. Typical species of this guild are pipits, larks, 
thrushes, accentors, etc.
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Nectar and sap feeders: foraging strategy typical for the North 
American hummingbirds. The birds typically suck nectar from flowers 
and/ or oozing sap (including attracted invertebrates) from tree holes 
drilled by woodpeckers.

Omnivorous guild: species feeding on various types of resource 
(living or dead invertebrates, vertebrates, plants) regardless of vege‐
tation layer. This foraging category is typical of most corvids.

Plant and seed eaters: species primarily consuming vegetative 
parts (>50%, e.g., seeds, flowers, leaves, fruits, and berries) in any 
place in the habitat and less frequently invertebrates. Typical plant 
eaters are pigeons, doves, finches, crossbills, etc.

Raptors: species feeding mainly on vertebrates and carrion 
(>50%), less frequently on invertebrates. Foraging strategies in this 
guild were not taken into consideration. Typical raptors are owls and 
birds of prey.

Water foragers: species feeding mainly on water invertebrates 
(>50%) from water bodies, the surface or bottom of lakes, or streams. 
Typical water foragers are ducks, wagtails, and dippers.

2.4 | Statistical analyses

2.4.1 | Species association indices

Binary (presence/absence) indices

To test species co‐occurrence patterns in long‐term data sets 
in the simplest form, three binary indices were used: number of 
checkerboards (CHECKER), checkerboard score (C‐score), and var‐
iance ratio (V‐ratio). The checkerboard index counts the number of 
species pairs in the data matrix that form perfect checkerboards 
(Diamond, 1975; Gotelli, 2000). If interspecific competition drives 
community dynamics, we expect to find significantly more spe‐
cies forming checkerboards in a real data matrix than in simulated 
random data matrices by null models. The second index used was 
the checkerboard score (Gotelli, 2000; Stone & Roberts, 1990). 
This index is related to the former index and measures the degree 
to which species co‐occur but does not require perfect segrega‐
tion between species. The C‐score represents the mean number of 
checkerboards per species pair in the community. For a community 
structured by competitive interactions, we should expect C‐score 
values to be significantly higher than in random assemblages of 
species. The last index applied for testing species co‐occurrences 
was the variance ratio (Gotelli, 2000; Robson, 1972; Schluter, 
1984). This index is based on the computation of the ratio of the 
variance in the total number of species in year samples to the sum 
of the variances of the individual species (Schluter, 1984). If the as‐
sumption of interspecific competition is valid, the observed index 
value should be significantly lower than in the simulated data ma‐
trices under null models.

Quantitative indices

To test for species covariance in quantitative data matrices, three 
quantitative indices were used in null model analyses–the quanti‐
tative number of checkerboards (CAST), the quantitative number 

of aggregations (AAST), and Chaoʼs index of similarity for n commu‐
nities (MA). The quantitative number of checkerboards index is the 
analogue of the presence/absence checkerboard index with abun‐
dance or density data. The index is a count of the total number of 
abundance checkerboards in 2 × 2 species‐by‐year or species‐by‐
site submatrices in the matrix (Ulrich & Gotelli, 2010). The stand‐
ardized index values range from 0.0 to 1.0, with high CA values 
indicating more negative covariation in a matrix (Ulrich & Gotelli, 
2010). An assemblage in which interspecific competition operates 
should have significantly higher values of the CA index than would 
be expected under the null model. The second applied metric 
for measuring quantitative species associations was the number 
of quantitative aggregations. This index is a  count of the aggre‐
gated 2 × 2 species‐by‐year or species‐by‐site submatrices in the 
matrix (Ulrich & Gotelli, 2010). The standardized value of the AA 
index can range from 0.0 to 1.0, with high values of AA indicating 
positive covariation in the abundance of species (Ulrich & Gotelli, 
2010). The index value in communities controlled by interspecific 
competition should be significantly lower than in a random assem‐
blage of species. The third metric used was Chaoʼs index (Chao, 
Jost, Chiang, Jiang, & Chazdon, 2008), which was developed as an 
extension of the Morisita index of similarity for two communities 
to a matrix‐wide metric for n communities. The index can reach 
values from 0.0 to 1.0, with low values indicating dissimilarity of 
year samples that is interpreted as a measure of negative species 
association, that is, low values of the MA index indicate communi‐
ties driven by competition processes.

2.4.2 | Null model algorithms

Nine binary null models have been used in ecological studies to ana‐
lyze the presence/absence data matrices (Gotelli, 2000). These null 
models ranged from the most liberal (row and column equiprobable 
constraint) to the most conservative (sums of rows and columns 
fixed constrain) solutions in null model analysis and their combi‐
nations. Among these binary models, two models with the best 
statistical properties in terms of Type I and II errors were applied–
SIM2 (row sums fixed and column equiprobable constraint) and 
SIM9 (sums of rows and columns fixed constraint) (Gotelli, 2000). 
The algorithm SIM9 was not applicable for simulations by V‐ratio 
index because the constraint does not enable the production of 
random variance of rows and columns in the null model simulations. 
The SIM2 algorithm treats the occurrence of each species in each 
year as proportional to the total number of species in that year. 
Therefore, the species number in each year will vary somewhat 
from one simulation to the next, although the relative rankings of 
years in species richness will be maintained on average (Gotelli & 
Graves, 1996). Treating years as equiprobable is a reasonable as‐
sumption because all year samples were taken in the same sites 
with very similar environmental conditions in most ecosystems 
(climax forests). Climate could vary to some extent from year to 
year, but the floristics and structure of the forest stands remained 
very similar. The SIM9 algorithm fixes row and column totals, which 
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preserves the probability of occurrence of species among years and 
the probabilities of occurrence among species. For time series data, 
SIM9 implies that some time periods have a greater suitability for 
the occurrence of all species or that some time periods have higher 
detection probabilities of some species than others. For details on 
model properties, see Gotelli (2000).

In contrast to binary data, quantitative data matrices offer a much 
wider range of solutions for the randomization of data matrices by null 
models. Quantitative null models do not have as long of a history as 
binary models, and most of them were developed in ecology in recent 
years (Ulrich & Gotelli, 2010). We used the same statistical criteria as 
described above for the selection of quantitative null model algorithms. 
Based on extensive diagnostic tests by Ulrich and Gotelli (2010), IT (rc) 
and IA (aa) algorithms were used here as the optimal solution for quan‐
titative null models. Algorithm IT assigns individuals randomly to ma‐
trix cells with probabilities proportional to observed row and column 
abundance totals until, for each row and column, total abundances are 
reached (Ulrich & Gotelli, 2010). Algorithm IA reassigns all individuals 
randomly to matrix cells with probabilities proportional to observed 
row and column abundance totals until the matrix‐wide total number 
of individuals is reached (Ulrich & Gotelli, 2010).

We applied a pluralistic analytical approach and tried to evalu‐
ate the effect of two binary and quantitative null models with ac‐
ceptable statistical and ecological assumptions in combination with 
three commonly used alternative indices for testing species associ‐
ations. Our attempt was to show that different views on null model 
analyses may alter the conclusions to some extent. We consider this 
pluralistic approach of using several models and indices to be more 
objective, as it offers several views on null model analyses of species 
associations which can be methodologically acceptable and which 
do not necessarily lead to the same conclusions. Using a single null 
model in combination with an index would yield “unambiguous” re‐
sults, but may produce a biased view of the problem.

2.4.3 | Null model analyses

Binary null model analyses were performed in the numerical pack‐
age EcoSim 7.0 (Gotelli & Entsminger, 2001), and quantitative null 
model analyses were performed in Turnover 1.1 (Ulrich, 2010). A se‐
quential swap randomization algorithm was used for randomizations 
of the original data matrices in the binary null models, since the thor‐
ough evaluation of this algorithm demonstrated its good statistical 
properties and performance (Gotelli & Entsminger, 2003).

The association index was calculated for each simulated ma‐
trix, and the statistical significance of the observed matrix was 
calculated as the frequency of simulated matrices that had indi‐
ces that were equal to or were more extreme than the observed 
index. Since we were interested in the variance of these indices 
to both sides, we searched for segregation as well as for aggrega‐
tion patterns in species distributions. Two‐tailed tests were used 
to test for the significance of the observed index values for the 
binary models and the one‐tailed test for quantitative models due 
to software presets. The tail probabilities were calculated from 

null model distributions based on 10,000 simulations, and the sig‐
nificance level was set to α = 5%.

2.4.4 | Analysis of the null model outcomes

The results of null model analyses were classified into three possible 
categories of outcomes: aggregation (co‐occurrence of species sig‐
nificantly higher than in a random assemblage), segregation (co‐oc‐
currence of species significantly lower than in a random assemblage), 
and random pattern (nonsignificant result of a null model simulation). 
These null model outcomes were further analyzed in order (a) to as‐
sess whether the guilds show different patterns of community as‐
sembly, that is, whether the null model outcomes differ among guilds 
and (b) to evaluate the relationships between various data set char‐
acteristics and the outcomes of the null models.

The differences in the null model outcomes among guilds were 
assessed using generalized mixed effect models (GLMM) with in‐
dividual studies (data matrices) as a random grouping factor. Since 
some guilds were (nearly) exclusively associated with only one type 
of null model outcome, we faced (quasi) complete separation prob‐
lems which caused that maximum likelihood estimation to fail to 
converge (Allison, 2003). The separation problems were handled by 
specifying weakly informative priors in Bayesian GLMMs (Hadfield, 
2018). We used a half‐Cauchy distribution with a scale parameter 
of 25, a prior distribution that was recommended as a default tool 
to handle complete separation in binomial models (Gelman, 2006; 
Gelman, Jakulin, Pittau, & Su, 2008). Markov Chain Monte Carlo 
(MCMC) algorithm was used to approximate the posterior distribu‐
tion of model parameters (McCarthy, 2007). Markov Chain Monte 
Carlo generates a series of values from a parameter space in which 
each value is conditional on the previous number. We used a Markov 
chain length of 10 million iterations. Since each MCMC sample de‐
pends on the value of the previous sample, successive values may 
be correlated. Correlation in the Markov chain impairs efficiency of 
the sampling algorithm, and therefore, we reduced the dependency 
in two ways (Hadfield, 2018; McCarthy, 2007): (a) we discarded 
the initial 10,000 samples (burn‐in) since the first iterations usually 
show a strong dependency on the starting parametrization, and 
(b) we saved every 5,000th sample (thinning) to reduce autocor‐
relation. The setup of burn‐in and thinning interval led to posterior 
distributions of 1,998 samples for all parameters. The convergence 
(dependence on the starting parametrization) and mixing of chains 
(diminishing the correlation) were assessed by MCMC trace plots 
and by examining autocorrelation among posterior samples. In case 
of poor mixing, the length of the chain was increased to 100 million 
iterations. In the final models, all estimated parameters showed au‐
tocorrelations <0.05. We reported differences in the deviance infor‐
mation criteria between each model and its associated null model 
(ΔDIC = DICm − DIC0) and considered the model to be statistically 
significant if the 95% highest posterior density interval (credible in‐
terval) of fixed effect estimates did not span zero.

The effects of the characteristics of the data sets (see Preparation 
of data matrices) on the null model outcomes were analyzed using 
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binomial and multinomial models. Because the frequencies in the 
outcome categories were unbalanced and the data set characteris‐
tics were intercorrelated, we fit each variable separately rather than 
combining them into one full model. When the null model simulation 
revealed dichotomous outcomes (cf. Figure 1), binomial Bayesian 
MCMC generalized linear models (GLM) with a logit link function 
were fitted to the data. In the case of trichotomous outcomes, the 
data were fitted with multinomial Bayesian GLMs. The priors and 
MCMC properties of the GLMs were specified in analogy to the 
GLMMs. The analyses were performed in R language version 3.5.0 
(R Core Team, 2018) using the library MCMCglmm (Hadfield, 2010).

3  | RESULTS

3.1 | Patterns of species association in whole 
assemblages and guilds

We assessed the species association patterns in 19 different bird 
assemblages using four null model algorithms in combination with 
six association indices (Appendices S3–S6). Combined results for the 
assemblages of the different null models revealed 42% with aggre‐
gated patterns and 31% with random patterns, and only 27% of null 
model simulations showed significantly segregated patterns in these 
bird assemblages. Quantitative null models showed aggregations 
more often (61%) than binary models (20%), while the pattern was al‐
most opposite for the random outcomes (quantitative models = 6%, 
binary models = 61%; Figure 1). Both model types yielded slightly 
different amounts of segregated results: quantitative = 33.33% and 
binary models = 18.95%. Interestingly, binary null models with row 
sums fixed and column equiprobable constraint (SIM2) in combina‐
tion with C‐score and V‐ratio did not reveal any segregated patterns 
in contrast to the SIM9 algorithm, which showed eight segregations 
with C‐score (Figure 1). For quantitative models, the proportion of 
random (5%–7%), positive (~60%), and negative associations (~33%) 
were similar regardless of whether the IT (rc) and IA (aa) algorithm 
was used.

Analyses on guild levels revealed similar association geometry 
(type; Appendix S7). Pooled results for both algorithms and co‐oc‐
currence indices showed a strong prevalence of positive associa‐
tions (~58%) and roughly similar frequencies of negative (~20%) 
and random associations (~22%). Positive associations strongly 
dominated in all guild types (~48%–82%) except omnivores (0%). 
Negative associations were represented in all guilds in less than 
30% frequency except omnivores, in which segregation strongly 
dominated (~83%).

We used Bayesian GLMMs to analyze relationships between 
the category of guild and the outcome of null model simulation and 
found significant differences among guilds in all but one combination 
of index and algorithm (Figure 2). The differences among guilds were 
caused mainly by a significantly higher probability of aggregation in 
trunk foragers (indexes CAST and MA) and a higher tendency of seg‐
regation in omnivores (index AAST) than in the other guilds. Patterns 
revealed by the GLMMs were similar for both null model algorithms.

F I G U R E  1  Summary of null model results testing for nonrandom 
patterns of species associations using quantitative (a‐c) or binary 
(d) matrices at the level of guild (a, b) and entire assemblages 
(c‐d). Association patterns are derived from temporal series of 19 
breeding bird assemblages from Europe and North America
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F I G U R E  2  Differences in the null model outcomes among guilds as revealed by the combinations of algorithms IT (rc) and IA (aa) and 
three indices (AAST, CAST, and MA). The results of the Bayesian GLMMs are summarized as differences in deviance information criteria of 
each model and the associated null model (ΔDIC). Significantly different patterns among guilds are designated with asterisks. Circle sizes are 
proportional to the number of outcomes in each category

TA B L E  1  Results of the binomial and multinomial Bayesian GLMs analyzing relationships between the outcomes of the null model 
simulations (aggregation, segregation, and random) and various characteristics of the assemblage data sets

 

Binary null models Quantitative null models

SIM2 algorithm SIM9 algorithm IT (rc) algorithm IA (aa) algorithm

CHECKER C‐score V‐ratio CHECKER C‐score CAST AAST MA CAST AAST MA

Plot size −0.78 3.51 −0.15 3.35 7.87 0.30 6.82 9.71 0.27 1.70 9.70

Matrix size 0.28 −0.20 −1.14 7.68 −0.79 0.64 −1.45 −0.87 0.57 −0.95 −0.87

Number of years −0.03 0.46 −0.39 7.71 −0.79 0.72 −0.27 2.68 0.72 0.48 2.66

Number of species −0.35 −0.85 −1.19 2.12 0.13 −0.40 −0.60 −1.13 −0.45 −0.97 −1.14

Number of zeros 0.59 −1.02 −0.62 0.40 0.07 0.71 −0.93 −0.89 0.70 −1.03 −0.89

Mean density – – – – – 5.40 6.34 3.67 5.36 −1.39 3.66

CV of density – – – – – −0.21 0.61 −0.08 −0.22 1.04 −0.09

Note: Differences in deviance information criteria of each model and the associated null model (ΔDIC) are displayed. Statistically significant results 
are highlighted in bold.
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3.2 | The relationships between data set 
properties and the results of null model simulations

We used Bayesian GLMs to test the relationships between various 
data set characteristics and the proportion of the null model out‐
come categories (aggregation, segregation, and random). In general, 
the outcomes of both the binary and quantitative null models of 
whole assemblages were significantly related to the size of the cen‐
sus plot, while the outcomes of the quantitative models were con‐
sistently related to species density characteristics (Table 1).

In binary models, the probability of detecting random patterns 
increased with the size of the census plot. On the other hand, ma‐
trix size and length of study positively affected the proportion of 
the segregated outcomes. Three examples of these patterns are 
displayed in Figure 3, but the same tendencies can be seen in each 
binary null model regardless of the type of co‐occurrence index.

In quantitative models of whole assemblages, the probability of 
detecting aggregated patterns in the bird assemblages increased 

steeply with the study plot size, while the proportion of random as‐
sociations (CAST and AAST) and segregations (MA) increased with the 
density of pairs (Figure 4).

Considering guild data sets, only 9% of GLMs showed a sig‐
nificant relationship with matrix properties on the null model out‐
comes (Appendix S8). In general, plot size, matrix size, number of 
species, and density of pairs were the main correlates of the null 
model outcomes. Plot size was positively linked with the probabil‐
ity of aggregations in aerial foragers, foliage foragers, ground for‐
agers, and plant eaters. The probability of nonrandom associations 
significantly increased with matrix size in aerial and trunk foragers 
(aggregations) and ground foragers and plant eaters (segregations). 
Higher species richness in the guilds of aerial and trunk foragers led 
to a significantly higher proportion of aggregations, while ground 
foragers were significantly more segregated. Finally, a higher den‐
sity of breeding pairs was associated with an increased probability 
of random association in ground foragers and elevated segrega‐
tions in plant eaters.

F I G U R E  3  Examples of fitted probabilities (means of posterior distributions) from the significant binomial and multinomial GLMs testing 
the effect of plot size (C‐score, SIM2 algorithm), matrix size (CHECKER, SIM9 algorithm), and plot size (C‐score, SIM9 algorithm) on the 
outcomes of the binary null models
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F I G U R E  4  Examples of fitted probabilities (means of posterior distributions) from the significant binomial and multinomial GLMs 
testing the effects of mean species density (CAST) and plot size (AAST and MA) on the outcomes of quantitative null models using the IT (rc) 
algorithm
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4  | DISCUSSION

4.1 | Patterns of species association in assemblages

Results of the current and our previous study (Korňan & Svitok, 
2018) of the 19 long‐term bird data sets showed a strong prevalence 
of positive and random associations, which indicate prevalence of 
correlated and random dynamics driving the temporal patterns of 
bird assemblages. These findings do not support the assumption of 
competition theory based on compensatory dynamics. On the other 
hand, our results agree with the conclusions of Houlahan et al. (2007) 
who concluded that compensatory dynamics are rare in natural eco‐
logical communities. The predominance of correlated dynamics in 
temporal patterns may indicate a similar response of the majority of 
species to climate or stochastic factors. Hallet et al. (2014) evaluated 
the importance of several biotic mechanisms (compensatory dynam‐
ics, portfolio effects, the selection for stable dominant species) on 
the stability of species abundance and richness of plant communi‐
ties in connection with two key environmental factors, precipitation 
amount and its variability. They concluded that all the mentioned 
mechanisms may play an important role and that their importance 
could vary across environmental gradients. This study suggests that 
the dynamics of ecological communities may depend on several bi‐
otic drivers that can predominate under different climatic and sto‐
chastic scenarios.

In contrast to temporal data, spatial data sets show strong 
predominance of negative species association and, thus, sup‐
port for the concept of checkerboard (complementary) distribu‐
tion of organisms (Diamond, 1975) that is one of the most widely 
tested concepts in ecology (Gotelli & McCabe, 2002). Several 
empirical studies based on large published data sets of various 
taxonomic groups analyzed by binary or quantitative null models 
support this concept (Gotelli & McCabe, 2002; Gotelli & Ulrich, 
2010; Ulrich & Gotelli, 2010). In addition, other taxon‐specific 
studies provide evidence that negative species associations may 
drive spatial patterns of co‐occurrence in some biological com‐
munities (e.g., Abu Baker & Patterson, 2011; Badano, Regidor, 
Núñez, Acosta, & Gianoli, 2005; Heino & Soininen, 2005; Kobza, 
Trexler, Loftus, & Perry, 2004; Sarà, Bellia, & Milazzo, 2006). On 
the other hand, there also exist opposite opinions supported by 
similar meta‐analyses and other taxon‐specific studies indicat‐
ing predominance of positive or random association in communi‐
ties in spatial patterns (e.g., Connor, Collins, & Simberloff, 2013; 
Feeley, 2003; Götzenberger et al., 2012; Jenkins, 2006; Korňan & 
Korňan, 2016; Perez‐Neto, 2004; Pitta, Giokas, & Sfenthourakis, 
2012; Šálek, Červinka, Padyšáková, & Kreisinger, 2014; Schluter, 
1984; Sfenthourakis, Tzanatos, & Giokas, 2006; Wang, Chen, & 
Ding, 2011). The dominant role of environmental drivers and lack 
of generality of competition‐driven mechanism in elevational spe‐
cies range replacement were described in elevational studies of 
birds (e.g., Bastianelli, Wintle, Martin, Soane, & Laiolo, 2017; Elsen, 
Tingley, Kalyanaraman, Ramesh, & Wilcove, 2017) that support 
our conclusion that competition does not seem to be main factor 

driving temporal bird assemblage patterns. Mönkkönen, Devictor, 
Forsman, Lehikoinen, and Elo (2017) suggest that community as‐
semblies on a  local scale can reflect both positive associations 
from social information use among species (heterospecific attrac‐
tivity) as well as negative associations coming from competitive 
interactions, habitat filters, and dispersal abilities.

Negative species association and missing species combinations 
have mainly been interpreted as results of competitive species in‐
teractions or environmental filters (see Mayfield & Levine, 2010 
for competition relatedness hypothesis); however, these same pat‐
terns may be generated by unique habitat associations (Perez‐Neto, 
Olden, & Jackson, 2001), limited dispersal (Ulrich, 2004), and histor‐
ical or evolutionary processes that prevent species co‐occurrence 
without the possibility of interspecific interactions (Bloch, Higgins, & 
Willing, 2007; Ulrich & Gotelli, 2007). In addition, based on a model‐
ling approach, Ulrich, Jabot, and Gotelli (2017) concluded that under 
neutral dispersal, competitive interactions may change the geome‐
try of species associations. This means that species association anal‐
ysis alone is not capable of drawing simple conclusions about the 
effects of competitive interactions on patterns of co‐occurrence. 
Ulrich, Kryszewski, et al. (2017) proposed a comprehensive trian‐
gular framework to statistically distinguish and evaluate patterns of 
segregation (turnover), modularity, and nestedness. It seems to be a 
promising approach to evaluate and disentangle complex community 
matrices into basic functional trait systems that distinguish competi‐
tion from habitat filtering.

The contrasting results of studies using different data sets in 
the search for assembly rules (compensatory dynamics and comple‐
mentary distribution) could be at least partly related to differences 
in methodology and environmental settings that can mimic or ob‐
scure competitive interactions. Both sources of potential confusion 
are briefly discussed below and exemplified in our study of bird 
assemblages.

4.2 | The effect of spatial scale

The importance of spatial scale in ecology has long been recognized 
(Wiens, 1989b). It is clear that competitive interactions are scale‐de‐
pendent and that the outcomes of null model simulations are related 
to the spatial extent of the study. Assembly rules are expected to 
be mainly apparent at relatively small spatial scales, but the specific 
spatial extent at which assembly rules act largely depends on the 
group studied (Götzenberger et al., 2012; Wilson & Stubbs, 2012). 
In the bird assemblages investigated here, we found significant sup‐
port for the effect of study area size on the outcomes of null models. 
The probability of detecting random patterns increased with census 
plot size in binary models, which is consistent with the above men‐
tioned expectations. Interspecific competition among competing 
bird species is expected on a small spatial scale, in which competi‐
tively superior species exclude competitively inferior species in the 
years of their presence. On larger spatial scales, this does not nec‐
essarily apply because in large plots, there is a higher probability 
of spatial segregation of the territories of competing species; thus, 
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competitive exclusion does not have to be reflected in the presence/
absence data patterns. In quantitative analyses on both assemblage 
and guild levels (aerial foragers, foliage foragers, ground foragers, 
and plant eaters), we found a positive relationship between census 
plot size and the probability of aggregation. If most species within 
assemblages have common response to climate and stochastic fac‐
tors as we assume, thus, increasing area of plot size also increases 
the probability of occurrence of more species; thus, the effects of 
aggregation may hold stronger. Indeed, increasing spatial scale in‐
creases habitat heterogeneity, and the random patterns observed in 
studies conducted over a larger scale may result from environmental 
control that obscures interspecific competition (Wilson, 1999). For 
example, during years of high productivity, bird species that are eco‐
logically similar may coexist in the same sites (Cody, 1999), or simple 
availability of suitable habitats may allow for effective segregation 
of potential competitors at larger spatial scales, which may cause 
aggregations.

4.3 | The effect of data types

Further discrepancies may arise from using data having different in‐
formation content. For example, the analyses of bird assemblages 
provided here showed that many random patterns revealed in the 
presence/absence data become aggregations when quantitative in‐
formation was included (Appendices S3–S6). In general, quantitative 
data offer richer information than binary data and may therefore be 
more sensitive to relatively subtle changes in population size that 
precede competitive exclusion (Ulrich & Gotelli, 2010). However, di‐
rect comparison between binary and quantitative model outcomes 
is not straightforward, and researchers must be rather cautious, 
since abundance data are based on counts of individuals, not spe‐
cies counts, and both data types use different randomization algo‐
rithms in null model simulations (Gotelli & Ulrich, 2012). We used 
complete sets of species in the assemblages in both binary and quan‐
titative analyses, and the results of both analyses showed a strong 
prevalence of random and positive associations. In fact, the high fre‐
quency of random associations (~61%) and the lower frequency of 
aggregations (20%) in binary analyses have predominantly shifted 
toward positive association in quantitative analyses. As we found, 
this happened in 58.3% and 61.1% of cases of random association 
classified by SIM2 algorithm compared to quantitative analyses car‐
ried out IT (aa) and IA (rc) algorithm. Moreover, we also used a subset 
of species in the assemblage matrices with measurable abundances 
(excluding rare species) in quantitative analyses, and these analyses 
also yielded similar patterns (results upon request from correspond‐
ing author). The exclusion of rare species increased the fill in the 
quantitative matrices (the average proportion of zeroes dropped 
from 38% to 2%). The reduced analyses showed approximately 54% 
aggregations, 26% random associations, and 20% segregations when 
pooling data for all null model and index combinations, yet this anal‐
ysis was done only on 18 bird assemblages.

Another source of bias lies in disregarding the functional struc‐
ture of assemblages, and consequently, null model analyses at the 

whole community level may suffer from dilution effect (Diamond 
& Gilpin, 1982). Most meta‐analyses of species associations con‐
ducted at the community level could have been influenced by the 
dilution effect (e.g., Gotelli & McCabe, 2002; Schluter, 1984; Ulrich 
& Gotelli, 2010). Gotelli and McCabe (2002) and Ulrich and Gotelli 
(2010) recognized the importance of the dilution effect, and even 
when they accounted for this effect, negative species associations 
prevailed in their results. We excluded the potential of dilution bias 
by using quantitative null model analyses on the guild levels in all 
assemblages. The results of the guild analyses were consistent with 
the assemblage‐wide analyses except for the guild of omnivores. We 
did not find reasonable explanation why species of this guild showed 
high level of segregation. Other bird foraging guild studies based on 
an a posteriori approach (Holmes et al., 1986; Korňan, 2013) detected 
positive species associations in two long‐term data sets of breeding 
bird assemblages in North America and Europe.

4.4 | The effects of null model settings

When addressing nonrandom patterns in community matrices, a 
crucial step is the choice of the species association index and the 
null model algorithm (Gotelli & Graves, 1996). In general, many 
combinations of association indices with null model algorithms are 
possible, each of which differs in its statistical properties and eco‐
logical assumptions (Gotelli, 2000; Ulrich & Gotelli, 2010). Even a 
relatively trivial choice between proven and widely used indices may 
lead to different results. In our analyses, for example, the variance 
ratio index and C‐score showed a higher tendency for the detection 
of aggregation patterns than the number of checkerboard species 
pairs (cf. Figure 1). In contrast to the CHECKER index, the other two 
co‐occurrence indices do not directly measure co‐occurrence but 
rather some aspect of its manifestation. Specifically, the variance 
ratio measures variability in the total number of species in an assem‐
blage, and the C‐score is the mean number of checkerboard units per 
species pair. Consequently, the choice of co‐occurrence indices may 
lead to different conclusions regarding nonrandom assembly pat‐
terns. For example, Gotelli and McCabe (2002), analyzing evidence 
for Diamond's assembly rules, argued that the different conclusions 
of their study and that of Schluter (1984) could be attributable to the 
different co‐occurrence indices used.

The choice of the null model algorithm can affect the results 
of the analysis even more profoundly than the choice of the asso‐
ciation index. For example, Ulrich and Gotelli (2010) argued that 
the prevalence of positive associations in the studies of Schluter 
(1984) and Houlahan et al. (2007) could be a result of inadequate 
assumptions of equivalence among sites and time samples. They 
noted that the correct approach would be to use the IT algorithm 
that preserves the column totals, allowing for differences among 
sites or time samples. In a recent meta‐analysis of published data, 
Götzenberger et al. (2012) found that co‐occurrence patterns of 
plant assemblages significantly differed between models that keep 
species frequencies over the plots and richness within the plots 
constant (SIM9) and those that kept only the species frequencies 
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constant (SIM2). In general, their SIM2 models showed aggregated 
patterns, while SIM9 models tended to segregate outputs. This 
corresponds with our results, where models with the SIM9 algo‐
rithm did not show any aggregated pattern. A slight bias toward 
detecting segregated co‐occurrence with the SIM9 algorithm and 
C‐score index is already known (Ulrich & Gotelli, 2007). If only the 
C‐score and the SIM9 model had been used here, the overall pic‐
ture would change, and segregated patterns would prevail (42%). 
Although the SIM9 model has good statistical properties, its use 
with a C‐score is not recommended for matrices that are highly 
filled, such as those analyzed here (mean fill = 61%). In these cases, 
the more conservative indices, such as the number of checker‐
boards, appear to be more appropriate (Ulrich & Gotelli, 2007). 
Adopting this approach would lead to the dominance of random 
associations (68%) in the studied assemblages.

Finally, the difference in the ability of null models to reveal a 
nonrandom pattern when it truly exists (statistical power) should be 
briefly discussed. Gotelli and Ulrich (2012) pointed out that null model 
analysis may not be well suited for large data sets, since large data sets 
may often deviate significantly from null models regardless of whether 
species occurrences are random. Considering the bird data sets, the 
relationships between the matrix size and the statistical power of the 
analysis were particularly apparent in the binary models (Table 1). For 
example, when the matrix size increased above approximately 2,200, 
null models with the CHECKER index and SIM9 algorithm had the 
tendency to reveal predominantly segregated patterns in bird assem‐
blages (Figure 3). Similarly, Gotelli and McCabe (2002) found that ma‐
trix size was significantly related to null model outputs because large 
matrices enhanced the statistical power of the analysis. These two 
examples suggest that the issue of statistical power must be kept in 
mind when comparing results of different null model studies.

Based on the latest finding of Ulrich et al. (2018), most null model 
algorithms are prone to the effects of total matrix species richness on 
association patterns. Only the fixed–fixed algorithm (SIM9) showed a 
weak correlation with total matrix species richness, and it is strongly 
recommended for species association studies. In our study, we used 
this algorithm in combination with the C‐score metric, as it is recom‐
mended in Ulrich et al. (2018), and with other two metrics. We also 
used the SIM2 algorithm, which has a reasonable ecological basis but 
can be prone to the effects of total matrix species richness. Ulrich et al. 
(2018) used proportional–proportional and equiprobable–equiproba‐
ble algorithms that had a tendency toward segregations and aggre‐
gations. Even though, Ulrich et al. (2018) did not provide the results 
of the simulation for SIM2 (fixed–equiprobable algorithm), we inter‐
preted the results of the null model simulation by SIM2 with caution 
in this manner.

4.5 | Confounding effect of environmental 
variability

It should be clearly stated that null models based on data sets con‐
sisting of field observations are by no means definitive tests of the 
importance of competitive interactions, since the same nonrandom 

patterns can be explained by other mechanisms. For example, spe‐
cies segregation can also arise from habitat variability, while aggrega‐
tion might be caused by interspecific facilitation (Gotelli & McCabe, 
2002; Götzenberger et al., 2012; Wilson, 1999). Considering bird 
assemblages, many species are known to prefer specific optimal mi‐
crohabitats or successional stages; consequently, the spatial distribu‐
tion of these species is nonrandom and is strongly affected by forest 
heterogeneity. The dominant habitat types investigated here were 
natural and primaeval forests characterized by high horizontal and 
vertical heterogeneity formed by natural tree falls (gaps), local suc‐
cessions, patches of different developmental stages, uprooted trees, 
and multi‐storey profiles of stands (Korňan, 2013; Wesołowski, 
2007). This patchy environment in combination with the different 
microhabitat requirements of species may cause clumped habitat 
occupancy patterns at larger scales. This phenomenon could cause 
patterns with high species richness at the census plot level that are 
transferred to highly filled matrices, which bias the results of null 
model analyses toward random or positive species associations. 
Therefore, using binary matrices from relatively large census plots 
(≥ 10  ha) does not necessarily yield competition patterns, which 
could be more probable from point samples. Nevertheless, this can 
be overcome by using quantitative matrices with population density 
data, as interactions are estimated by changes in abundance on the 
plot level. This is essentially because larger plots are needed for ob‐
jectively estimating abundance or population density in forest habi‐
tats (minimum plot size for forest habitats in the mapping method is 
10 ha) that may better reflect overall differences in the quantitative 
assemblage structure between years in a studied habitat. This study 
used both binary and quantitative data, but neither led to the preva‐
lence of segregations in the analyses. In fact, binary data analyses 
led to the prevalence of random associations, whereas the quantita‐
tive data analyses led to the prevalence of aggregations. In summary, 
the results do not underscore compensatory dynamics processes as 
the main drivers of bird assemblage dynamics.
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