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Rationale: The level of visual detail of a mass spectrometry image is dependent on

the spatial resolution with which it is acquired, which is largely determined by the

focal diameter in infrared laser ablation-based techniques. While the use of mid-IR

light for mass spectrometry imaging (MSI) has advantages, it results in a relatively

large focal diameter and spatial resolution. The continual advancement of infrared

matrix-assisted electrospray ionization (IR-MALDESI) for MSI warranted novel

methods to decrease laser ablation areas and thus improve spatial resolution.

Methods: In this work, a Schwarzschild-like reflective objective was incorporated

into the novel NextGen IR-MALDESI source and characterized on both burn paper

and mammalian tissue using an ice matrix. Ablation areas, mass spectra, and

annotations obtained using the objective were compared against the current optical

train on the NextGen system without modification.

Results: The effective resolution was determined to be 55 μm by decreasing the step

size until oversampling was observed. Use of the objective improved the spatial

resolution by a factor of three as compared against the focus lens.

Conclusions: A Schwarzschild-like reflective objective was successfully incorporated

into the NextGen source and characterized on mammalian tissue using an ice matrix.

The corresponding improvement in spatial resolution facilitates the future expansion

of IR-MALDESI applications to include those that require fine structural detail.

1 | INTRODUCTION

Mass spectrometry imaging (MSI) gives spatially resolved chemical

information that is valuable for the multiplexed, highly specific

analysis of biological tissue.1 An important parameter of MSI is the

spatial resolution with which a mass spectrometry image is acquired.

It is more challenging to resolve very fine cellular and structural

differences with larger spatial resolution, resulting in the potential loss

of valuable interpretations. It is important to be able to spatially

resolve these structures such that we gain a more detailed chemical

profile of a sample. However, the offset cost of better spatial

resolution is longer analysis time, shown in Equation 1. If the initial

spatial resolution, D0, resulted in an analysis time of t0, then reducing

the ablation diameter to Di would result in a relative analysis time of tr

for the same sample area. For example, an analysis at a 150 μm spatial

resolution that takes 1 h would instead require an acquisition time of

9 h at a 50 μm spatial resolution. This cost can be ameliorated by

selecting smaller regions of interest (ROIs) to analyze. Regardless, aAlena N. Joignant and Hongxia Bai contributed equally.
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high spatial resolution is beneficial in applications where cellular

resolution is a priority or when analyzing tissues with high structural

or chemical heterogeneity.

tr ¼ ti
t0
¼ D0

Di

� �2

ð1Þ

Micrometer-level focal diameters are routinely achieved in

ultraviolet (UV) matrix-assisted laser desorption/ionization (UV-

MALDI) and secondary ion mass spectrometry (SIMS) applications,

with which spatial resolution is often limited by the minimum raster of

the sample stage as opposed to the focusing capability of the

optics.2,3 The use of an infrared (IR) laser in MSI results in a relatively

large focal diameter when compared to UV lasers, therefore creating a

larger area of ablated sample. Although UV applications have the

ability to image at very high spatial resolution, many investigators

choose a step size between 50 and 100 μm to balance spatial

resolution with signal abundance and acquisition time.4–6 Most MSI

applications using IR wavelengths operate at a spatial resolution

between 100 and 400 μm, although there are efforts to extend

further into the sub-100 μm range.7–10 This key difference between

UV and IR lasers is shown in Equation 2, where the ability of a

Gaussian beam to be focused to its minimum diameter (Df) with a

beam quality of M2 is directly proportional to its wavelength (λ); D0 in

this case is the diameter of the raw laser beam.11

Df ¼4λfM2

πD0
ð2Þ

Infrared matrix-assisted laser desorption electrospray ionization

(IR-MALDESI) is a hybrid ionization source that ablates samples

through resonant laser desorption and post-ionizes neutrals by

electrospray ionization.12 The use of laser desorption in conjunction

with a soft ionization mechanism similar to electrospray (ESI) makes

IR-MALDESI particularly suited for MSI of biospecimens, and the

use of high-resolution mass spectrometry and accurate mass

measurement allows for high specificity.13 A particular advantage of

IR-MALDESI is the ability to use endogenous and externally applied

water as an IR-absorbing matrix for tissue samples, eliminating the

need for organic matrices without compromising energy absorption

efficiency. In its current configuration, IR-MALDESI is limited by the

laser ablation diameter to a spatial resolution of 150 μm on tissue.14

Oversampling was previously employed in IR-MALDESI as a means

to obtain high spatial resolution without changing the focus of the

laser.15 However, oversampling produces crescent-shaped, irregular

ablation geometry and requires complete ablation of the sample. This is

disadvantageous for applications that involve thicker samples, such as

ablation-based three-dimensional MSI.16,17 In a previous iteration of the

IR-MALDESI source, a 50 μm spatial resolution was achieved using a

high-energy opolette tunable laser, an adjustable iris, a beam expander,

and an aspheric focusing lens.18 The IR-MALDESI source has since

evolved to include a completely re-worked desorption laser and optical

path. Currently, IR-MALDESI uses a JGMA 2970 nm mid-IR laser that is

miniaturized, conductively cooled, and free from maintenance. The

revamped laser path suggests the need for an alternative approach to

improve spatial resolution without the use of oversampling or a

complex optical manipulation, as was done in previous work.

A home-built Schwarzschild microscope was first used in MSI to

focus a desorption laser in the work by Savina and Lykke, which

resulted in a smaller ablation diameter.19,20 As opposed to several

diffractive elements comprising the objective, a Schwarzschild

microscope uses convex and concave mirrors to focus light through an

aperture onto the focal plane. Schwarzschild-like reflective objectives

have since been commercialized and often used in MSI.21 Specific

advantages include low spherical aberrations and relatively long

working distances when compared to diffractive objectives and

spherical lenses.22 Additionally, reflective objectives have little to no

chromatic aberration. Due to this wavelength independence, it is

possible to image both IR and white light to incorporate optical

microscopy into an in-line multimodal system, or to perform MSI using

multiple laser wavelengths. Use of reflective objectives was successful

at improving spot size in applications using a mid-IR wavelength, such

as laser ablation electrospray ionization (LAESI), in which a high

magnification reflective objective was able to achieve cellular

resolution in the imaging of cell clusters.23 Newer LAESI applications

involved the use of a reflective objective for single-cell and native plant

tissue imaging.24,25 Overall, LAESI studies using reflective objectives

show that the reflective objective is a feasible and practical way to

reduce the focal diameter of mid-IR lasers. A unique application of the

objective that inspired this work involves a study from Dong et al. in

which a home-built reflective objective was used in IR laser ablation

micro-sampling for off-line proteomics.26 The diversity of applications

involving the reflective objective at mid-IR wavelengths makes it a

promising tool to empower IR-MALDESI with more diverse abilities.

The aim of this preliminary work is to incorporate the Schwarzschild-

like reflective objective into the novel NextGen IR-MALDESI source to

improve spatial resolution with the aim of characterizing its use on

mammalian tissue with and without an ice matrix.

2 | EXPERIMENTAL

2.1 | Materials

HPLC-grade acetonitrile, water, and formic acid were purchased from

Fisher Scientific (Nazareth, PA). Burn paper was purchased from

ZAP-IT. Pre-cleaned microscope slides and glass cover slips were

purchased from Fisher Scientific. Arcturus HistoGene Staining

Solution and Permount were purchased from Fisher Scientific.

2.2 | Sample preparation

Wild-type mouse liver specimens were received from the Ghashghaei

Laboratory in the Department of Molecular Biomedical Sciences,

College of Veterinary Medicine at North Carolina State University. All
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animal husbandry practices were in accordance with the North

Carolina State University Institutional Animal Care and Use

Committee (IACUC), and the mice were raised according to the

Institute for Laboratory Animal Research Guide. The specimens were

flash frozen and kept at �80�C until the time of the experiment. The

livers were cryosectioned to 20 μm thickness using a Leica CM1950

cryostat at �20�C. Each section was thaw-mounted onto a pre-

cleaned microscope slide prior to analysis. Slides were kept at �20�C

in the cryostat until analysis.

2.3 | IR-MALDESI and the NextGen source

The IR-MALDESI source has previously been described in great

detail.12,13 This work was completed on the novel NextGen IR-

MALDESI source coupled to an Orbitrap Exploris 240 (Thermo Fisher

Scientific).27 A key design element of the IR-MALDESI source is a

vertically-mounted JGMA 2970 nm mid-IR laser (JGM Associates,

Inc.) that allows for higher laser energy efficiency. A down tube

contains a beam expander system composed of two CaF2 lenses

(f = �75 mm and +250 mm). The ZnSe focus lens (f = 50 mm) usually

housed in the telescopic lens holder was removed to allow for the

addition of a protected silver-coated 15� reflective objective

(LMM15X-P01, Thorlabs, Inc.). Light enters the 8-mm entrance pupil

and is reflected by the secondary mirror to the larger primary mirror.

The secondary mirror is held in the objective by three spider vanes. As

light reflects off the primary mirror to the target, the space occupied

by the secondary mirror and spider vanes creates central obscuration.

The product web page states that this central obscuration accounts

for 26% of an 8-mm, flat-top beam.28 Higher central obscuration, and

thus lower transmission, is expected with a Gaussian laser in this

work. Multiple laser energies were tested using both the focus lens

and the objective to ensure proper fluence was applied to each

sample. This was done by changing the pulses per burst fired by the

laser to reach a cumulative laser energy applied to the target per shot.

The working distance to the stage was systematically changed using

an adjustable zoom housing (SM1NR1, Thorlabs, Inc.) until the

smallest focal diameter on burn paper was achieved, visualized by

light microscopy. Additionally, the z-axis stage (GTS20V) was raised or

lowered in increments of 10 μm for fine focusing of the laser. The

motorized three-dimensional (3D) translation stage of the NextGen

source and laser triggering scheme are controlled by the home-built

RastirZ software.29

Nitrogen gas (99.98% purity) was used to purge the source

chamber of humidity during all experiments. Analysis of frozen tissue

was accomplished by first purging the sealed source chamber with dry

nitrogen gas to a humidity less than 12%, preventing the formation of

frost. Then, the sample was frozen by cooling the Peltier-cooled stage

plate to �9�C. For samples that required an ice matrix, the source

chamber was re-opened after the sample stage was completely

cooled to allow ambient humidity to enter the chamber and freeze

atop the frozen tissue sample in a controlled manner. During an IR-

MALDESI analysis, the specified number of laser pulses is fired at the

sample at a pulse rate of 10 kHz, causing desorption of neutrals.30

The desorbed neutrals partition into charged droplets of the

orthogonal electrospray plume for post-ionization. The electrospray

solvent composition used in tissue analyses was a 60:40 acetonitrile/

water (v/v) solution with an added 0.2% formic acid for best

ionization efficiency.31 The electrospray plume was created and

stabilized with a high voltage (3500–3850 V) applied to the emitter

tip. The flow rate of the electrospray solvent was set to 2 μl/min. A

mass range of 200–1000 m/z in positive ionization mode was used

for data collection with a resolving power of 240 000 (full width at

half maximum at m/z 200). Internal calibration was done using the

EASY-IC (fluoranthene, m/z 202.0782) lock mass to obtain mass

measurement accuracy at a tolerance of 2.5 ppm. Automatic gain

control (AGC) was disabled, and the ion accumulation time was set to

15 ms. Tissue samples were immediately stained post-analysis

according to the standard protocol and preserved under a coverslip

for optical microscopy by a Leica LMD7000 (Leica Microsystems).

Ablation diameters were measured in the corresponding LMD

software and analyzed in MATLAB (R2021b, The MathWorks Inc.)

and Microsoft Excel.

2.4 | Data analysis and visualization

The. RAW files were first converted the mzML format via MS Convert

by ProteoWizard.32 The .mzML files were then converted to .imzML

using imzMLConverter.33 Next, these files were analyzed in

MSiReader v1.03q to produce ion maps for further data visualization

and analysis.34,35 Annotations were acquired via METASPACE using

the LipidMaps database at a false discovery rate (FDR) of 20%

F IGURE 1 Schematic of the NextGen source with and without
the reflective objective. The red line indicates the laser beam path.

(A) The customary NextGen optics include a focus lens (f = +50 mm)
in the telescopic lens holder. The focus lens was focused to its focal
length (f ). (B) The focus lens is removed and the telescopic lens holder
is fitted with the reflective objective using a SM1-RMS thread
adapter. The reflective objective is focused to its working distance
(WD) from the focal plane. [Color figure can be viewed at
wileyonlinelibrary.com]
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(https://metaspace2020.eu).36 These annotations were filtered by

MSiPeakfinder with the following restrictions: the annotation must be

present in greater than 60% of the sample and less than 20% of the

background (ambient ions produced only through ESI). If it is present

in more than 20% of the background, it must appear at twice the

background abundance.

3 | RESULTS AND DISCUSSION

The incorporation of the reflective objective required very little

modification of the NextGen source. The beam expander was left

to remain in the down tube, while only the ZnSe focus lens was

removed and replaced with the objective. Figure 1A shows

the optical path of the customary NextGen setup that the

reflective objective (Figure 1B) was compared against. A

photograph of the objective in the NextGen source is provided as

Figure S1. The preliminary installation of the reflective objective

into the IR-MALDESI source indicated low laser energy

transmission (≈13%) and a shorter depth of focus (DOF, ≈160 μm)

relative to the customary focus lens (90% energy transmission and

DOF of 300 μm). Details of the DOF study are included in

Figures S2 and S3. These slight drawbacks were able to

be overcome due to the higher laser energy and motorized 3D

translation stage of the NextGen source with precise sample-to-

target control.

F IGURE 2 (A) Average spot size comparison of the NextGen focus lens and objective on burn paper (n = 5). Spot diameters are broken into
horizontal (X) and vertical (Y) directions to illustrate the minimized eccentricity of spots created by the objective. (B) Average spot size
comparison of the NextGen focus lens and objective on mouse liver tissue under three conditions (n = 5). [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 3 Average spectra comparison of the NextGen focus lens at 130 μm spot size (top) and reflective objective at a 50 μm spot size
(bottom) on 20 μm murine liver tissue analyzed by IR-MALDESI with an ice matrix applied. [Color figure can be viewed at wileyonlinelibrary.com]
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The laser was focused on burn paper using both the focus lens

and objective. The thickness of the burn paper was found to be

230 μm as measured by a caliper. When moving from burn paper to

tissue, the motorized z-axis stage was raised by 210 μm to account

for the difference in target thickness and maintain laser focus.

Figure 2 shows the average spot size comparisons on burn paper and

mouse liver tissue. Two pulses per burst were applied to the focus

lens for an on-target laser energy of 1.3 mJ. Three pulses per burst

were applied to the objective for an on-target energy of 0.19 mJ due

to low energy transmission. These laser energies correspond to

comparable fluence of approximately 7–10 and 6–9 J/cm2,

respectively. The average spot size created by the reflective objective

is approximately four times smaller on burn paper and three times

smaller on tissue than those created by the focus lens. The diametric

ratio (d), as defined by Equation 3 below, measures the ratio of two

radii of an ellipse (b and a).

d¼ b
a
whereb≤ a ð3Þ

A perfectly circular ablation area would have a diametric ratio of

1, as all radii of a perfect circle are equal. Ablation areas using the

objective are nearly circular, which is a significant improvement from

the elliptical spots of the focus lens. Optical images of ablation on

burn paper and tissue are given in Figure S4.

F IGURE 4 Heatmap comparisons of NextGen focus lens and objective using an ice matrix. (A) Raw abundances of cholesterol
([M-H2O + H+]+ m/z 369.3516) were comparable between the two optics. The cholesterol abundance of the objective normalized to sample
volume difference (5.73�) shows stark improvement. (B) Raw abundances of representative lipid C42H80NO8P [M + H+]+ m/z 758.5694 were
approximately an order of magnitude lower using the objective relative to the focus lens but are visually improved when normalized to sample
volume. Imaging parameters are given by the SMART acronym (step size, mass measurement accuracy tolerance, number of annotations, ROI
dimensions, and time of acquisition). Number of annotations is listed as “A:” for the focus lens (227) and the objective (63). [Color figure can be
viewed at wileyonlinelibrary.com]
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The focus lens and objective were tested on thawed, frozen, and

ice matrix tissue with 20 � 20 ROIs sampled at a step size of 250 μm.

The presence of an ice matrix contributes higher internal energy to

analytes due to increased IR absorbance.37 Additionally, the presence

of an ice matrix corresponds to multifold signal improvement

compared to analysis without a matrix.14 Since the ice matrix is now a

hallmark of an IR-MALDESI analysis for these reasons, the annotated

average spectra of the ice matrix samples are compared in Figure 3.

The observed spectra show comparable cholesterol abundance, while

other lipid abundances are approximately an order of magnitude

higher using the focus lens. Additionally, the number and types of

lipid annotations decreased using the objective (37 thawed, 51 frozen,

63 ice matrix) relative to the focus lens (23, 197, 227). This disparity is

likely not due to uncharacteristic fragmentation of lipid ions, since IR-

MALDESI is considered a relatively soft ionization source.37 As ion

abundances and the number of annotations are proportional to the

amount of sample analyzed, this difference is likely due to the smaller

volume of samples ablated with a smaller focal diameter.

The ratio of ablated sample volume was calculated by finding the

average elliptical area of the objective and focus lens on ice matrix

samples, assuming samples had a constant thickness of 20 μm. This

ratio of sample volume was taken into account in Figure 4, where the

heatmap color scale was locked to a value proportional to the volume

difference (a factor of 5.73). The same analysis was completed on two

more fatty acids and three larger glycerophospholipids in Figure S5,

showing that larger lipids are observed at slightly less than

expected signal abundance after considering sample volume. This

visually illustrates in the ice matrix samples that the smaller sample

volume ablated can almost completely account for the lower lipid

abundances.

The final aim of this work was to accurately determine the

step size to use for the reflective objective, effectively determining

the new spatial resolution. A mouse liver tissue cryosectioned

to 20 μm was analyzed with multiple ROIs of decreasing step

sizes under an ice matrix. The optical image and

corresponding heatmaps are shown in Figure 5. Optical images

show that the step size is between 65 and 55 μm, as this is where

the ROIs begin to show some oversampling. There is no obvious

difference in the heatmaps of the two ROIs, indicating that this

overlap is minimal.

Future work involves expanding and further characterizing the

use of this reflective objective in IR-MALDESI. Specific limitations

of the reflective objective in the current work are a short depth of

focus as well as low energy transmission efficiency. While use of

the NextGen source allowed us to overcome these limitations,

future efforts will involve potentially trimming the Gaussian beam

using an adjustable iris prior to beam expansion. Most energy loss

by the objective is due to the central obscuration of the Gaussian

beam, so filling the entrance pupil more completely with an

expanded pseudo-uniform beam is expected to solve this limitation.

Additionally, due to low aberrations, the possibility of incorporating

optical microscopy in line with the IR optical path would further

expand the advantages of the NextGen IR-MALDESI source. The

objective described in this work is infinity-corrected, which allows

for the placement of an alternative light source and camera. While

incorporating the objective was a successful approach to improve

spatial resolution, the decreased sensitivity due to smaller ablated

volumes is a primary limitation and requires future study. Overall,

the many advantages of the reflective objective for focusing IR

light allowed for its successful incorporation into the IR-MALDESI

F IGURE 5 (A) Optical image of multiple ROIs of decreasing step size with associated cholesterol ([M-H2O + H+]+ m/z 369.3516) heatmaps
using an ice matrix. (B) Optical images of the 65 and 55 μm step size ROIs enlarged to clearly show the degree of oversampling. [Color figure can
be viewed at wileyonlinelibrary.com]
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source, including the longer working distance for a high

magnification optic, low chromatic and spherical aberrations, and

simple installation into the source.

4 | CONCLUSIONS

This work demonstrates the successful incorporation of a

Schwarzschild-like reflective objective into the NextGen source and

its characterization on mammalian tissue under an ice matrix. Use of

the reflective objective resulted in a spatial resolution of 55 μm, an

improvement of a factor of three from the standard 150-μm IR-

MALDESI spatial resolution, as well as an improvement in spot shape

to nearly circular. When the difference in ablated sample volume is

taken into account, the resulting ion abundances are nearly

comparable. The objective is a valuable, optional modification to the

NextGen system that diversifies potential applications by meeting

spatial resolution needs for specific applications.
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