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Abstract
Patterns	 of	 species	 associations	 have	 been	 commonly	 used	 to	 infer	 interactions	
among	species.	If	species	positively	co‐occur,	they	may	form	predominantly	neutral	
assemblages,	 and	 such	 patterns	 suggest	 a	 relatively	 weak	 role	 for	 compensatory	
dynamics.	 The	main	objective	of	 this	 study	was	 to	 test	 this	 prediction	on	 tempo‐
ral	samples	of	bird	assemblages	(n	=	19,	10–57	years)	by	the	presence/absence	and	
quantitative	null	models	on	assemblage	and	guild	levels.	These	null	model	outcomes	
were	further	analyzed	to	evaluate	the	effects	of	various	data	set	characteristics	on	
the	 outcomes	 of	 the	 null	models.	 The	 analysis	 of	 two	binary	 null	models	 in	 com‐
bination	with	three	association	indices	revealed	20%	with	significant	aggregations,	
61%	with	random	associations,	and	only	19%	with	significant	segregations	 (n = 95 
simulations).	The	 results	of	 the	quantitative	null	model	 simulations	detected	more	
none‐random	associations:	61%	aggregations,	6%	random	associations,	and	33%	seg‐
regations	(n	=	114	simulations).	Similarly,	quantitative	analyses	on	guild	levels	showed	
58%	aggregations,	20%	segregations,	and	22%	random	associations	(n	=	450	simula‐
tions).	Bayesian	GLMs	detected	 that	 the	outcomes	of	 the	binary	 and	quantitative	
null	models	applied	to	the	assemblage	analyses	were	significantly	related	to	census	
plot	 size,	whereas	 the	outcomes	of	 the	quantitative	 analyses	were	also	 related	 to	
the	mean	population	densities	of	species	 in	the	data	matrices.	 In	guild‐level	analy‐
ses,	only	9%	of	the	GLMs	showed	a	significant	influence	of	matrix	properties	(plot	
size,	matrix	size,	species	richness,	and	mean	species	population	densities)	on	the	null	
model	outcomes.	The	results	did	not	show	the	prevalence	of	negative	associations	
that	would	have	supported	compensatory	dynamics.	Instead,	we	assume	that	a	simi‐
lar	response	of	the	majority	of	species	to	climate‐driven	and	stochastic	factors	may	
be	responsible	for	the	revealed	predominance	of	positive	associations.
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1  | INTRODUCTION

Compensatory	 dynamics	 are	 believed	 to	 play	 an	 important	 role	
in	 community	 organization	 and	 functioning	 especially	 under	
environmental	 stress	 (Gonzalez	&	 Loreau,	 2009).	 It	 involves	 re‐
peated	phases	of	 population	growth	 and	decline	 among	 species	
in	 response	 to	 continuous	 environmental	 pulses,	 where	 pulses	
represent	 high‐frequency	 environmental	 fluctuations	 (Gonzalez	
&	Loreau,	2009).	Repeated	phases	of	population	growth	and	de‐
cline	 of	 species	 are	 also	 characteristic	 for	 correlated	 dynamics	
depending	on	 fluctuating	 resources	 (e.g.,	Clotfelter	 et	 al.,	 2007;	
Enemar,	 Sjöstrand,	 Anderson,	 &	 Proschwitz,	 2004;	 Holmes,	
Sherry,	 &	 Sturges,	 1986),	 but	 these	 are	 primarily	 climate‐driven	
neutral	community	processes	 rather	 than	competition.	The	con‐
cept	of	compensatory	dynamics	came	from	the	notion	of	density	
compensation	in	island	faunas	by	MacArthur,	Diamond,	and	Karr	
(1972).	This	concept	was	originally	understood	as	part	of	compe‐
tition	theory	as	a	process	driving	temporal	fluctuations	of	species	
within	communities.

The	theory	of	compensatory	dynamics	assumes	that	if	competi‐
tive	interactions	are	important	in	driving	year‐to‐year	fluctuations	in	
abundance,	then	changes	in	the	abundance	of	one	species	should	be	
generally	accompanied	by	compensatory	changes	in	the	abundances	
of	other	members	of	community	(Houlahan	et	al.,	2007).	However,	
based	on	meta‐analyses	of	41	data	matrices	from	various	taxonomic	
groups	except	birds,	Houlahan	et	al.	(2007)	concluded	that	compen‐
satory	dynamics	are	rare	in	natural	ecological	communities.	Korňan	
and	 Svitok	 (2018)	 tested	 this	 concept	 on	 19	 long‐term	 data	 sets	
of	bird	assemblages,	 and	 their	pairwise	null	model	 analyses	 led	 to	
similar	conclusions.	Testing	the	general	applicability	of	the	compen‐
satory	dynamics	concept	in	natural	communities	showed	more	con‐
tradictory	 than	supporting	conclusions	 (Gonzalez	&	Loreau,	2009;	
Houlahan	 et	 al.,	 2007;	 Korňan	 &	 Kropil,	 2014b;	 Korňan	 &	 Svitok,	
2018).	A	predominance	of	correlated	and	random	dynamics	can	indi‐
cate	a	common	response	of	the	majority	of	species	within	communi‐
ties	to	climate	and	stochastic	drivers	of	community	dynamics	rather	
than	competition.

In	our	current	study,	we	test	the	general	applicability	of	the	con‐
cept	 of	 compensatory	 dynamics	 in	 bird	 assemblages.	 Up	 to	 now,	
world‐wide	meta‐analyses	of	temporal	patterns	of	bird	assemblages	
testing	 this	 concept	 have	not	 been	published	 in	 the	 ecological	 lit‐
erature	(see	reviews	Dhondt,	2012;	Mikusiński	et	al.,	2018;	Wiens,	
1989a)	except	our	previous	study	based	on	interactions	among	in‐
dividual	species	pairs	(Korňan	&	Svitok,	2018).	Here,	we	go	beyond	
pairwise	relationships	and	focus	on	assembly	processes	at	commu‐
nity	and	 foraging	guild	 levels	with	a	 focus	on	both	qualitative	and	
quantitative	data.

Testing	whether	communities	are	driven	by	compensatory,	cor‐
related,	 or	 random	dynamics	 can	be	based	on	 analyses	of	 species	
associations	(Houlahan	et	al.,	2007;	Korňan	&	Svitok,	2018;	Schluter,	
1984).	 Negative	 species	 associations	 (segregations)	 may	 indicate	
compensatory	dynamics,	positive	species	associations	(aggregations)	
correlated	dynamics	and	random	associations	random	dynamics.	We	

here	applied	null	model	analysis	to	test	for	nonrandom	species	asso‐
ciations.	Null	model	analysis	is	a	frequently	used	tool	in	searching	for	
species	associations	(co‐occurrence)	patterns	in	spatial	and	temporal	
data	sets	(Gotelli	&	McCabe,	2002;	Gotelli	&	Ulrich,	2010;	Korňan	&	
Svitok,	2018;	Ulrich	&	Gotelli,	2010).	Gotelli	and	Graves	(1996)	and	
Gotelli	 and	Ulrich	 (2012)	defined	null	model	analysis	as	a	pattern‐
generating	model	that	is	based	on	randomization	of	ecological	data	
or	random	sampling	from	a	known	or	specified	distribution.	Certain	
elements	of	 the	data	are	held	constant,	and	others	are	allowed	to	
vary	stochastically	to	create	a	random	assemblage	pattern.	The	ran‐
domization	is	designed	to	produce	a	pattern	that	would	be	expected	
in	the	absence	of	a	particular	ecological	mechanism.	Null	models	are	
used	in	combination	with	various	binary	or	quantitative	species	as‐
sociation	indices,	of	which	the	checkerboard	score	(Stone	&	Roberts,	
1990)	is	probably	the	most	popular.

Analyses	 of	 species	 associations	 are	 commonly	 done	 on	 com‐
munity‐level	matrices	 in	which	a	community‐level	 species	associa‐
tion	index	is	computed	for	all	species	combined.	Such	analyses	may	
suffer	 from	dilution	 effects	 (Diamond	&	Gilpin,	 1982).	 This	 effect	
is	 expected	 because	 species	 from	 various	 guilds	 are	 combined	 in	
the	 analysis	 of	 a	 community‐level	 matrix,	 which	 produces	 diluted	
index	values	by	covering	noncompeting	species	and	could	bias	the	
results.	Therefore,	guild‐level	analysis	is	needed	to	overcome	these	
problems.

Guilds	are	understood	as	basic	structural	units	of	communities	
sensu	Root	 (1967).	 In	 the	original	 “Rootian”	sense,	guilds	were	de‐
fined	as	a	group	of	species	that	exploit	 the	same	class	of	environ‐
mental	 resources	 in	 a	 similar	 way.	 Environmental	 resources	 may	
include	diet,	foraging	substrates,	and	breeding	sites.	Due	to	similar	
niche	 requirements	 among	 guild	members,	 a	 higher	 level	 of	 inter‐
specific	competition	is	assumed	than	among	all	members	or	random	
species	 groups	 of	 assemblages	 (Blondel,	 2003;	 Korňan	 &	 Kropil,	
2014a;	Mac	Nally,	1983;	Simberloff	&	Dayan,	1991).	Consequently,	
guilds	can	be	used	as	natural	species	groupings	for	studies	of	species	
associations	to	test	assumptions	of	competition	theory.

In	 our	 previous	 study	 using	 pairwise	 null	 model	 analysis	 of	
species	association	on	19	 long‐term	data	sets	 (>10	years)	of	bird	
assemblages,	we	detected	the	overall	very	 low	frequency	of	sig‐
nificant	species	pairs	with	a	strong	predominance	of	positive	as‐
sociations	 (Korňan	&	 Svitok,	 2018).	 In	 this	 study,	with	 the	 same	
19	long‐term	data	sets	of	bird	assemblages,	we	tested	species	as‐
sociations	 at	 higher	 hierarchical	 levels	 (guilds	 and	 assemblages).	
Having	conducted	analyses	of	three	basic	levels	of	community	or‐
ganization	 (species	 pairs,	 guilds,	 and	whole	 assemblage),	we	 can	
develop	much	 stronger	 interferences	 about	 the	 general	 applica‐
bility	of	the	compensatory	dynamic	concept	for	bird	assemblages.	
This	is	the	first	such	study	testing	species	associations	in	temporal	
bird	data	sets.	In	addition,	we	tried	to	test	effects	of	matrix	prop‐
erties	and	null	model	setting	on	the	null	model	outcomes	and	thus	
enhance	generality	of	our	conclusions	and	target	possible	weak‐
nesses	in	the	results.	In	particular,	we	(a)	examined	the	frequency	
of	 different	 species	 association	 patterns	 revealed	 by	 null	model	
simulations	 (aggregation,	 random,	 segregation)	 and	 (b)	 assessed	
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the	relationships	between	various	data	set	characteristics	(such	as	
matrix	size,	duration	of	study,	and	proportion	of	zero	in	a	matrix)	
and	the	outcomes	of	the	null	model	simulations.

2  | MATERIAL AND METHODS

2.1 | Sources of data

We	 used	 the	 scientific	 reference	 and	 citation	 databases	 Clarivate	
Analytics	 Web	 of	 Science	 and	 SCOPUS	 for	 an	 extensive	 global	
search	 for	 long‐term	 bird	 assemblage	 studies	 in	 which	 data	 sets	
were	published.	We	also	searched	for	 this	 type	of	studies	 in	cited	
references	in	scientific	papers	on	the	topic.	We	only	selected	studies	
in	which	 the	mapping	method	as	a	bird	census	 technique	was	ap‐
plied.	Mapping	method	is	a	standard	census	technique	primarily	de‐
signed	for	estimating	abundances	of	territorial	and	noncolonial	birds	
in	a	study	plot	 (Bibby,	Burgess,	Hill,	&	Mustoe,	2000;	 IBCC,	1969;	
Williams,	1936).	As	a	selection	procedure,	the	minimum	census	plot	
size	requirement	was	7	ha.	In	total,	we	found	19	long‐term	studies	
(≥10	years)	of	this	type	from	three	habitat	types:	15	forests,	3	open	
habitats,	 and	1	 city	 park	 (Appendix	 S1).	 Time	periods	of	 censuses	
ranged	 from	10	 to	57	years	while	 the	 studies	 spanned	 the	period	
from	1927	to	2014.	Species	richness	of	the	plots	across	census	pe‐
riods	ranged	from	14	to	78	species.	Ten	of	the	forest	plots	had	close	
to	primeval	 character,	 and	 five	were	 second	growth.	Close	 to	pri‐
meval	forests	(pristine,	virgin,	old‐growth)	are	primary	forests	with	
the	original	composition	of	plant	communities	that	have	never	been	
cut	and	can	be	only	negatively	affected	by	atmospheric	pollution	or	
overgrazing	by	game.	Seventeen	studies	were	conducted	in	Europe,	
and	two	studies	in	North	America.	Details	and	literature	sources	of	
the	data	sets	are	given	in	Appendix	S1.

2.2 | Preparation of data matrices

Published	data	sets	were	organized	as	quantitative	(abundance)	data	
matrices	 in	which	each	row	represents	a	species	and	each	column	
represents	 a	 year.	 Population	 abundances	 from	 mapping	 method	
estimates	are	expressed	as	the	number	of	occupied	territories	on	a	
census	plot.	Each	territory	is	equivalent	to	one	breeding	pair;	there‐
fore,	breeding	pairs	or	territories	have	exactly	the	same	meaning	and	
can	be	used	interchangeably.	In	both	binary	and	quantitative	matri‐
ces,	all	species	within	bird	assemblages	were	included	(Appendix	S1).	
For	example,	the	densities	of	some	species	(e.g.,	some	woodpeckers,	
corvids,	owls,	birds	of	prey)	that	have	very	 large	territories	cannot	
be	estimated	on	small	study	plots	and	were	marked	“+”	in	the	source	
papers	as	breeding	species	with	tracing	densities	which	means	that	
densities	of	these	species	are	impossible	to	estimate	due	to	their	very	
low	abundance,	but	their	abundance	is	lower	than	0.5	territories	per	
census	plot.	These	species	are	called	tracing	species	and	their	popu‐
lation	densities	tracing	densities.	Because	we	did	not	want	to	 lose	
the	information	on	tracing	species,	we	added	small	assumed	density	
value	constants	 (0.1	p/10	ha	 for	woodpeckers	and	smaller	passer‐
ines;	0.05	p/10	ha	for	smaller	raptors	and	corvids;	0.004	p/10	ha	for	

large	 raptors)	 to	 all	 year	presences	 that	 varied	among	 species,	 re‐
flecting	their	assumed	population	densities	in	a	habitat.

To	analyze	foraging	guilds,	we	classified	all	species	from	all	as‐
semblages	 into	 guild	 categories	 by	means	 of	 an	 a priori	 approach	
(see	below	and	Appendix	S2).	Species	classifications	of	all	European	
and	North	American	birds	in	matrices	can	be	found	in	Appendix	S2.	
Foraging	guild	matrices	also	included	species	with	tracing	densities	
by	adding	density	values	constants	exactly	as	 in	case	of	whole	as‐
semblage	matrices.

For	each	data	set,	we	measured	several	characteristics	that	could	
influence	the	results	of	the	null	model	simulations.	Those	characteris‐
tics	were	the	size	of	the	census	plots	(area	in	hectares,	spatial	extent),	
the	size	of	the	matrix	(number	of	rows	×	number	of	columns),	the	du‐
ration	of	the	study	in	years,	the	total	number	of	species,	the	proportion	
of	zeroes	that	were	 in	 the	matrix,	mean	species	density,	and	coeffi‐
cient	of	variation	(CV)	of	species	density.

2.3 | Classification of foraging guilds

We	 applied	 an	 a priori	 approach	 (Wiens,	 1989a)	 to	 classify	
European	and	North	American	birds	into	foraging	guilds.	We	used	
number	 of	 published	 papers	 and	monographs	with	 descriptions	
of	 feeding	 tactics,	 diet	 niches,	 and	 use	 of	 foraging	 substrates	
(e.g.,	Reif,	Hořák,	Krištín,	Kopsová,	&	Devictor,	2016).	We	based	
detailed	classification	of	 individual	bird	species	on	the	dominant	
feeding	strategy	during	the	breeding	period,	and	it	is	given	in	the	
Appendix	S2.	The	basic	 criteria	of	how	birds	were	classified	are	
as	follows:

Insectivorous	 birds:	 primary	 diet	 consists	 of	 invertebrates	
(>50%);	less	important	could	be	also	other	food	types,	for	example,	
seeds,	berries,	and	leaves.	Insectivorous	birds	were	further	divided	
into	the	following	guilds,	considering	>50%	of	time	spent	by	feeding	
on	a	particular	substrate	or	feeding	on	a	particular	dietary	type:

1.	 Trunk	 foragers:	 species	 taking	 invertebrate	prey	mainly	on	 tree	
trunks,	 less	 commonly	 larger	 branches	 as	 foraging	 substrates.	
Bark	 gleaners	 (creepers,	 nuthatches)	 and	 trunk	 probers	 (wood‐
peckers)	 cover	 this	 foraging	 guild.

2.	 Foliage	 foragers:	 the	most	 species	 diverse	 guild	 in	 forest	 habi‐
tats.	Species	prey	on	invertebrates	(caterpillars,	flies,	butterflies,	
beetles,	etc.)	from	leaves,	twigs,	or	smaller	branches,	using	vari‐
ous	prey‐capture	strategies	as	gleaning,	hovering,	and	snatching.	
Among	 typical	 foliage	gleaners	are	 tits,	 sylviid	warblers,	 icteriid	
warblers,	phylloscopiid	warblers,	crests,	etc.

3.	 Aerial	foragers:	species	preying	on	invertebrates	mainly	by	sally,	
sweep,	or	hawk	 tactics	 from	air	 and	 less	 frequently	 from	other	
types.	Some	species	may	use	arboreal	substrates	in	relatively	high	
frequency,	for	example	genus	Ficedula,	for	example	during	cater‐
pillar	or	aphid	outbreaks	(Krištín,	1992).	Members	of	this	guild	are	
muscicapiid	flycatchers,	swifts,	martins,	and	swallows.

4.	 Ground	 foragers:	 species	 foraging	 in	 the	 lower	 strata	 such	 as	
litter	of	herb	 layer.	Typical	species	of	 this	guild	are	pipits,	 larks,	
thrushes,	accentors,	etc.
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Nectar	 and	 sap	 feeders:	 foraging	 strategy	 typical	 for	 the	 North	
American	hummingbirds.	The	birds	typically	suck	nectar	from	flowers	
and/	or	oozing	sap	(including	attracted	invertebrates)	from	tree	holes	
drilled	by	woodpeckers.

Omnivorous	guild:	species	feeding	on	various	types	of	resource	
(living	or	dead	invertebrates,	vertebrates,	plants)	regardless	of	vege‐
tation	layer.	This	foraging	category	is	typical	of	most	corvids.

Plant	 and	 seed	 eaters:	 species	 primarily	 consuming	 vegetative	
parts	 (>50%,	e.g.,	 seeds,	 flowers,	 leaves,	 fruits,	and	berries)	 in	any	
place	in	the	habitat	and	less	frequently	invertebrates.	Typical	plant	
eaters	are	pigeons,	doves,	finches,	crossbills,	etc.

Raptors:	 species	 feeding	 mainly	 on	 vertebrates	 and	 carrion	
(>50%),	less	frequently	on	invertebrates.	Foraging	strategies	in	this	
guild	were	not	taken	into	consideration.	Typical	raptors	are	owls	and	
birds	of	prey.

Water	 foragers:	 species	 feeding	mainly	on	water	 invertebrates	
(>50%)	from	water	bodies,	the	surface	or	bottom	of	lakes,	or	streams.	
Typical	water	foragers	are	ducks,	wagtails,	and	dippers.

2.4 | Statistical analyses

2.4.1 | Species association indices

Binary (presence/absence) indices

To	 test	 species	 co‐occurrence	 patterns	 in	 long‐term	 data	 sets	
in	 the	 simplest	 form,	 three	binary	 indices	were	used:	number	of	
checkerboards	(CHECKER),	checkerboard	score	(C‐score),	and	var‐
iance	ratio	(V‐ratio).	The	checkerboard	index	counts	the	number	of	
species	pairs	 in	the	data	matrix	that	form	perfect	checkerboards	
(Diamond,	1975;	Gotelli,	2000).	If	interspecific	competition	drives	
community	 dynamics,	 we	 expect	 to	 find	 significantly	more	 spe‐
cies	forming	checkerboards	in	a	real	data	matrix	than	in	simulated	
random	data	matrices	by	null	models.	The	second	index	used	was	
the	 checkerboard	 score	 (Gotelli,	 2000;	 Stone	 &	 Roberts,	 1990).	
This	index	is	related	to	the	former	index	and	measures	the	degree	
to	which	species	co‐occur	but	does	not	require	perfect	segrega‐
tion	between	species.	The	C‐score	represents	the	mean	number	of	
checkerboards	per	species	pair	in	the	community.	For	a	community	
structured	by	competitive	interactions,	we	should	expect	C‐score	
values	 to	 be	 significantly	 higher	 than	 in	 random	 assemblages	 of	
species.	The	last	index	applied	for	testing	species	co‐occurrences	
was	 the	 variance	 ratio	 (Gotelli,	 2000;	 Robson,	 1972;	 Schluter,	
1984).	This	index	is	based	on	the	computation	of	the	ratio	of	the	
variance	in	the	total	number	of	species	in	year	samples	to	the	sum	
of	the	variances	of	the	individual	species	(Schluter,	1984).	If	the	as‐
sumption	of	interspecific	competition	is	valid,	the	observed	index	
value	should	be	significantly	lower	than	in	the	simulated	data	ma‐
trices	under	null	models.

Quantitative indices

To	test	for	species	covariance	in	quantitative	data	matrices,	three	
quantitative	indices	were	used	in	null	model	analyses–the	quanti‐
tative	number	of	checkerboards	 (CAST),	 the	quantitative	number	

of	aggregations	(AAST),	and	Chaoʼs	index	of	similarity	for	n	commu‐
nities	(MA).	The	quantitative	number	of	checkerboards	index	is	the	
analogue	of	the	presence/absence	checkerboard	index	with	abun‐
dance	or	density	data.	The	index	is	a	count	of	the	total	number	of	
abundance	checkerboards	in	2	×	2	species‐by‐year	or	species‐by‐
site	submatrices	in	the	matrix	(Ulrich	&	Gotelli,	2010).	The	stand‐
ardized	 index	values	 range	 from	0.0	 to	1.0,	with	high	CA	values	
indicating	more	negative	covariation	in	a	matrix	(Ulrich	&	Gotelli,	
2010).	An	assemblage	in	which	interspecific	competition	operates	
should	have	significantly	higher	values	of	the	CA	index	than	would	
be	 expected	 under	 the	 null	 model.	 The	 second	 applied	 metric	
for	measuring	 quantitative	 species	 associations	was	 the	 number	
of	 quantitative	 aggregations.	This	 index	 is	 a	 count	of	 the	 aggre‐
gated	2	×	2	species‐by‐year	or	species‐by‐site	submatrices	in	the	
matrix	(Ulrich	&	Gotelli,	2010).	The	standardized	value	of	the	AA	
index	can	range	from	0.0	to	1.0,	with	high	values	of	AA	indicating	
positive	covariation	in	the	abundance	of	species	(Ulrich	&	Gotelli,	
2010).	The	index	value	in	communities	controlled	by	interspecific	
competition	should	be	significantly	lower	than	in	a	random	assem‐
blage	of	 species.	 The	 third	metric	 used	was	Chaoʼs	 index	 (Chao,	
Jost,	Chiang,	Jiang,	&	Chazdon,	2008),	which	was	developed	as	an	
extension	of	the	Morisita	index	of	similarity	for	two	communities	
to	 a	matrix‐wide	metric	 for	n	 communities.	 The	 index	 can	 reach	
values	from	0.0	to	1.0,	with	low	values	indicating	dissimilarity	of	
year	samples	that	is	interpreted	as	a	measure	of	negative	species	
association,	that	is,	low	values	of	the	MA	index	indicate	communi‐
ties	driven	by	competition	processes.

2.4.2 | Null model algorithms

Nine	binary	null	models	have	been	used	in	ecological	studies	to	ana‐
lyze	the	presence/absence	data	matrices	(Gotelli,	2000).	These	null	
models	ranged	from	the	most	liberal	(row	and	column	equiprobable	
constraint)	 to	 the	most	 conservative	 (sums	 of	 rows	 and	 columns	
fixed	 constrain)	 solutions	 in	 null	model	 analysis	 and	 their	 combi‐
nations.	 Among	 these	 binary	 models,	 two	 models	 with	 the	 best	
statistical	properties	in	terms	of	Type	I	and	II	errors	were	applied–
SIM2	 (row	 sums	 fixed	 and	 column	 equiprobable	 constraint)	 and	
SIM9	(sums	of	rows	and	columns	fixed	constraint)	(Gotelli,	2000).	
The	algorithm	SIM9	was	not	applicable	for	simulations	by	V‐ratio	
index	 because	 the	 constraint	 does	 not	 enable	 the	 production	 of	
random	variance	of	rows	and	columns	in	the	null	model	simulations.	
The	SIM2	algorithm	treats	the	occurrence	of	each	species	in	each	
year	 as	 proportional	 to	 the	 total	 number	 of	 species	 in	 that	 year.	
Therefore,	 the	 species	 number	 in	 each	 year	 will	 vary	 somewhat	
from	one	simulation	to	the	next,	although	the	relative	rankings	of	
years	 in	species	richness	will	be	maintained	on	average	(Gotelli	&	
Graves,	1996).	Treating	years	as	equiprobable	 is	 a	 reasonable	as‐
sumption	 because	 all	 year	 samples	were	 taken	 in	 the	 same	 sites	
with	 very	 similar	 environmental	 conditions	 in	 most	 ecosystems	
(climax	 forests).	 Climate	 could	 vary	 to	 some	 extent	 from	 year	 to	
year,	but	the	floristics	and	structure	of	the	forest	stands	remained	
very	similar.	The	SIM9	algorithm	fixes	row	and	column	totals,	which	
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preserves	the	probability	of	occurrence	of	species	among	years	and	
the	probabilities	of	occurrence	among	species.	For	time	series	data,	
SIM9	implies	that	some	time	periods	have	a	greater	suitability	for	
the	occurrence	of	all	species	or	that	some	time	periods	have	higher	
detection	probabilities	of	some	species	than	others.	For	details	on	
model	properties,	see	Gotelli	(2000).

In	contrast	to	binary	data,	quantitative	data	matrices	offer	a	much	
wider	range	of	solutions	for	the	randomization	of	data	matrices	by	null	
models.	Quantitative	null	models	do	not	have	as	long	of	a	history	as	
binary	models,	and	most	of	them	were	developed	in	ecology	in	recent	
years	(Ulrich	&	Gotelli,	2010).	We	used	the	same	statistical	criteria	as	
described	above	for	the	selection	of	quantitative	null	model	algorithms.	
Based	on	extensive	diagnostic	tests	by	Ulrich	and	Gotelli	(2010),	IT	(rc)	
and	IA	(aa)	algorithms	were	used	here	as	the	optimal	solution	for	quan‐
titative	null	models.	Algorithm	IT	assigns	individuals	randomly	to	ma‐
trix	cells	with	probabilities	proportional	to	observed	row	and	column	
abundance	totals	until,	for	each	row	and	column,	total	abundances	are	
reached	(Ulrich	&	Gotelli,	2010).	Algorithm	IA	reassigns	all	individuals	
randomly	to	matrix	cells	with	probabilities	proportional	to	observed	
row	and	column	abundance	totals	until	the	matrix‐wide	total	number	
of	individuals	is	reached	(Ulrich	&	Gotelli,	2010).

We	applied	a	pluralistic	analytical	approach	and	tried	to	evalu‐
ate	 the	effect	of	 two	binary	and	quantitative	null	models	with	ac‐
ceptable	statistical	and	ecological	assumptions	in	combination	with	
three	commonly	used	alternative	indices	for	testing	species	associ‐
ations.	Our	attempt	was	to	show	that	different	views	on	null	model	
analyses	may	alter	the	conclusions	to	some	extent.	We	consider	this	
pluralistic	approach	of	using	several	models	and	indices	to	be	more	
objective,	as	it	offers	several	views	on	null	model	analyses	of	species	
associations	which	 can	be	methodologically	 acceptable	 and	which	
do	not	necessarily	lead	to	the	same	conclusions.	Using	a	single	null	
model	in	combination	with	an	index	would	yield	“unambiguous”	re‐
sults,	but	may	produce	a	biased	view	of	the	problem.

2.4.3 | Null model analyses

Binary	null	model	analyses	were	performed	in	the	numerical	pack‐
age	EcoSim	7.0	 (Gotelli	&	Entsminger,	2001),	 and	quantitative	null	
model	analyses	were	performed	in	Turnover	1.1	(Ulrich,	2010).	A	se‐
quential	swap	randomization	algorithm	was	used	for	randomizations	
of	the	original	data	matrices	in	the	binary	null	models,	since	the	thor‐
ough	evaluation	of	this	algorithm	demonstrated	its	good	statistical	
properties	and	performance	(Gotelli	&	Entsminger,	2003).

The	 association	 index	was	 calculated	 for	 each	 simulated	ma‐
trix,	 and	 the	 statistical	 significance	 of	 the	 observed	matrix	 was	
calculated	 as	 the	 frequency	of	 simulated	matrices	 that	had	 indi‐
ces	that	were	equal	to	or	were	more	extreme	than	the	observed	
index.	Since	we	were	 interested	 in	 the	variance	of	 these	 indices	
to	both	sides,	we	searched	for	segregation	as	well	as	for	aggrega‐
tion	patterns	in	species	distributions.	Two‐tailed	tests	were	used	
to	 test	 for	 the	 significance	of	 the	observed	 index	values	 for	 the	
binary	models	and	the	one‐tailed	test	for	quantitative	models	due	
to	 software	 presets.	 The	 tail	 probabilities	 were	 calculated	 from	

null	model	distributions	based	on	10,000	simulations,	and	the	sig‐
nificance	level	was	set	to	α	=	5%.

2.4.4 | Analysis of the null model outcomes

The	results	of	null	model	analyses	were	classified	into	three	possible	
categories	of	outcomes:	aggregation	(co‐occurrence	of	species	sig‐
nificantly	higher	than	in	a	random	assemblage),	segregation	(co‐oc‐
currence	of	species	significantly	lower	than	in	a	random	assemblage),	
and	random	pattern	(nonsignificant	result	of	a	null	model	simulation).	
These	null	model	outcomes	were	further	analyzed	in	order	(a)	to	as‐
sess	whether	 the	guilds	show	different	patterns	of	community	as‐
sembly,	that	is,	whether	the	null	model	outcomes	differ	among	guilds	
and	(b)	to	evaluate	the	relationships	between	various	data	set	char‐
acteristics	and	the	outcomes	of	the	null	models.

The	differences	in	the	null	model	outcomes	among	guilds	were	
assessed	 using	 generalized	mixed	 effect	 models	 (GLMM)	with	 in‐
dividual	studies	 (data	matrices)	as	a	random	grouping	factor.	Since	
some	guilds	were	(nearly)	exclusively	associated	with	only	one	type	
of	null	model	outcome,	we	faced	(quasi)	complete	separation	prob‐
lems	 which	 caused	 that	 maximum	 likelihood	 estimation	 to	 fail	 to	
converge	(Allison,	2003).	The	separation	problems	were	handled	by	
specifying	weakly	informative	priors	in	Bayesian	GLMMs	(Hadfield,	
2018).	We	used	a	half‐Cauchy	distribution	with	a	 scale	parameter	
of	25,	a	prior	distribution	that	was	recommended	as	a	default	tool	
to	handle	 complete	 separation	 in	binomial	models	 (Gelman,	2006;	
Gelman,	 Jakulin,	 Pittau,	 &	 Su,	 2008).	 Markov	 Chain	Monte	 Carlo	
(MCMC)	algorithm	was	used	to	approximate	the	posterior	distribu‐
tion	of	model	parameters	 (McCarthy,	2007).	Markov	Chain	Monte	
Carlo	generates	a	series	of	values	from	a	parameter	space	in	which	
each	value	is	conditional	on	the	previous	number.	We	used	a	Markov	
chain	length	of	10	million	iterations.	Since	each	MCMC	sample	de‐
pends	on	the	value	of	 the	previous	sample,	successive	values	may	
be	correlated.	Correlation	in	the	Markov	chain	impairs	efficiency	of	
the	sampling	algorithm,	and	therefore,	we	reduced	the	dependency	
in	 two	 ways	 (Hadfield,	 2018;	 McCarthy,	 2007):	 (a)	 we	 discarded	
the	initial	10,000	samples	(burn‐in)	since	the	first	iterations	usually	
show	 a	 strong	 dependency	 on	 the	 starting	 parametrization,	 and	
(b)	 we	 saved	 every	 5,000th	 sample	 (thinning)	 to	 reduce	 autocor‐
relation.	The	setup	of	burn‐in	and	thinning	interval	led	to	posterior	
distributions	of	1,998	samples	for	all	parameters.	The	convergence	
(dependence	on	the	starting	parametrization)	and	mixing	of	chains	
(diminishing	 the	 correlation)	 were	 assessed	 by	MCMC	 trace	 plots	
and	by	examining	autocorrelation	among	posterior	samples.	In	case	
of	poor	mixing,	the	length	of	the	chain	was	increased	to	100	million	
iterations.	In	the	final	models,	all	estimated	parameters	showed	au‐
tocorrelations	<0.05.	We	reported	differences	in	the	deviance	infor‐
mation	criteria	between	each	model	 and	 its	 associated	null	model	
(ΔDIC	=	DICm	−	DIC0)	and	considered	the	model	to	be	statistically	
significant	if	the	95%	highest	posterior	density	interval	(credible	in‐
terval)	of	fixed	effect	estimates	did	not	span	zero.

The	effects	of	the	characteristics	of	the	data	sets	(see	Preparation	
of	data	matrices)	on	the	null	model	outcomes	were	analyzed	using	
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binomial	 and	multinomial	models.	 Because	 the	 frequencies	 in	 the	
outcome	categories	were	unbalanced	and	the	data	set	characteris‐
tics	were	intercorrelated,	we	fit	each	variable	separately	rather	than	
combining	them	into	one	full	model.	When	the	null	model	simulation	
revealed	 dichotomous	 outcomes	 (cf.	 Figure	 1),	 binomial	 Bayesian	
MCMC	 generalized	 linear	models	 (GLM)	with	 a	 logit	 link	 function	
were	fitted	to	the	data.	In	the	case	of	trichotomous	outcomes,	the	
data	were	 fitted	with	multinomial	Bayesian	GLMs.	 The	priors	 and	
MCMC	 properties	 of	 the	 GLMs	 were	 specified	 in	 analogy	 to	 the	
GLMMs.	The	analyses	were	performed	in	R	language	version	3.5.0	
(R	Core	Team,	2018)	using	the	library	MCMCglmm	(Hadfield,	2010).

3  | RESULTS

3.1 | Patterns of species association in whole 
assemblages and guilds

We	 assessed	 the	 species	 association	 patterns	 in	 19	 different	 bird	
assemblages	using	 four	null	model	 algorithms	 in	 combination	with	
six	association	indices	(Appendices	S3–S6).	Combined	results	for	the	
assemblages	of	the	different	null	models	revealed	42%	with	aggre‐
gated	patterns	and	31%	with	random	patterns,	and	only	27%	of	null	
model	simulations	showed	significantly	segregated	patterns	in	these	
bird	 assemblages.	 Quantitative	 null	 models	 showed	 aggregations	
more	often	(61%)	than	binary	models	(20%),	while	the	pattern	was	al‐
most	opposite	for	the	random	outcomes	(quantitative	models	=	6%,	
binary	models	=	61%;	Figure	1).	Both	model	 types	yielded	slightly	
different	amounts	of	segregated	results:	quantitative	=	33.33%	and	
binary	models	=	18.95%.	Interestingly,	binary	null	models	with	row	
sums	fixed	and	column	equiprobable	constraint	(SIM2)	in	combina‐
tion	with	C‐score	and	V‐ratio	did	not	reveal	any	segregated	patterns	
in	contrast	to	the	SIM9	algorithm,	which	showed	eight	segregations	
with	C‐score	(Figure	1).	For	quantitative	models,	the	proportion	of	
random	(5%–7%),	positive	(~60%),	and	negative	associations	(~33%)	
were	similar	regardless	of	whether	the	IT	(rc)	and	IA	(aa)	algorithm	
was	used.

Analyses	on	guild	levels	revealed	similar	association	geometry	
(type;	Appendix	S7).	Pooled	results	for	both	algorithms	and	co‐oc‐
currence	 indices	showed	a	strong	prevalence	of	positive	associa‐
tions	 (~58%)	 and	 roughly	 similar	 frequencies	 of	 negative	 (~20%)	
and	 random	 associations	 (~22%).	 Positive	 associations	 strongly	
dominated	 in	all	 guild	 types	 (~48%–82%)	except	omnivores	 (0%).	
Negative	 associations	were	 represented	 in	 all	 guilds	 in	 less	 than	
30%	 frequency	 except	 omnivores,	 in	which	 segregation	 strongly	
dominated	(~83%).

We	 used	 Bayesian	 GLMMs	 to	 analyze	 relationships	 between	
the	category	of	guild	and	the	outcome	of	null	model	simulation	and	
found	significant	differences	among	guilds	in	all	but	one	combination	
of	index	and	algorithm	(Figure	2).	The	differences	among	guilds	were	
caused	mainly	by	a	significantly	higher	probability	of	aggregation	in	
trunk	foragers	(indexes	CAST	and	MA)	and	a	higher	tendency	of	seg‐
regation	in	omnivores	(index	AAST)	than	in	the	other	guilds.	Patterns	
revealed	by	the	GLMMs	were	similar	for	both	null	model	algorithms.

F I G U R E  1  Summary	of	null	model	results	testing	for	nonrandom	
patterns	of	species	associations	using	quantitative	(a‐c)	or	binary	
(d)	matrices	at	the	level	of	guild	(a,	b)	and	entire	assemblages	
(c‐d).	Association	patterns	are	derived	from	temporal	series	of	19	
breeding	bird	assemblages	from	Europe	and	North	America
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F I G U R E  2  Differences	in	the	null	model	outcomes	among	guilds	as	revealed	by	the	combinations	of	algorithms	IT	(rc)	and	IA	(aa)	and	
three	indices	(AAST,	CAST,	and	MA).	The	results	of	the	Bayesian	GLMMs	are	summarized	as	differences	in	deviance	information	criteria	of	
each	model	and	the	associated	null	model	(ΔDIC).	Significantly	different	patterns	among	guilds	are	designated	with	asterisks.	Circle	sizes	are	
proportional	to	the	number	of	outcomes	in	each	category

TA B L E  1  Results	of	the	binomial	and	multinomial	Bayesian	GLMs	analyzing	relationships	between	the	outcomes	of	the	null	model	
simulations	(aggregation,	segregation,	and	random)	and	various	characteristics	of	the	assemblage	data	sets

 

Binary null models Quantitative null models

SIM2 algorithm SIM9 algorithm IT (rc) algorithm IA (aa) algorithm

CHECKER C‐score V‐ratio CHECKER C‐score CAST AAST MA CAST AAST MA

Plot	size −0.78 3.51 −0.15 3.35 7.87 0.30 6.82 9.71 0.27 1.70 9.70

Matrix	size 0.28 −0.20 −1.14 7.68 −0.79 0.64 −1.45 −0.87 0.57 −0.95 −0.87

Number	of	years −0.03 0.46 −0.39 7.71 −0.79 0.72 −0.27 2.68 0.72 0.48 2.66

Number	of	species −0.35 −0.85 −1.19 2.12 0.13 −0.40 −0.60 −1.13 −0.45 −0.97 −1.14

Number	of	zeros 0.59 −1.02 −0.62 0.40 0.07 0.71 −0.93 −0.89 0.70 −1.03 −0.89

Mean	density – – – – – 5.40 6.34 3.67 5.36 −1.39 3.66

CV	of	density – – – – – −0.21 0.61 −0.08 −0.22 1.04 −0.09

Note: Differences	in	deviance	information	criteria	of	each	model	and	the	associated	null	model	(ΔDIC)	are	displayed.	Statistically	significant	results	
are	highlighted	in	bold.
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3.2 | The relationships between data set 
properties and the results of null model simulations

We	used	Bayesian	GLMs	to	test	the	relationships	between	various	
data	 set	 characteristics	 and	 the	proportion	of	 the	null	model	out‐
come	categories	(aggregation,	segregation,	and	random).	In	general,	
the	 outcomes	 of	 both	 the	 binary	 and	 quantitative	 null	 models	 of	
whole	assemblages	were	significantly	related	to	the	size	of	the	cen‐
sus	plot,	while	the	outcomes	of	the	quantitative	models	were	con‐
sistently	related	to	species	density	characteristics	(Table	1).

In	binary	models,	 the	probability	of	detecting	random	patterns	
increased	with	the	size	of	the	census	plot.	On	the	other	hand,	ma‐
trix	 size	 and	 length	of	 study	positively	 affected	 the	proportion	of	
the	 segregated	 outcomes.	 Three	 examples	 of	 these	 patterns	 are	
displayed	in	Figure	3,	but	the	same	tendencies	can	be	seen	in	each	
binary	null	model	regardless	of	the	type	of	co‐occurrence	index.

In	quantitative	models	of	whole	assemblages,	the	probability	of	
detecting	 aggregated	 patterns	 in	 the	 bird	 assemblages	 increased	

steeply	with	the	study	plot	size,	while	the	proportion	of	random	as‐
sociations	(CAST	and	AAST)	and	segregations	(MA)	increased	with	the	
density	of	pairs	(Figure	4).

Considering	 guild	 data	 sets,	 only	 9%	 of	 GLMs	 showed	 a	 sig‐
nificant	relationship	with	matrix	properties	on	the	null	model	out‐
comes	(Appendix	S8).	 In	general,	plot	size,	matrix	size,	number	of	
species,	and	density	of	pairs	were	the	main	correlates	of	the	null	
model	outcomes.	Plot	size	was	positively	linked	with	the	probabil‐
ity	of	aggregations	in	aerial	foragers,	foliage	foragers,	ground	for‐
agers,	and	plant	eaters.	The	probability	of	nonrandom	associations	
significantly	increased	with	matrix	size	in	aerial	and	trunk	foragers	
(aggregations)	and	ground	foragers	and	plant	eaters	(segregations).	
Higher	species	richness	in	the	guilds	of	aerial	and	trunk	foragers	led	
to	a	significantly	higher	proportion	of	aggregations,	while	ground	
foragers	were	significantly	more	segregated.	Finally,	a	higher	den‐
sity	of	breeding	pairs	was	associated	with	an	increased	probability	
of	 random	 association	 in	 ground	 foragers	 and	 elevated	 segrega‐
tions	in	plant	eaters.

F I G U R E  3  Examples	of	fitted	probabilities	(means	of	posterior	distributions)	from	the	significant	binomial	and	multinomial	GLMs	testing	
the	effect	of	plot	size	(C‐score,	SIM2	algorithm),	matrix	size	(CHECKER,	SIM9	algorithm),	and	plot	size	(C‐score,	SIM9	algorithm)	on	the	
outcomes	of	the	binary	null	models
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F I G U R E  4  Examples	of	fitted	probabilities	(means	of	posterior	distributions)	from	the	significant	binomial	and	multinomial	GLMs	
testing	the	effects	of	mean	species	density	(CAST)	and	plot	size	(AAST	and	MA)	on	the	outcomes	of	quantitative	null	models	using	the	IT	(rc)	
algorithm
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4  | DISCUSSION

4.1 | Patterns of species association in assemblages

Results	 of	 the	 current	 and	 our	 previous	 study	 (Korňan	 &	 Svitok,	
2018)	of	the	19	long‐term	bird	data	sets	showed	a	strong	prevalence	
of	positive	 and	 random	associations,	which	 indicate	prevalence	of	
correlated	 and	 random	dynamics	 driving	 the	 temporal	 patterns	 of	
bird	assemblages.	These	findings	do	not	support	the	assumption	of	
competition	theory	based	on	compensatory	dynamics.	On	the	other	
hand,	our	results	agree	with	the	conclusions	of	Houlahan	et	al.	(2007)	
who	concluded	that	compensatory	dynamics	are	rare	in	natural	eco‐
logical	 communities.	 The	 predominance	 of	 correlated	 dynamics	 in	
temporal	patterns	may	indicate	a	similar	response	of	the	majority	of	
species	to	climate	or	stochastic	factors.	Hallet	et	al.	(2014)	evaluated	
the	importance	of	several	biotic	mechanisms	(compensatory	dynam‐
ics,	portfolio	effects,	the	selection	for	stable	dominant	species)	on	
the	stability	of	species	abundance	and	richness	of	plant	communi‐
ties	in	connection	with	two	key	environmental	factors,	precipitation	
amount	 and	 its	 variability.	 They	 concluded	 that	 all	 the	mentioned	
mechanisms	may	play	an	 important	role	and	that	their	 importance	
could	vary	across	environmental	gradients.	This	study	suggests	that	
the	dynamics	of	ecological	communities	may	depend	on	several	bi‐
otic	drivers	that	can	predominate	under	different	climatic	and	sto‐
chastic	scenarios.

In	 contrast	 to	 temporal	 data,	 spatial	 data	 sets	 show	 strong	
predominance	 of	 negative	 species	 association	 and,	 thus,	 sup‐
port	 for	 the	 concept	 of	 checkerboard	 (complementary)	 distribu‐
tion	of	organisms	(Diamond,	1975)	that	is	one	of	the	most	widely	
tested	 concepts	 in	 ecology	 (Gotelli	 &	 McCabe,	 2002).	 Several	
empirical	 studies	 based	 on	 large	 published	 data	 sets	 of	 various	
taxonomic	groups	analyzed	by	binary	or	quantitative	null	models	
support	 this	 concept	 (Gotelli	 &	McCabe,	 2002;	Gotelli	 &	Ulrich,	
2010;	 Ulrich	 &	 Gotelli,	 2010).	 In	 addition,	 other	 taxon‐specific	
studies	provide	evidence	 that	negative	 species	 associations	may	
drive	 spatial	 patterns	 of	 co‐occurrence	 in	 some	 biological	 com‐
munities	 (e.g.,	 Abu	 Baker	 &	 Patterson,	 2011;	 Badano,	 Regidor,	
Núñez,	Acosta,	&	Gianoli,	2005;	Heino	&	Soininen,	2005;	Kobza,	
Trexler,	Loftus,	&	Perry,	2004;	Sarà,	Bellia,	&	Milazzo,	2006).	On	
the	other	hand,	 there	 also	exist	 opposite	opinions	 supported	by	
similar	 meta‐analyses	 and	 other	 taxon‐specific	 studies	 indicat‐
ing	predominance	of	positive	or	random	association	in	communi‐
ties	 in	 spatial	patterns	 (e.g.,	Connor,	Collins,	&	Simberloff,	2013;	
Feeley,	2003;	Götzenberger	et	al.,	2012;	Jenkins,	2006;	Korňan	&	
Korňan,	2016;	Perez‐Neto,	2004;	Pitta,	Giokas,	&	Sfenthourakis,	
2012;	Šálek,	Červinka,	Padyšáková,	&	Kreisinger,	2014;	Schluter,	
1984;	 Sfenthourakis,	 Tzanatos,	 &	 Giokas,	 2006;	Wang,	 Chen,	 &	
Ding,	2011).	The	dominant	role	of	environmental	drivers	and	lack	
of	generality	of	competition‐driven	mechanism	in	elevational	spe‐
cies	 range	 replacement	were	 described	 in	 elevational	 studies	 of	
birds	(e.g.,	Bastianelli,	Wintle,	Martin,	Soane,	&	Laiolo,	2017;	Elsen,	
Tingley,	 Kalyanaraman,	 Ramesh,	 &	Wilcove,	 2017)	 that	 support	
our	conclusion	that	competition	does	not	seem	to	be	main	factor	

driving	temporal	bird	assemblage	patterns.	Mönkkönen,	Devictor,	
Forsman,	Lehikoinen,	and	Elo	(2017)	suggest	that	community	as‐
semblies	 on	 a	 local	 scale	 can	 reflect	 both	 positive	 associations	
from	social	information	use	among	species	(heterospecific	attrac‐
tivity)	 as	well	 as	 negative	 associations	 coming	 from	 competitive	
interactions,	habitat	filters,	and	dispersal	abilities.

Negative	species	association	and	missing	species	combinations	
have	mainly	been	 interpreted	as	 results	of	competitive	species	 in‐
teractions	 or	 environmental	 filters	 (see	 Mayfield	 &	 Levine,	 2010	
for	competition	relatedness	hypothesis);	however,	these	same	pat‐
terns	may	be	generated	by	unique	habitat	associations	(Perez‐Neto,	
Olden,	&	Jackson,	2001),	limited	dispersal	(Ulrich,	2004),	and	histor‐
ical	 or	 evolutionary	 processes	 that	 prevent	 species	 co‐occurrence	
without	the	possibility	of	interspecific	interactions	(Bloch,	Higgins,	&	
Willing,	2007;	Ulrich	&	Gotelli,	2007).	In	addition,	based	on	a	model‐
ling	approach,	Ulrich,	Jabot,	and	Gotelli	(2017)	concluded	that	under	
neutral	dispersal,	competitive	interactions	may	change	the	geome‐
try	of	species	associations.	This	means	that	species	association	anal‐
ysis	 alone	 is	 not	 capable	of	 drawing	 simple	 conclusions	 about	 the	
effects	 of	 competitive	 interactions	 on	 patterns	 of	 co‐occurrence.	
Ulrich,	 Kryszewski,	 et	 al.	 (2017)	 proposed	 a	 comprehensive	 trian‐
gular	framework	to	statistically	distinguish	and	evaluate	patterns	of	
segregation	(turnover),	modularity,	and	nestedness.	It	seems	to	be	a	
promising	approach	to	evaluate	and	disentangle	complex	community	
matrices	into	basic	functional	trait	systems	that	distinguish	competi‐
tion	from	habitat	filtering.

The	 contrasting	 results	 of	 studies	 using	 different	 data	 sets	 in	
the	search	for	assembly	rules	(compensatory	dynamics	and	comple‐
mentary	distribution)	could	be	at	least	partly	related	to	differences	
in	methodology	and	environmental	 settings	 that	can	mimic	or	ob‐
scure	competitive	interactions.	Both	sources	of	potential	confusion	
are	 briefly	 discussed	 below	 and	 exemplified	 in	 our	 study	 of	 bird	
assemblages.

4.2 | The effect of spatial scale

The	importance	of	spatial	scale	in	ecology	has	long	been	recognized	
(Wiens,	1989b).	It	is	clear	that	competitive	interactions	are	scale‐de‐
pendent	and	that	the	outcomes	of	null	model	simulations	are	related	
to	 the	spatial	extent	of	 the	study.	Assembly	 rules	are	expected	to	
be	mainly	apparent	at	relatively	small	spatial	scales,	but	the	specific	
spatial	 extent	 at	which	 assembly	 rules	 act	 largely	 depends	on	 the	
group	studied	(Götzenberger	et	al.,	2012;	Wilson	&	Stubbs,	2012).	
In	the	bird	assemblages	investigated	here,	we	found	significant	sup‐
port	for	the	effect	of	study	area	size	on	the	outcomes	of	null	models.	
The	probability	of	detecting	random	patterns	increased	with	census	
plot	size	in	binary	models,	which	is	consistent	with	the	above	men‐
tioned	 expectations.	 Interspecific	 competition	 among	 competing	
bird	species	is	expected	on	a	small	spatial	scale,	 in	which	competi‐
tively	superior	species	exclude	competitively	inferior	species	in	the	
years	of	their	presence.	On	larger	spatial	scales,	this	does	not	nec‐
essarily	 apply	 because	 in	 large	 plots,	 there	 is	 a	 higher	 probability	
of	spatial	segregation	of	the	territories	of	competing	species;	thus,	
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competitive	exclusion	does	not	have	to	be	reflected	in	the	presence/
absence	data	patterns.	In	quantitative	analyses	on	both	assemblage	
and	 guild	 levels	 (aerial	 foragers,	 foliage	 foragers,	 ground	 foragers,	
and	plant	eaters),	we	found	a	positive	relationship	between	census	
plot	size	and	the	probability	of	aggregation.	 If	most	species	within	
assemblages	have	common	response	to	climate	and	stochastic	fac‐
tors	as	we	assume,	thus,	 increasing	area	of	plot	size	also	 increases	
the	probability	of	occurrence	of	more	species;	thus,	the	effects	of	
aggregation	may	hold	 stronger.	 Indeed,	 increasing	 spatial	 scale	 in‐
creases	habitat	heterogeneity,	and	the	random	patterns	observed	in	
studies	conducted	over	a	larger	scale	may	result	from	environmental	
control	that	obscures	interspecific	competition	(Wilson,	1999).	For	
example,	during	years	of	high	productivity,	bird	species	that	are	eco‐
logically	similar	may	coexist	in	the	same	sites	(Cody,	1999),	or	simple	
availability	of	suitable	habitats	may	allow	for	effective	segregation	
of	 potential	 competitors	 at	 larger	 spatial	 scales,	which	may	 cause	
aggregations.

4.3 | The effect of data types

Further	discrepancies	may	arise	from	using	data	having	different	in‐
formation	 content.	 For	 example,	 the	 analyses	of	 bird	 assemblages	
provided	here	showed	that	many	random	patterns	 revealed	 in	 the	
presence/absence	data	become	aggregations	when	quantitative	in‐
formation	was	included	(Appendices	S3–S6).	In	general,	quantitative	
data	offer	richer	information	than	binary	data	and	may	therefore	be	
more	 sensitive	 to	 relatively	 subtle	 changes	 in	 population	 size	 that	
precede	competitive	exclusion	(Ulrich	&	Gotelli,	2010).	However,	di‐
rect	comparison	between	binary	and	quantitative	model	outcomes	
is	 not	 straightforward,	 and	 researchers	 must	 be	 rather	 cautious,	
since	abundance	data	are	based	on	counts	of	 individuals,	not	spe‐
cies	counts,	and	both	data	types	use	different	randomization	algo‐
rithms	 in	null	model	 simulations	 (Gotelli	&	Ulrich,	2012).	We	used	
complete	sets	of	species	in	the	assemblages	in	both	binary	and	quan‐
titative	analyses,	and	the	results	of	both	analyses	showed	a	strong	
prevalence	of	random	and	positive	associations.	In	fact,	the	high	fre‐
quency	of	random	associations	(~61%)	and	the	lower	frequency	of	
aggregations	 (20%)	 in	 binary	 analyses	 have	 predominantly	 shifted	
toward	positive	association	 in	quantitative	analyses.	As	we	 found,	
this	happened	 in	58.3%	and	61.1%	of	cases	of	random	association	
classified	by	SIM2	algorithm	compared	to	quantitative	analyses	car‐
ried	out	IT	(aa)	and	IA	(rc)	algorithm.	Moreover,	we	also	used	a	subset	
of	species	in	the	assemblage	matrices	with	measurable	abundances	
(excluding	rare	species)	in	quantitative	analyses,	and	these	analyses	
also	yielded	similar	patterns	(results	upon	request	from	correspond‐
ing	 author).	 The	 exclusion	 of	 rare	 species	 increased	 the	 fill	 in	 the	
quantitative	 matrices	 (the	 average	 proportion	 of	 zeroes	 dropped	
from	38%	to	2%).	The	reduced	analyses	showed	approximately	54%	
aggregations,	26%	random	associations,	and	20%	segregations	when	
pooling	data	for	all	null	model	and	index	combinations,	yet	this	anal‐
ysis	was	done	only	on	18	bird	assemblages.

Another	source	of	bias	lies	in	disregarding	the	functional	struc‐
ture	of	assemblages,	and	consequently,	null	model	analyses	at	 the	

whole	 community	 level	may	 suffer	 from	 dilution	 effect	 (Diamond	
&	 Gilpin,	 1982).	 Most	 meta‐analyses	 of	 species	 associations	 con‐
ducted	at	 the	community	 level	could	have	been	 influenced	by	 the	
dilution	effect	(e.g.,	Gotelli	&	McCabe,	2002;	Schluter,	1984;	Ulrich	
&	Gotelli,	2010).	Gotelli	and	McCabe	(2002)	and	Ulrich	and	Gotelli	
(2010)	 recognized	 the	 importance	of	 the	dilution	effect,	 and	even	
when	they	accounted	for	this	effect,	negative	species	associations	
prevailed	in	their	results.	We	excluded	the	potential	of	dilution	bias	
by	using	quantitative	null	model	 analyses	on	 the	guild	 levels	 in	 all	
assemblages.	The	results	of	the	guild	analyses	were	consistent	with	
the	assemblage‐wide	analyses	except	for	the	guild	of	omnivores.	We	
did	not	find	reasonable	explanation	why	species	of	this	guild	showed	
high	level	of	segregation.	Other	bird	foraging	guild	studies	based	on	
an	a posteriori	approach	(Holmes	et	al.,	1986;	Korňan,	2013)	detected	
positive	species	associations	in	two	long‐term	data	sets	of	breeding	
bird	assemblages	in	North	America	and	Europe.

4.4 | The effects of null model settings

When	 addressing	 nonrandom	 patterns	 in	 community	 matrices,	 a	
crucial	 step	 is	 the	choice	of	 the	 species	association	 index	and	 the	
null	 model	 algorithm	 (Gotelli	 &	 Graves,	 1996).	 In	 general,	 many	
combinations	of	association	 indices	with	null	model	algorithms	are	
possible,	each	of	which	differs	in	its	statistical	properties	and	eco‐
logical	 assumptions	 (Gotelli,	 2000;	Ulrich	&	Gotelli,	 2010).	 Even	 a	
relatively	trivial	choice	between	proven	and	widely	used	indices	may	
lead	to	different	results.	In	our	analyses,	for	example,	the	variance	
ratio	index	and	C‐score	showed	a	higher	tendency	for	the	detection	
of	 aggregation	patterns	 than	 the	number	of	 checkerboard	 species	
pairs	(cf.	Figure	1).	In	contrast	to	the	CHECKER	index,	the	other	two	
co‐occurrence	 indices	 do	 not	 directly	measure	 co‐occurrence	 but	
rather	 some	 aspect	 of	 its	manifestation.	 Specifically,	 the	 variance	
ratio	measures	variability	in	the	total	number	of	species	in	an	assem‐
blage,	and	the	C‐score	is	the	mean	number	of	checkerboard	units	per	
species	pair.	Consequently,	the	choice	of	co‐occurrence	indices	may	
lead	 to	 different	 conclusions	 regarding	 nonrandom	 assembly	 pat‐
terns.	For	example,	Gotelli	and	McCabe	(2002),	analyzing	evidence	
for	Diamond's	assembly	rules,	argued	that	the	different	conclusions	
of	their	study	and	that	of	Schluter	(1984)	could	be	attributable	to	the	
different	co‐occurrence	indices	used.

The	choice	of	the	null	model	algorithm	can	affect	the	results	
of	the	analysis	even	more	profoundly	than	the	choice	of	the	asso‐
ciation	 index.	For	example,	Ulrich	and	Gotelli	 (2010)	argued	that	
the	prevalence	of	positive	associations	 in	the	studies	of	Schluter	
(1984)	and	Houlahan	et	al.	(2007)	could	be	a	result	of	inadequate	
assumptions	of	equivalence	among	sites	and	time	samples.	They	
noted	that	the	correct	approach	would	be	to	use	the	IT	algorithm	
that	preserves	the	column	totals,	allowing	for	differences	among	
sites	or	time	samples.	In	a	recent	meta‐analysis	of	published	data,	
Götzenberger	et	al.	 (2012)	 found	that	co‐occurrence	patterns	of	
plant	assemblages	significantly	differed	between	models	that	keep	
species	 frequencies	over	 the	plots	 and	 richness	within	 the	plots	
constant	(SIM9)	and	those	that	kept	only	the	species	frequencies	
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constant	(SIM2).	In	general,	their	SIM2	models	showed	aggregated	
patterns,	 while	 SIM9	models	 tended	 to	 segregate	 outputs.	 This	
corresponds	with	our	results,	where	models	with	the	SIM9	algo‐
rithm	did	not	 show	any	aggregated	pattern.	A	slight	bias	 toward	
detecting	segregated	co‐occurrence	with	the	SIM9	algorithm	and	
C‐score	index	is	already	known	(Ulrich	&	Gotelli,	2007).	If	only	the	
C‐score	and	the	SIM9	model	had	been	used	here,	the	overall	pic‐
ture	would	change,	and	segregated	patterns	would	prevail	(42%).	
Although	the	SIM9	model	has	good	statistical	properties,	 its	use	
with	 a	C‐score	 is	 not	 recommended	 for	matrices	 that	 are	 highly	
filled,	such	as	those	analyzed	here	(mean	fill	=	61%).	In	these	cases,	
the	 more	 conservative	 indices,	 such	 as	 the	 number	 of	 checker‐
boards,	 appear	 to	 be	more	 appropriate	 (Ulrich	 &	Gotelli,	 2007).	
Adopting	 this	approach	would	 lead	 to	 the	dominance	of	 random	
associations	(68%)	in	the	studied	assemblages.

Finally,	 the	 difference	 in	 the	 ability	 of	 null	 models	 to	 reveal	 a	
nonrandom	pattern	when	it	truly	exists	(statistical	power)	should	be	
briefly	discussed.	Gotelli	and	Ulrich	(2012)	pointed	out	that	null	model	
analysis	may	not	be	well	suited	for	large	data	sets,	since	large	data	sets	
may	often	deviate	significantly	from	null	models	regardless	of	whether	
species	occurrences	are	random.	Considering	the	bird	data	sets,	the	
relationships	between	the	matrix	size	and	the	statistical	power	of	the	
analysis	were	particularly	apparent	in	the	binary	models	(Table	1).	For	
example,	when	the	matrix	size	increased	above	approximately	2,200,	
null	models	with	 the	CHECKER	 index	 and	 SIM9	 algorithm	 had	 the	
tendency	to	reveal	predominantly	segregated	patterns	in	bird	assem‐
blages	(Figure	3).	Similarly,	Gotelli	and	McCabe	(2002)	found	that	ma‐
trix	size	was	significantly	related	to	null	model	outputs	because	large	
matrices	enhanced	 the	 statistical	 power	of	 the	analysis.	These	 two	
examples	suggest	that	the	issue	of	statistical	power	must	be	kept	in	
mind	when	comparing	results	of	different	null	model	studies.

Based	on	the	latest	finding	of	Ulrich	et	al.	(2018),	most	null	model	
algorithms	are	prone	to	the	effects	of	total	matrix	species	richness	on	
association	patterns.	Only	the	fixed–fixed	algorithm	(SIM9)	showed	a	
weak	correlation	with	total	matrix	species	richness,	and	it	is	strongly	
recommended	for	species	association	studies.	 In	our	study,	we	used	
this	algorithm	in	combination	with	the	C‐score	metric,	as	it	is	recom‐
mended	in	Ulrich	et	al.	 (2018),	and	with	other	two	metrics.	We	also	
used	the	SIM2	algorithm,	which	has	a	reasonable	ecological	basis	but	
can	be	prone	to	the	effects	of	total	matrix	species	richness.	Ulrich	et	al.	
(2018)	used	proportional–proportional	and	equiprobable–equiproba‐
ble	 algorithms	 that	 had	 a	 tendency	 toward	 segregations	 and	 aggre‐
gations.	Even	though,	Ulrich	et	al.	 (2018)	did	not	provide	the	results	
of	 the	simulation	 for	SIM2	 (fixed–equiprobable	algorithm),	we	 inter‐
preted	the	results	of	the	null	model	simulation	by	SIM2	with	caution	
in	this	manner.

4.5 | Confounding effect of environmental 
variability

It	should	be	clearly	stated	that	null	models	based	on	data	sets	con‐
sisting	of	field	observations	are	by	no	means	definitive	tests	of	the	
importance	of	competitive	interactions,	since	the	same	nonrandom	

patterns	can	be	explained	by	other	mechanisms.	For	example,	spe‐
cies	segregation	can	also	arise	from	habitat	variability,	while	aggrega‐
tion	might	be	caused	by	interspecific	facilitation	(Gotelli	&	McCabe,	
2002;	 Götzenberger	 et	 al.,	 2012;	Wilson,	 1999).	 Considering	 bird	
assemblages,	many	species	are	known	to	prefer	specific	optimal	mi‐
crohabitats	or	successional	stages;	consequently,	the	spatial	distribu‐
tion	of	these	species	is	nonrandom	and	is	strongly	affected	by	forest	
heterogeneity.	The	dominant	habitat	 types	 investigated	here	were	
natural	and	primaeval	forests	characterized	by	high	horizontal	and	
vertical	heterogeneity	formed	by	natural	tree	falls	(gaps),	local	suc‐
cessions,	patches	of	different	developmental	stages,	uprooted	trees,	
and	 multi‐storey	 profiles	 of	 stands	 (Korňan,	 2013;	 Wesołowski,	
2007).	This	patchy	environment	 in	 combination	with	 the	different	
microhabitat	 requirements	 of	 species	 may	 cause	 clumped	 habitat	
occupancy	patterns	at	larger	scales.	This	phenomenon	could	cause	
patterns	with	high	species	richness	at	the	census	plot	level	that	are	
transferred	 to	highly	 filled	matrices,	which	bias	 the	 results	 of	 null	
model	 analyses	 toward	 random	 or	 positive	 species	 associations.	
Therefore,	using	binary	matrices	 from	relatively	 large	census	plots	
(≥	 10	 ha)	 does	 not	 necessarily	 yield	 competition	 patterns,	 which	
could	be	more	probable	from	point	samples.	Nevertheless,	this	can	
be	overcome	by	using	quantitative	matrices	with	population	density	
data,	as	interactions	are	estimated	by	changes	in	abundance	on	the	
plot	level.	This	is	essentially	because	larger	plots	are	needed	for	ob‐
jectively	estimating	abundance	or	population	density	in	forest	habi‐
tats	(minimum	plot	size	for	forest	habitats	in	the	mapping	method	is	
10	ha)	that	may	better	reflect	overall	differences	in	the	quantitative	
assemblage	structure	between	years	in	a	studied	habitat.	This	study	
used	both	binary	and	quantitative	data,	but	neither	led	to	the	preva‐
lence	of	segregations	 in	the	analyses.	 In	fact,	binary	data	analyses	
led	to	the	prevalence	of	random	associations,	whereas	the	quantita‐
tive	data	analyses	led	to	the	prevalence	of	aggregations.	In	summary,	
the	results	do	not	underscore	compensatory	dynamics	processes	as	
the	main	drivers	of	bird	assemblage	dynamics.
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