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Abstract: In order to verify the cryoprotective effect of an antifreeze protein (BaAFP-1) obtained
from barley on bread dough, the effect of BaAFP-1 on the rheological properties, microstructure,
fermentation, and baking performance including the proofing time and the specific volume of bread
dough and bread crumb properties during freezing treatment and freeze-thaw cycles were analysed.
BaAFP-1 reduced the rate of decrease in storage modulus and loss modulus values during freezing
treatment and freeze-thaw cycles. It influenced the formation and the shape of ice formed during
freezing and inhibited ice recrystallization during freeze-thaw. BaAFP-1 maintained gas production
ability and gas retention properties, protected gluten network and the yeast cells from deterioration
caused by ice formation and ice crystals recrystallisation in dough samples during freezing treatment
and freeze-thaw treatment. It slow down the increase rate of hardness of bread crumb. The average
area of pores in bread crumbs decreased significantly (p < 0.05) as the total number of pores increased
(p < 0.05), and the addition of BaAFP-1 inhibited this deterioration. These results confirmed the
cryoprotective activity of BaAFP-1 in bread dough during freezing treatment and freeze-thaw cycles.
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1. Introduction

Frozen dough technology used in the baking industry can both supply oven-fresh bakery products
and also improve labour conditions, thus gained extensive attention. However, both the freezing
process and frozen storage decrease dough quality. The formation of ice crystals during freezing
treatment and ice recrystallisation during frozen storage, due to low and fluctuating temperatures,
result in the deterioration of hydrated gluten integrity [1,2], the alteration of the structural and functional
properties of wheat starch [3], and affect the viability and activity of yeast [4]. Various Problems have
arise during the production of bread made from frozen dough, including the gradual loss of dough
strength, decreased CO2 retention capacity, reduced yeast activity. Reflect on final products properties,
a longer fermentation time, decreased loaf volume, and a deterioration in the bread crumb texture can
be observed [5–7].

Various food additives, including emulsifiers, enzymes, hydrocolloids, and antifreeze proteins
(AFPs), have been used with the aim of improving the rheological and structural properties and baking
performance of frozen dough [8–10]. Among these additives, AFPs are novel food ingredients that
have attracted much interest owing to their effects on the properties of frozen dough [11–13]. AFPs,
alternatively ice-structuring proteins (ISPs) or thermal hysteresis proteins, are a family of proteins,
which could lower the freezing point of poikilothermic organisms in a non-equilibrium manner,
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thus protect them from freezing [14,15]. This is referred to as thermal hysteresis activity (THA). THA is
only one of the effects mediated by these proteins, and it may not be the most common effect. AFPs also
alter the way ice crystals form, which is referred to as ice crystal morphology modification activity [16].
Moreover, they inhibit ice recrystallisation by incorporating with the ice due to their affinity for the ice
crystal surface, named as ice recrystallisation inhibition (IRI) [17]. These unique properties of AFPs
make them excellent candidate for natural ice modulators in food cryopreservation.

AFPs have been found in fish, bacteria, and plants, et al. [18]. The diverse structures and
compositions of AFPs result in large differences in their activities and functional mechanisms. Plant AFPs
generally have relatively low THA (0.2–0.4 ◦C) compared with AFPs from fish (0.7–1.5 ◦C) and insects
(3–6 ◦C). However, they show extraordinarily high IRI activity [17], with a 100–500 times lower
concentration of AFPs required for their IRI effect than for freezing point depression. Therefore,
these AFPs are cost-effective if they were used as food ingredients [15,19]. It has been proposed that
plant AFPs function through IRI rather than by its THA [20]. This characteristic makes them ideal
candidates for the cryopreservation of oocytes, embryos, and frozen food, in which ice recrystallisation
has the greatest negative effect on preservation. Although plant AFPs are widely found in winter
and spring rye, winter and spring wheat, and winter and spring canola, et al., they have only been
purified from carrot, peach tree, winter rye, winter wheat, oats, bittersweet night shade, L. perenne,
A. mongolicus, and sea buckthorn. However, few studies on their food preservation effects have
been published. The incorporation of plant AFPs from winter wheat and carrots has been shown
effective in influencing the gassing rate, the total amount of gas produced in frozen dough, maintaining
loaf volume, improving the texture properties of bread during frozen storage; decreasing the rate
of structural deterioration; and retarding the decrease of freeze-thaw stability in terms of syneresis
and the hardness of corn and wheat starch gels. These results demonstrate that the application of
plant AFPs as food preservatives can improve the quality of frozen foods during process, storage,
and transport. Therefore, studies on the effects of plant AFPs during cryopreservation, aimed at
revealing the structure/function relationship of plant AFPs, will be of great interest.

A barley antifreeze protein (BaAFP-1) was extracted and purified from barley (Hordeum vulgare L.) [21].
Previous study showed that it could decrease dough deterioration by influencing its freezing-thawing
parameters, including freezing and melting temperatures and enthalpy, freezable water content, and glass
transition temperature. BaAFP-1 could also influence water mobility and water distribution in frozen
dough during freezing process and freeze-thaw cycles [18]. To verify the effect of BaAFP-1 on the end-use
properties of dough, the effect of BaAFP-1 on dough samples during freezing process and freeze-thaw
treatment was determined. These data will add to the existing information on the cryoprotective activity
of AFPs, providing further insight into the action mechanism of plant AFPs.

2. Materials and Methods

2.1. Materials

BaAFP-1 was extracted from barley (Hordeum vulgare L.) by infiltration-centrifugation with
phosphate buffer (pH 7.2, 0.15 M NaCl, 1:5 (w/v) for 10h. Then the pooled centrifugal fluid and the
infiltrating buffer was concentrated and desalted by ultra-filtration (Cole-Parmer Master Flex L/S Digital
Drive, Cole-Parmer Instrument. Vernon Hills, IL, USA). Purification was conducted with ammonium
sulphate precipitation (50–100% cut), ion-exchange (ANS-Seharose Fast-Flow column), gel filtration
(Hiload Sephadex G-75 gel filtration column) and hydrophobic chromatography (Phenyl Sepharose
High Performance column). BaAFP-1 obtained was pooled, lyophilized for use. Flour, sugar, salt and
butter were purchased from the local market.

2.2. Dough Preparation and Storage

Dough samples were prepared use the method described before [18]. Formulation of control
dough was comprised of 100 g wheat flour, 4 g sugar, 1.5 g salt, 60 g water, and 4 g butter. AFPs was
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added in BaAFP-1 dough at the ratio of 0.5% (flour basis). All ingredients except butter were mixed at
the same time, then butter was added when gluten in the dough was partly formed. When gluten in
the dough was fully extended, the dough was rested, divided, shaped and wrapped in a polyethylene
sheet. They were called control dough samples and BaAFP-1 dough samples, respectively. The frozen
dough samples were immediately frozen at −30 ◦C for 2 h, then stored at −18 ◦C. Freeze-thaw
cycle, consisted of partially thawing the frozen dough samples at room temperature until the centre
temperature was 15 ◦C, then subjected to frozen storage again at −18 ◦C for 24 h, were conduct used
the method described before to mimic the temperature fluctuations [18]. Samples were named Fresh,
C1, C2, C3, and C4, respectively, in which Fresh refers to fresh dough samples, and in C1, C2, C3 and
C4, represents dough samples endured 1 to 4 freeze-thaw times. No yeast was added to dough samples
used for dynamic rheological measurement and microstructure measurement in order to eliminate the
influence of fermentation during measurement.

2.3. Dynamic Rheological Measurement of Dough Samples

Dough dynamic rheological property was measured using a AR-G2 rheometer (TA Instruments,
New Castle, DE, USA) using the slightly modified methods of Li and Ribotta [8,9]. Parallel plate
geometry of 20 mm diameter and 1 mm gap was employed. Samples were placed on the lower plate,
and its rim was coated with Vaseline. Before starting the measurement, samples were rest 5 min at
25 ◦C, to relax normal stresses induced during sample loading. Frequency sweep tests were performed
over the frequency range of 0.01–40.00 Hz, 0.5% deformation. The storage modulus (G’), loss modulus
(G”) and tan δ (G”/G’) were recorded.

2.4. Microstructure Measurement of Dough Samples

Microstructure observations were performed on frozen dough samples with and without addition
of BaAFP-1 by SEM (model SCD005, Bal-Tec, Liechtenstein). Frozen dough samples were frozen dried
use a freeze dry system (−80 ◦C, <10 Pa, Labconco, Kansas City, MO, USA) prior to SEM analysis.
Then fractured and sputter coated with gold-palladium alloy and their surface structures were viewed
at an accelerating voltage of 5kV. Representative micrographs was taken at magnification of ×300 and
×1200, respectively.

2.5. Fermentation Properties Determination of Dough Samples

Fermentation properties of dough samples were measured with a rheofermentometer (F3, Chopin,
Villeneuve-La-Garenne, France). The test was conducted on a using the slightly modified methods of
Roth [22]. 150 g dough samples were put into a fermentation basket, then loaded a 1.5 kg cylindrical
piston and then sealed the proofing chamber hermetically. Fermentation properties of dough samples
were analyzed at 37 ◦C for 3 h. Development of the dough and gaseous release curves were recorded.
Maximum dough height (Hm), time to reach maximum dough height (T1), maximum height of gaseous
release (H’m), total volume (V(CO2)), and retention coefficient (R) were determined.

2.6. Baking Properties Determination of Dough Samples

Baking properties including the proofing time of dough and the specific volume of baked bread was
determined, respectively. Paned dough samples were placed into a fermentation cabinet. Proofing time
required at a fermentation condition of 38 ◦C and 85% RH was recorded with a fixed proof height
(~1 cm below the pan sidewall). The loaves were baked at 195 ◦C/185 ◦C for 13 min after they reached
their appropriate proofing time, respectively. They were cooled for 1 h prior to further testing. Then the
weight and loaf volume of each bread loaf was determined by millets displacement. The specific
volume (mL/g) of baked bread were calculated as quotient of loaf volume (mL) and weight (g) of each
bread sample.
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2.7. Hardness Analysis of Bread Crumb

Hardness analysis of bread crumb was conducted using the method of Kim with slight
modifications [10]. A two cycle bread crumb compression text were performed on two bread
slices (1-cm thick) using a TA-XT2i texture analyzer (Stable Micro System, Surrey, UK) equipped
with a P25 Aluminum Platen probe of 2.5 cm diameter. The test was conducted under the following
conditions: Pre-test speed 1 mm/s, test speed 0.8 mm/s, post-test speed 0.8 mm/s, trigger type auto 5 g,
and 50% compression. The first compression cycle was recorded to be hardness.

2.8. Crumb Grain Features Observation of Bread

Bread slices (1-cm thick) were scanned using a flatbed scanner (CanoScan LiDE25, Canon,
Lake Success, NY, USA) at a resolution of 600 dpi. A field of view 165 × 165 was cropped from the
crumb grain feature image using Adobe Photoshop CS5. The cropped images were converted from
RGB mode into gray scale, converted into binary image and then analyzed with MATLAB 2007b
software program (Program S1) using the slightly modified image analysis method used by Gao [23].
Distribution of bread pore was quantified and recorded.

2.9. Statistical Analysis

Data were expressed as Mean ± SD. The Origin software was used in the data treating.
Statistical analyses were done by one-way analysis of variance (ANOVA) with Duncan post hoc
test using SPSS for Windows, version 16.0 (SPSS Inc. 1999), and p < 0.05 was chose as significance level.

3. Results and Discussion

3.1. Effect of BaAFP-1 on the Dynamic Rheological Properties of Dough Samples

Due to its characteristic and sensitive response in structural variations, dynamic rheological
testing has become a preferred approach in the structure and fundamental properties study of dough
samples [24]. Dynamic oscillation is a general test in the rheological properties determination of
dough [25], because the G′ and G” values show significant positive correlations with bread loaf
volume [26]. It is generally considered that gliadins confer viscous properties [24]. In particular, the G′

value of gluten dough samples was highly related to bread-making performance, accounting for 73%
of the variation in loaf volume. Meanwhile, glutenins was related to strength and elasticity, which are
essential for the gases retaining property of bread dough [27,28]. The dynamic rheological properties of
fresh, frozen, and freeze-thawed dough samples, with and without the addition of BaAFP-1, are shown
in Figure 1. All dough samples showed a gel-type material model, with tan δ less than 1 for the entire
frequency range. Both G′ and G” values of all dough samples decreased, whereas tan δ increased
after freeze-thaw treatment. Notably, the rate of decrease in G′ and G” values was lower after the
addition of BaAFP-1, as the G′ and G” values of BaAFP-1-C4 dough samples were clearly higher
than those of the control samples. Reduced G′ and G” values during the freezing process have also
been reported by Ribotta [9] and Jia [13]. Tan δwas lower in fresh, frozen, and BaAFP-1-C2 samples
than in control samples, whilst a marked increase and decrease were observed in BaAFP-1-C4 and
Control-C4 samples, respectively. Different trends in tan δ have previously been observed in dough
samples after the addition of thermostable ISPs (TSISPs) [13]. This may be due to different activities
and ice-binding surfaces of AFPs purified from different sources, resulting in different effects on G′

and G” values. The decrease in G′ and G” values of all dough samples after freezing and freeze-thaw
treatment seems to be a comprehensive reflection of the change in the structure of proteins and the
depolymerisation of glutenin aggregates caused by ice [6]. Previous study shown that BaAFP-1 has
been shown to not only influence the freezable water content and water mobility, but also influence
water distribution in dough samples [18]. Consequently, changes in the structure of proteins caused
by ice formation and ice recrystallisation may be weakened by the addition of BaAFP-1. That may
explain why the G′ and G” values of all BaAFP-1-containing dough samples were higher than those
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of the control samples during freezing and freeze-thaw cycles. It has generally been shown that the
tan δ values of dough samples made from high quality flour are lower than those of dough samples
made from low quality flour [24]. It can be speculated that the existence of BaAFP-1 would improve
the quality of the dough to some extent. Considering the role of glutenin and gliadin in the formation
of gluten and the general tendency for changes in tan δ, which is calculated by dividing G” by G′,
the increase in tan δ indicates that G′ values decreased greater than G” values. This suggests that the
destructive effect of freezing and freeze-thaw treatment on glutenins was greater than that on gliadins.
This is consistent with the conclusions reported by Wang [29]. The balance of dough visco-elasticity is
the most important factor in high-quality bread making [30]. Changes in tan δ may also reflect the
deterioration of dough properties.
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3.2. Effect of BaAFP-1 on the Microstructure of Dough Samples

The microstructure of dough samples after freezing process and freeze-thaw cycles was examined
by SEM (Figure 2). The dominant feature was starch granules scattered within the gluten matrix.
Voids formed by sublimation can be used to reflect the distribution of the ice formed in dough samples
before freeze-drying. Some large voids were present in control dough samples (Figure 2(A1,A2)) means
that the angular voids in it were less uniform. However, when BaAFP-1 was added to the dough,
the gluten network was more continuous, with starch granules glued tightly to it (Figure 2(B1,B2)).
Smaller voids were observed, and fewer large voids were visible. This indicated that BaAFP-1
influenced both the formation and the shape of the ice formed in dough samples during freezing,
consequently strengthening the gluten network and decreasing the deterioration of the dough structure
caused by ice crystal formation. After freeze-thaw cycles, more voids can be observed in control
dough, and their size and shape became more irregular (Figure 2(C1,C2)). The detachment of starch
granules from gluten was more severe, and starch granules seemed almost floating in the gluten.
Moreover, few gluten fragments formed by gluten fracture were observed. Ice recrystallisation and
gluten network cryoshrinkage occur in frozen food during temperature fluctuations, and these are the
major factors that result in dough structure disruption [31]. Of these, ice recrystallisation is the most
fatal hazard to the quality of frozen foods, as it can decrease the interstitial regions of the protein that
separate adjacent ice crystals, leading to mechanical damage of the microstructure [9]. After freeze-thaw
cycles, fewer voids and detached starch granules were observed in BaAFP-1-containing dough samples
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(Figure 2(D1,D2)) than in the control samples. This indicated that the presence of BaAFP-1 could
inhibit ice recrystallisation during freeze-thaw. As a member of the AFP family, BaAFP-1 possesses the
characteristic activities of AFPs, including thermal hysteresis, ice crystal morphology modification and
ice recrystallisation inhibition, thus ice crystals can keep stable over a defined temperature range [32].
Plant AFPs have lower hysteresis activity than insect AFPs. They likely function by influencing ice
crystal formation, modifying ice crystal shape, and inhibiting ice recrystallization [33]. Ice crystal
formation and recrystallisation during freezing process and freeze-thaw cycles both lead to the gluten
matrix damage and starch granules detachment. Therefore, the gas-holding ability and supporting
capacity of the gluten framework deteriorates, dough proofing time prolongs, and the volume decreases
during cooling after baking. The presence of BaAFP-1 may inhibit the deterioration effects of freezing
and freeze-thaw cycles.
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Figure 2. Effect of BaAFP-1 on the microstructure of dough samples. (A,B) stand for control and
BaAFP-1 dough samples after frozen treatment, respectively; (C,D) stand for control and BaAFP-1
dough samples after freeze-thaw treatment, respectively; number 1 and 2 after (A–D) in the figure
represent 300× and 1200×magnification, respectively.

3.3. Effect of BaAFP-1 on the Fermentation Properties of Dough Samples

The rheofermentometer is a standard measuring instrument in studying flour behaviour during
fermentation. Because fermentation is actually performed during the measurement, it is the only
instrument that can give results closest to the real situation. F3 rheofermentometer was used to
examine the fermentation properties of dough sample, and the results are summarised in Table 1.



Foods 2020, 9, 1698 7 of 14

The recorded characteristics can be separated into three categories, as they reflect the dough properties
from different angles. CO2 production (V(CO2) [mL]) indicates the gas production ability of dough
samples, the maximum height of gaseous release (Hm′ [mm]) and R refer to the gas retention properties
of dough samples, and the maximum height of the dough (Hm [mm]) and the total time elapsed
to reach maximum dough development height (T1) are a composite reflection of gas production
ability and retention capacity of the dough sample. In fresh dough samples, the presence of BaAFP-1
decreased V(CO2) and increased R, resulting in no significant (p > 0.05) difference in Hm and T1.
These results were in contrast to those of the TSISPs described by Jia [34]. BaAFP-1 is homologous
with alpha-amylase inhibitor BDAI-1 (H. vulgare) [21]. Though no obvious homology can be observed
in the amino acid composition of AFPs purified, most of them show dual functions of AFPs and
pathogenesis-related proteins which have antimicrobial activity by targeting molecules in the cell
wall of bacteria or fungi [35]. Thus, the addition of BaAFP-1 may inhibit yeast activity in fresh
dough samples to some extent, consequently decreasing the gas production ability of the dough.
The microstructural observations described above showed that the addition of BaAFP-1 strengthened
the gluten network, decreased the detachment of starch granules, consequently increasing gas retention
properties. As these two effects cancelled each other, no significant difference was found in Hm or
T1 in fresh dough samples. After freeze-thaw cycles, Hm and T1 decreased significantly (p < 0.05),
indicating that freeze-thaw treatment decreased both the gas production and the retention capacities
of dough samples. These effects have previously been reported by Bhattacharya [7] and Smail [36].
They attributed these effects to physical damage of the gluten network and a decrease in yeast viability
and activity caused by ice crystal formation and recrystallisation. Changes in water mobility and water
migration during frozen storage are also result in proofing power decrease [37]. It has been reported
that BaAFP-1 weakens the deterioration of frozen dough during freeze-thaw treatment as it not only
influence the freezable water content and water mobility, but also influence water distribution in dough
samples [18]. No significant differences (p > 0.05) were observed between Control and BaAFP-1 dough
samples after first freeze-thaw cycle in this study. This may be due to the inhibition of yeast activity by
BaAFP-1. Moreover, BaAFP-1 would protect the gluten network and yeast from deterioration caused
by formation during the freezing process [11]. Hm and T1 decreased significantly (p < 0.05) in both
control and BaAFP-1-containing dough samples during freeze-thaw cycles. This was because large
ice crystals formed due to ice recrystallisation, which occurs during the freeze-thaw cycle. These ice
crystals cause mechanical damage to yeast, which reduces its survival rate and leads to a decrease in
yeast viability [5]. Reducing material, such as glutathione, released by damaged yeast cells would
destroy the gluten network [38]. The change in osmotic pressure in the dough system also has a major
inhibitory effect on yeast activity. After four repeated freeze-thaw cycles, both the gas production and
retention properties of BaAFP-1-containing dough samples were significantly (p < 0.05) higher than
those of control. This indicated that, during freeze-thaw cycles, BaAFP-1 protected gluten network
and yeast activity, thus reducing the decline rate in the overall quality of the dough due to its high ice
recrystallisation inhibition activity. These results were consistent with the previously study on its effect
on thermal properties and water state of dough [18] and the dynamic rheological data of the dough
samples, as discussed above.
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Table 1. Effect of BaAFP-1 on fermentation properties of frozen dough after freeze-thaw treatment.

Hm T1 Hm’ Total Volume Retention
Volume R

Control

Fresh 33.2 ± 1.13 a 57 ± 1.41 a 52.7 ± 0.42 a 1233 ± 2.83 a 1111 ± 0.71 a 90.1 ± 0.28 a

C1 27.1 ± 0.28 b 73 ± 0.71 b 45.1 ± 1.27 c 1078 ± 2.83 c 992 ± 2.12 c 92.0 ± 0.71 c

C2 13.1 ± 0.28 e 107 ± 0.00 e 38.4 ± 0.57 d 930 ± 1.41 e 846 ± 4.95 f 90.9 ± 0.28 b

C3 12.5 ± 0.35 e 125 ± 1.41 f 30.5 ± 0.78 f 751 ± 0.00 g 717 ± 0.71 i 95.4 ± 0.28 ef

C4 7.0 ± 0.14 g 180 ± 2.12 h 29.1 ± 0.28 f 721 ± 1.41 h 692 ± 0.71 j 95.9 ± 0.42 f

BaAFP-1

Fresh 34.2 ± 0.21 a 58 ± 0.71 a 53.2 ± 1.41 a 1148 ± 3.54 b 1092 ± 3.54 b 95.1 ± 0.71 e

C1 28.1 ± 0.07 b 70 ± 2.83 b 47.4 ± 0.92 b 1004 ± 0.00 d 959 ± 0.71 d 95.4 ± 0.28 ef

C2 20.2 ± 0.21 c 86 ± 2.12 c 39.0 ± 1.41 d 934 ± 0.71 e 867 ± 0.71 e 92.8 ± 0.71 d

C3 15.3 ± 0.42 d 102 ± 2.12 d 35.7 ± 0.21 e 817 ± 1.41 f 735 ± 2.12 g 89.9 ± 0.42 a

C4 11.2 ± 0.07 f 136 ± 2.12 g 29.6 ± 0.28 f 752 ± 0.71 g 729 ± 0.71 h 96.9 ± 0.42 g

Mean value ± SD with different superscript letters (a, b, c, d, e, f, g, h, i, j) in the same column are significantly
different (p < 0.05).

3.4. Effect of BaAFP-1 on the Baking Properties of Dough Samples

Effect of BaAFP-1 on the baking properties of dough samples including the proofing time and the
specific volume are shown in Figure 3A,B, respectively. Among fresh dough samples, the proofing time
was slightly shorter for control dough samples than for BaAFP-1-containing dough samples, and no
significant difference (p > 0.05) cam be observed in the specific volume between them. After the first
freeze-thaw treatment, the proofing time of both dough samples was significantly (p < 0.05) prolonged,
accompanied by a significantly (p < 0.05) decrease in their specific volume. This may be because the
freezing process exposes the dough to an extremely low temperature for the first time, which destroys
the gluten network and decreases the number and viability of yeast cells. Due to the cryoprotective
effect of BaAFP-1, the gluten network and yeast cells were protected at the presence of BaAFP-1,
thus the proofing time was shorten. After a freeze-thaw cycle, the proofing time was significantly
shorter and the specific volume was significantly larger for BaAFP-1-containing dough samples than
for control dough samples (p < 0.05). This significant difference (p < 0.05) can be observed also after
two to three freeze-thaw treatment both in the proofing time of bread dough and in the specific
volume of bread. After successive freeze-thaw treatments, no significant differences (p > 0.05) can be
observed between two dough samples. The reason for this finding may be that the cryoprotective
effect of BaAFP-1 was not great enough to protect against the severe deterioration caused by multiple
freeze-thaw cycles. It is worth mentioning that although significant difference in specific volume can
be observed between two dough samples, their weight was similar. Because the baking pan restricted
the length and width of bread samples, the difference in specific volume may be due to differences of
bread height. As dough samples were controlled at unified height after proofing, the differences in
bread crumb height after baking were mainly influenced by gas expansion effects and gas holding
capacity of dough samples during baking. Gas expansion effect and gas holding capacity of dough
samples are determined by the gas production capacity of the yeast cells and the gas holding capacity
of the gluten network, which are both influenced by freezing injury during freeze-thaw cycles. On the
macro level, differences were observed in the number of gas pores and the thickness of the gas cell wall
between the two bread samples. Numerous small gas pores with thin gas cell walls in bread crumbs,
based on a large specific volume, are required to produce high quality bread [12]. Research by Jia and
Jia et al. showed that, during frozen storage, the presence of the TSISP extract from Chinese privet
(Ligustrum vulgare) leaves decreased the yeast cell survival rate, shortened the proofing time of the
bread dough, and inhibited the decrease in bread specific volume [11,34]. Xu et al. reported that ISPs
from white wheat were highly effective at improving baking properties when prolonged frozen storage
and freeze-thaw cycles were proceeded [39]. Similar results were obtained with BaAFP-1 here.
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3.5. Effect of BaAFP-1 on Bread Crumb Hardness

Effect of BaAFP-1 on the hardness of bread crumb samples is shown in Figure 4. The presence
of BaAFP-1 significantly (p < 0.05) decreased the hardness of bread crumbs baked with fresh dough
samples. Similar results have previously been reported with plant AFPs and antifreeze peptides from
pig skin collagen in frozen dough [40]. The addition of water-soluble polymers, such as carboxymethyl
cellulose, gums, and modified starch, which have strong water absorption capacity, improve the water
holding capacity of bread dough, resulting in the retention of CO2 during the proofing and baking
processes, a larger volume, improved flavour, and decreased hardness [9,41]. Thus, the decreased
hardness of bread crumbs baked with fresh dough may be influenced by the high hydrophilicity of
BaAFP-1. The hardness of all bread crumbs baked with dough samples that had undergone freeze-thaw
cycles increased significantly (p < 0.05), with a relatively slower trend in samples supplemented
with BaAFP-1. The influences of freezing process and frozen storage on the integrity of hydrated
gluten [1,2], the structural and functional properties of wheat starch [3], and the viability and activity
of yeast [4] were reflected in the final products as prolonged proof time, reduced specific volume,
and deteriorated textural characteristics. It has been reported that hardness is inversely correlated with
the specific volume of bread, and thus, a lower specific volume of bread results in greater hardness
due to denser crumbs and more compact cells [42]. Similar results were obtained here because a
decreased specific volume was observed in dough samples after freeze-thaw cycles, as discussed
above. Soy peptides and glutathione could improve baker’s yeast tolerance to freeze-thaw stress [4,43].
Their cryoprotective mechanism is thought to be the reduction in intracellular freezable water content
due to their high hydrophilicity. ISPs reduce syneresis and decrease the hardness of corn and wheat
starch gels by decreasing the size of ice cell cavities [44]. They are also effective in influencing the
water-holding capacity and bread-making properties of frozen dough. Moreover, the water-holding
capacity has a strong relation with bread-making properties of frozen dough [39]. Thus, the lower
hardness increase rate in the of BaAFP-1-containing bread crumbs made from dough after undergoing
multiple freeze-thaw cycles may be not only due to the unique THA and IRI of BaAFP-1, but also due
to its high hydrophilicity.
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3.6. Effect of BaAFP-1 on the Grain Features of Bread Crumbs

The evaluation of the porous crumb structure quality of leavened baked goods, especially bread,
has become a vast study area. Bread crumbs with a sufficient loaf volume and high porosity are
considered to be of high quality [45]. Images of pore distribution in bread crumbs were converted and
analysed with MATLAB. A typical image after conversion is present in Figure 5, and the data obtained
from the images is present in Table 2. From the data presented in Table 2, it can be inferred that the
average area of fresh BaAFP-1 bread crumb was significantly lower than that of control (p < 0.05),
whereas the number of fresh BaAFP-1 bread crumb was significantly higher than that of control
(p < 0.05). Before freezing, the viability and activity of the yeast in the dough samples was confirmed to
ensure a sufficient amount of gas was produced during fermentation. The gluten network developed
with good elasticity and ductility, and the starch bound to gluten helped increase the gas-holding
capacity. Numerous large pores with thin pore walls were formed in the bread. When part of the pore
wall was too thin to detect, it was considered to be a large continuous pore. Thus, a small number
of pores with a large average area were produced. In the fermentation properties discussed above,
no significant difference (p > 0.05) can be observed in the total volume of gas produced and significant
difference (p < 0.05) can be observed in the retention volume of gas. Significant difference (p < 0.05)
found in the number and the average area in fresh bread crumbs verified fermentation properties
discussed above.

During freeze-thaw treatment, the average area of bread crumb pores decreased significantly
(p < 0.05) as the total number of pores increased significantly (p < 0.05). This implied that freezing and
freeze-thaw treatment deteriorated the internal structure of the bread. After two to three freeze-thaw
treatments, the average area of BaAFP-1 bread crumb was significantly lower than that of control
(p < 0.05), whereas the number of BaAFP-1 bread crumb was significantly higher than that of control
(p < 0.05). This implied that the addition of BaAFP-1 could inhibited the deterioration effect caused by
freeze-thaw treatments. This result was due to the combined effects of freezing process and freeze-thaw
treatment on the starch, gluten, and yeast in the dough samples. Structure of gluten and starch was
destroyed by both ice crystals formation and their recrystallisation, and the viability and activity
of yeast decreased. Consequently, gas formed by yeast and retained by the gluten network both
decreased. Thus, the average pore area also decreased. The amount of gas retained in the dough was
insufficient to extend the gluten network and thick pore walls were formed, as reflected by increased
pores. The protective effect of AFPs on the gluten network, starch, and yeast in dough has previously
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been reported [1,11,44]. This was confirmed here, with BaAFP-1 reducing the rate of change in the
number and average area of pores after freeze-thaw treatment.
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Table 2. Number and average area of bread pore obtained by image analysis.

Number Average Area (mm2)

Control

Fresh 508.46 ± 8.32 b 125 ± 0.71 b

C1 551.15 ± 8.70 c 113 ± 1.41 c

C2 699.42 ± 12.03 d 106 ± 2.12 d

C3 881.46 ± 7.70 f 84 ± 1.41 f

C4 1232.10 ± 7.94 h 60 ± 1.41 h

BaAFP-1

Fresh 469.17 ± 12.99 a 134 ± 2.83 a

C1 567.87 ± 14.62 c 112 ± 2.83 c

C2 691.60 ± 5.97 d 93 ± 2.12 e

C3 809.66 ± 8.22 e 90 ± 1.41 e

C4 989.93 ± 3.10 g 78 ± 2.12 g

Mean value ± SD with different superscript letters (a, b, c, d, e, f, g, h) in the same column are significantly different
(p < 0.05).

4. Conclusions

Here, we examined the effect of BaAFP-1 on bread and bread during freezing process and
freeze-thaw cycles. Rheological properties, microstructure, fermentation, and baking performance
including the proofing time and the specific volume of bread dough, textural and grain feature of bread
crumbs were observed. BaAFP-1 could slow down the decrease rate of G′ and G′′of dough during
freezing process and freeze-thaw treatment, and the destructive effect of freezing and freeze-thaw cycles
was found to be higher on glutenins than on gliadins. This influenced the formation and the shape of
ice formed in dough samples during freezing, and resulted in the inhibition of ice recrystallisation
during freeze-thaw treatment. BaAFP-1 decreased the V(CO2) but increased the R value of fresh dough.
Both the gas production and retention capacities were higher in BaAFP-1-containing dough than control
dough after freeze-thaw treatment. After freezing and freeze-thaw treatment. the proofing time of both
dough samples was prolonged accompanied by a decrease in their specific volume. The presence of
BaAFP-1 could protect the gluten network and yeast cells, as indicated by shorter proofing times and
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larger specific volumes of BaAFP-1-containing dough samples. No significant difference in proofing
time or specific volume were observed between the two dough samples after successive freeze-thaw
treatments (p > 0.05). The presence of BaAFP-1 significantly (p < 0.05) decreased the hardness of
bread crumbs baked with fresh dough samples., Bread crumb hardness increased significantly in
all samples (p > 0.05) after freeze-thaw cycles, but at a relatively slower rate in BaAFP-1-containing
samples. The average area of pores in bread crumbs decreased significantly as the total number
of pores increased significantly (p > 0.05), and the addition of BaAFP-1 inhibited this deterioration.
These results confirmed the cryoprotective activity of BaAFP-1 in bread dough during freezing and
freeze-thaw cycles. Bread dough is a complex matrix. It contains several ingredients, such as gluten
matrix, starches, and yeast, that can affect final properties of bread. Although the cryoprotective effect
of BaAFP-1 have been proved during freezing process and freeze-thaw treatments, the actual effect of
BaAFP-1 on gluten matrix, starches and yeast, respectively, can not be revealed because ingredient
interacted with each other. More efforts should be put on the cryoprotective effect of AFPs on gluten
matrix, starches, and yeast via artificial dough systems which can identify the interaction of these
structural elements in more detail.
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