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Triple-negative breast cancer (TNBC), the most refractory subtype of

breast cancer to current treatments, accounts disproportionately for the

majority of breast cancer-related deaths. This is largely due to cancer plas-

ticity and the development of cancer stem cells (CSCs). Recently, distinct

yet interconvertible mesenchymal-like and epithelial-like states have been

revealed in breast CSCs. Thus, strategies capable of simultaneously inhibit-

ing bulk and CSC populations in both mesenchymal and epithelial states

have yet to be developed. Wnt/b-catenin and Hippo/YAP pathways are

crucial in tumorigenesis, but importantly also possess tumor suppressor

functions in certain contexts. One possibility is that TNBC cells in epithe-

lial or mesenchymal state may differently affect Wnt/b-catenin and Hippo/

YAP signaling and CSC phenotypes. In this report, we found that YAP

signaling and CD44high/CD24�/low CSCs were upregulated while Wnt/b-
catenin signaling and ALDH+ CSCs were downregulated in mesenchymal-

like TNBC cells, and vice versa in their epithelial-like counterparts. Dual

knockdown of YAP and Wnt/b-catenin, but neither alone, was required

for effective suppression of both CD44high/CD24�/low and ALDH+ CSC

populations in mesenchymal and epithelial TNBC cells. These observations

were confirmed with cultured tumor fragments prepared from patients with

TNBC after treatment with Wnt inhibitor ICG-001 and YAP inhibitor sim-

vastatin. In addition, a clinical database showed that decreased gene

expression of Wnt and YAP was positively correlated with decreased

ALDH and CD44 expression in patients’ samples while increased patient

survival. Furthermore, tumor growth of TNBC cells in either epithelial or

mesenchymal state was retarded, and both CD44high/CD24�/low and

ALDH+ CSC subpopulations were diminished in a human xenograft model
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after dual administration of ICG-001 and simvastatin. Tumorigenicity was

also hampered after secondary transplantation. These data suggest a new

therapeutic strategy for TNBC via dual Wnt and YAP inhibition.

1. Introduction

Breast cancer remains a leading cause of death in

women worldwide (Siegel et al., 2016). Triple-negative

breast cancer (TNBC) accounts for 15–20% of all

breast cancer, but is disproportionally associated with

the majority of breast cancer-related deaths (Anders

and Carey, 2009; Bauer et al., 2007). Chemotherapy is

currently the mainstay of systemic medical treatment

for TNBC and is associated with severe normal tissue

toxicity, rapid drug resistance, cancer stem cell (CSC)

enrichment, and disease relapse (Jia et al., 2016).

Hence, development of effective treatments for TNBC

is an important unmet medical need.

Tumor plasticity is thought to drive metastasis and

tumor relapse (Beerling et al., 2016). E-cadherin is an

epithelial marker and an indicator for epithelial-to-

mesenchymal transition (EMT) and its reverse process,

MET (Liu et al., 2014). Epithelial breast CSCs are

capable of converting into the mesenchymal CSC sub-

populations through EMT and vice versa through

MET, which drives metastasis and tumor relapse (Liu

et al., 2014). Tumor cells in vivo may be able to tran-

siently and reversibly switch between mesenchymal

and epithelial states, a process that has been men-

tioned as epithelial–mesenchymal plasticity (Beerling

et al., 2016). As such, inhibiting one CSC subpopula-

tion may lead to tumor reconstitution by the other

CSC subpopulation. While targeting bulk and both

CSC subpopulations is clearly desirable for effective

TNBC treatment, mechanistic insights and therapeutic

approaches remain elusive (Angeloni et al., 2015).

Wnt/b-catenin signaling has been demonstrated to

contribute to breast tumorigenesis and CSC plasticity

(Anastas and Moon, 2013; Green et al., 2013). b-Cate-
nin stabilization and nuclear translocation are essential

for Wnt signaling. b-Catenin also acts as an adaptor

that links to the cytoplasmic tail of E-cadherin to

mediate cell–cell adhesion (Nelson and Nusse, 2004).

The E-cadherin/b-catenin complex has been demon-

strated to maintain epithelial properties and facilitates

self-renewal of human embryonic stem cells (Chen

et al., 2010; Huang et al., 2015; Li et al., 2010; Red-

mer et al., 2011; Tian et al., 2011). The intracellular

domain of E-cadherin sequesters b-catenin to suppress

Wnt signaling. Loss of E-cadherin-mediated cell–cell
contact during epithelial–mesenchymal transition

promotes Wnt signaling (Jeanes et al., 2008; Serrano-

Gomez et al., 2016). However, roles of Wnt signaling

in breast cancer remain incompletely understood as it

has been shown to either fuel or repress cancer

depending on yet to be determined molecular mecha-

nisms (Anastas and Moon, 2013; Green et al., 2013).

Over the past few years, Yes-associated protein

(YAP), a downstream effector/transducer of the Hippo

pathway, has emerged as a promising anticancer tar-

get although it also exhibits a tumor suppressor function

in certain diseases (Moroishi et al., 2015). YAP has

recently been shown to incorporate into the b-catenin
destruction complex to orchestrate Wnt signaling (Azzo-

lin et al., 2014). YAP drives cell cycle entry in an E-ca-

dherin- and b-catenin-dependent manner (Benham-Pyle

et al., 2015) and functions as a mediator of organogene-

sis and tumorigenesis by stimulating cell proliferation

(Yu et al., 2015; Zhang et al., 2015). Importantly, YAP

is also regulated by E-cadherin (Benham-Pyle et al.,

2015). In TNBC cells, E-cadherin homophilic binding at

cell surface impedes the nuclear localization of YAP that

is important for the biological activities of YAP (Kim

et al., 2011). Additionally, a-catenin, a common binding

partner of E-cadherin which strengthens cellular adhe-

sion, has been demonstrated to bind and sequester YAP

in the cytoplasm (Schlegelmilch et al., 2011). However,

it is unknown whether epithelial–mesenchymal plasticity

in cancer affects Wnt and YAP signaling and CSC phe-

notypes. A strategy for therapeutic blockage of Wnt and

YAP to treat TNBC in both epithelial and mesenchymal

states remains largely unexploited.

In this study, we demonstrated that YAP signaling

was upregulated in mesenchymal-like TNBC with

enriched CD44high/CD24�/low CSC subpopulation while

Wnt/b-catenin was upregulated in epithelial-like TNBC

with enriched ALDH+ CSC subpopulation. Impor-

tantly, the mesenchymal and epithelial TNBC exhibited

disparate responses to Wnt and YAP inhibitions and

only dual inhibition is capable of effectively suppressing

both CD44high/CD24�/low and ALDH+ CSC popula-

tions. These findings were corroborated using patient

tumor samples and clinical databases. Furthermore, in

a human xenograft model, dual inhibition of Wnt

with ICG-001 and YAP with simvastatin effectively

attenuated both mesenchymal and epithelial TNBC

tumor burden, diminished both CD44high/CD24�/low

and ALDH+ CSC subpopulations, and reduced
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tumorigenicity after secondary transplantation. These

results suggest that Wnt signaling and YAP signaling

are dynamically changed during EMT/MET intercon-

version and dual inhibition using FDA-approved drugs

can be a viable approach for the treatment of TNBC.

2. Materials and methods

2.1. Cell culture and reagents

MDA-MB-231 breast cancer cells were purchased from

the American Type Culture Collection (ATCC, Manas-

sas, VA, USA) and maintained in DMEM-F12 media

supplemented with 10% fetal bovine serum (FBS;

HyClone, Logan, UT, USA) and 1% penicillin/strepto-

mycin. SUM149 breast cancer cells were obtained from

Asterand (Detroit, MI, USA) and cultured in Hams F-

12 media (Mediatech, Manassas, VA, USA) containing

5% FBS, 5 lg�mL�1 insulin, 1 lg�mL�1 hydrocorti-

sone, 10 mM HEPES, and 1% penicillin/streptomycin.

Cells were cultured at 37 °C in a 5% CO2 incubator.

ICG-001 was purchased from CalBiotech (El Cajon,

CA, USA) and simvastatin from Caymen Chemicals

(Ann Arbor, MI, USA). Insulin, hydrocortisone,

HEPES, and bovine serum albumin were purchased

from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Tet-ON inducible gene expression of E-

cadherin

MDA-MB-231 E-cadherinhigh cells (epithelial-like, Epi)

were generated using a lentiviral vector (pLVX-Tight-

Puro, Clontech, Mountain View, CA, USA) containing

an E-cadherin gene insert, and control MDA-MB-231

E-cadherin�/low cells (mesenchymal-like, Mes) were

generated using an empty lentiviral vector of pLVX-

Tight-Puro. Stable clones were selected after 3 days

using G418 (Clontech) and puromycin dihydrochloride

(Thermo Fisher, Waltham, MA, USA) at a concentra-

tion of 1000 and 1 lg�mL�1, respectively, for 14 days.

For maintenance, 250 lg�mL�1 of G418 and

0.25 lg�mL�1 of puromycin were added in the culture

medium. E-cadherin expression was activated by add-

ing 1 lg�mL�1 doxycycline hydrochloride (Thermo

Fisher) to the cell culture every 2–3 days. E-cadherin

levels were examined following RNA extraction by

RT-qPCR and protein levels by western blotting.

2.3. Primary normal mammary and breast cancer

tissue fragments

Surgical tissues from three patients with TNBC under-

going routine surgical procedures were obtained and

used in the experiments. The protocol was approved

by the Ottawa Hospital Research Ethics Board (Proto-

col# 20120559-01H). Normal mammary tissues or

areas containing tumor were identified by gross patho-

logic examinations. Approximately 2 mm cores were

obtained using a sterile biopsy punch that was further

sliced with a scalpel to obtain approximately

2 9 1 mm tumor slices (Dayekh et al., 2014; Sulaiman

et al., 2016). The slices were randomized, and three

slices were placed into each well of 24-well plate and

cultured in DMEM-F12 medium supplemented with

10% FBS, 1% penicillin/streptomycin, 1 lg�mL�1

insulin, 0.5 ng�mL�1 hydrocortisol, and 3 ng�mL�1

epidermal growth factor. These primary tissue frag-

ments were treated with the same concentrations of

inhibitors as used in the breast cancer cell lines, fol-

lowed by a viability assay and flow cytometric analy-

sis. The patient-derived xenograft sample HCI-001 was

obtained from University of Utah and cultured in the

same conditions as clinical samples.

2.4. Flow cytometry analysis

Dissociated cancer cells were filtered through a 4-lm
strainer and suspended in PBS supplemented with 2%

FBS and 2 mM EDTA. One microlitre of mouse IgG

(1 mg�mL�1) was added and incubated at 4 °C for

10 min. Afterward, the cells were resuspended in 19

binding buffer (eBioscience, San Diego, CA, USA)

and incubated with Annexin V (eBioscience) for

15 min at room temperature. Antibodies were added

according to the manufacturer’s instructions. Apopto-

sis was determined using Annexin V-PE-Cy7 Apopto-

sis Detection Kit (eBioscience). ALDH activity was

determined using ALDEFLUOR (StemCell Technolo-

gies, Vancouver, BC, Canada) with a DEAB control.

Anti-CD44 (APC) and anti-CD24 (PE) (BD Pharmin-

gen) antibodies were used. Lastly, the cells were

washed twice with additional ALDEFLUOR assay

buffer and 7-aminoactinomycin D (7-AAD; eBio-

science) was added to exclude dead cells. Flow cytome-

try was performed on a Cyan-ADP 9 and the BD

LSRFortessa. Data were analyzed with FLOWJO soft-

ware (Ashland, OR, USA).

2.5. Soft agar colony formation

In a 12-well plate, the base layer consisted of 0.6%

agarose gel containing DMEM/F12 media. The cell

layer consisted of 0.35% agarose gel containing

DMEM/F12 media and 5 9 103 MDA- MB-231 cells.

Plates were incubated at 37 °C in 5% CO2 for

21 days. Cell viability was then determined through
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3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium

bromide (MTT, 1 mg�mL�1) staining. Colonies were

then counted (> 100 lm in diameter). All experiments

were performed in triplicate, and data are presented as

means � SD.

2.6. Western blot analysis

Cells were harvested, washed with PBS, and lysed with

lysis buffer supplemented with protease inhibitors

(Roche, Sainte-Agathe-Nord, QC, Canada). After the

protein concentrations were determined using a Bio-Rad

DC protein assay kit (Bio-Rad, Hercules, CA, USA),

samples were then normalized and denatured. The sam-

ples were then loaded into an 8% polyacrylamide gel

and separated by SDS/PAGE followed by transference

to a PVDF membrane. Proteins were identified by incu-

bation with primary antibodies followed by horseradish

peroxidase-conjugated secondary antibodies and an

enhanced chemiluminescence solution (Thermo Scien-

tific, Waltham, MA, USA). Antibodies used in this study

include the following: anti-YAP1(1 : 1000, Cat: 4912;

Cell Signaling, Cambridge, MA, USA), anti-CD44

(8E2) monoclonal antibody (1 : 1000, Cat: 5640; Cell

Signaling), anti-ALDH1A1 (1 : 1000, Cat: ab105920;

Abcam, Toronto, ON, Canada), anti-Klf4 (1 : 1000,

Cat: ab72543; Abcam), anti-b-catenin (1 : 1000, Cat:

610153, Clone 14; BD, Mississauga, ON, Canada), anti-

active b-catenin (1 : 500, Cat: 05665, Clone 8E7; Milli-

pore, Billerica, MA, USA), and anti-a-tubulin mono-

clonal antibody (1 : 500, Cat: T9026; Sigma-Aldrich).

2.7. Quantitative real-time PCR

Total RNA was extracted using RNeasy kit (Qiagen,

Toronto, ON, Canada) and real-time qPCR (RT-

qPCR) analysis was performed using Bio-Rad MyiQ

(Bio-Rad) as previously described (Jia et al., 2017;

Sulaiman et al., 2016). The conditions for RT-qPCR

reactions were one cycle at 95 °C for 20 s followed by

45 cycles at 95 °C for 3-s and annealing at 60 °C for

30 s. Results were normalized to the housekeeping

gene 18S ribosomal RNA (18S) or GAPDH. Relative

expression level of genes from different groups was

calculated with the 2DDCT method and compared with

the expression level of appropriate control cells. Speci-

fic primer sequences for individual genes are listed in

Table S1.

2.8. siRNA knockdown

siRNA for E-cadherin (#4392420), b-catenin, and the

Silencer Select Negative Control #1 siRNA (Scramble,

#4390843) were purchased from Thermo Scientific as

SMARTpools. YAP1 silencer� select siRNA was also

purchased from Thermo Scientific (ID: s20368). For

siRNA transfections, cells were transfected with these

oligos using Lipofectamine RNAiMAX reagent (Invit-

rogen, Carlsbad, CA, USA) according to the manufac-

turer’s instructions. After transfection, efficiency was

determined through western blot or RT-qPCR.

2.9. Lentiviral transduction of short hairpin RNA,

generation of transgenic Wnt reporter 7xTCF-

eGFP cell lines, and b-catenin/TCF-eGFP reporter

assays

pLKO.1 puro shRNA b-catenin was a gift from Bob

Weinberg (Addgene plasmid # 18803), shYAP1 was a

gift from William Hahn (Addgene plasmid # 42540),

and scrambled shRNA was a gift from David Sabatini

(Addgene plasmid 1864) (Onder et al., 2008; Rosen-

bluh et al., 2012; Sarbassov et al., 2005). b-Catenin/
TCF/LEF-dependent reporter plasmid (7xTcf-eGFP//

SV40-PuroR, 7TGP) containing seven Tcf/Lef-binding

sites and a puromycin resistance gene was a gift from

Nusse (Addgene plasmid 24305). Lentiviral production

was carried out as previously described (Jia et al.,

2016; Sulaiman et al., 2016). 10-cm dishes were seeded

with 6 9 106 293T cells overnight. Afterward, 8 lg of

lentivirus vector, 5.4 lg of the psPax2 envelope plas-

mid, and 3.6 lg of the packaging plasmid (pMD2.G)

were used. The medium was replaced overnight, and

after 48 h, the lentiviral supernatant was harvested, fil-

tered through a 0.45 lm PES filter, and concentrated

with Lenti-X concentrator (Clontech) according to the

manufacturer’s instruction. When SUM 149-PT cells

or Mes- or Epi-MDA-MB-231 cells in six-well plates

reached 40–50% confluence, 1 mL of concentrated len-

tiviral supernatant and 8 lg�mL�1 of polybrene were

added for 24 h, followed by puromycin selection. The

expression levels of TCF-eGFP were determined by

flow cytometry.

2.10. Cell viability assays

Cell viability analysis was carried out as previously

described (Jia et al., 2016; Sulaiman et al., 2016). Cells

were seeded into 12-well plates (1.5 9 104 cells/well).

After 120 h of treatment, Alamar blue viability analy-

sis was performed by incubation with 10% Alamar

blue reagent (Thermo Fisher Scientific) for 4 h. Fluo-

rescence was measured at 560 nm excitation and

590 nm emission. Cell viability was also determined

through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetra-

zolium bromide (MTT, 1 mg�mL�1) staining after
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incubation for 4 h. Absorbance was measured at

570 nm.

2.11. ICG-001 and simvastatin concentrations

selected for the in vitro experiments according to

the pharmacological studies reported previously

The inhibitor concentrations used in this study for

in vitro experiments were selected according to the

published pharmacological studies. In a phase I clini-

cal trial, 18 patients were given a continuous infusion

of the ICG-001/PRI-724 for 7 days with dose escala-

tions from 40 to 1280 mg�m�2 per day (El-Khoueiry

et al., 2013). One patient developed dose-limiting tox-

icity of hyperbilirubinemia. The recommended phase

2 dose for ICG-001/PRI-724 was 905 mg�m�2 based

on the incidence of adverse events at 1280 mg�m�2

and the plateau in pharmaceutical kinetic parameters

(El-Khoueiry et al., 2013). The median Cmax and

AUC 0-t for C-82 at 905 mg�m�2 per day were

887 ng�mL�1 and 262 787 h ng�mL�1. Median elimi-

nation T" was 7.35 h (El-Khoueiry et al., 2013). In

another clinical study, up to 160 mg�m�2 per day of

ICG-001/PRI-724 was used for a continuous intra-

venous infusion over six cycles of 1 week followed

by 1 week off. No adverse effects were observed for

40 mg�m�2 per day group (with a maximum blood

concentration of 692 � 418 ng�mL�1) (Kimura et al.,

2017). Accordingly, 2.5 lM ICG-001 (=1372 ng�mL�1,

molecular weight of ICG-001/PRI-724: 568.683) was

chosen for in vitro experiments in this study, which is

close to the recommended maximum blood concen-

tration.

Simvastatin is a FDA-approved drug that has been

widely used for the treatment of hypercholesterolemia

with up to 80 mg of an oral dosage per day. When

taking 20 mg of simvastatin, patient’s blood concen-

tration could achieve 28 ng�mL�1 with a half-life of

5.5 h (Tao et al., 2016). Oral intake of 40 mg simvas-

tatin was used in another study, resulting in a maxi-

mum blood concentration of 34 ng�mL�1 (Bellosta

et al., 2004). Accordingly, 100 nM (=41.86 ng�mL�1) of

simvastatin (molecular weight = 418.566) was chosen

for our in vitro experiments.

2.12. Xenograft tumor growth

Athymic nude mice were obtained from Charles River

Laboratories (Senneville, QC, Canada). The MDA-

MB-231 breast cancer cells were mixed 1 : 1 with

Matrigel and injected under aseptic conditions into the

mammary fat pads (n = 4 for each group, 2 9 106 cells

per fat pad). When the tumor reached a mean

diameter of ~ 3 mm, mice were intraperitoneally

injected daily with the vehicle, ICG-001 (100 mg�kg�1

per day), simvastatin (5 mg�kg�1 per day), or both for

15 days. At the end of drug treatment, mice were

humanely euthanized and tumors were harvested for

further analyses and secondary transplantation.

2.13. Secondary transplantation of nude mouse

model

Tumors were minced using a scalpel and incubated in

DMEM media containing collagenase/hyaluronidase

(StemCell Technologies, #07912) at 37 °C for 60 min.

Afterward, the solution was passed through a 40-lM
nylon mesh for the creation of a single cell solution.

The treated tumors were inoculated into one of the

mammary fat pads at a concentration of 105, 104,

103, or 102 cells from the original tumors. Tumor

growth and size were measured after 6 weeks of

growth.

2.14. Clinical database analysis and statistical

analysis

Breast cancer datasets from the Cancer Genome Atlas

(TCGA, http://cancergenome.nih.gov/), Nature Com-

munications 2016 (Pereira et al., 2016), Nature 2012

(Network, 2012), and METABRIC (http://molonc.bcc

rc.ca/aparicio-lab/research/metabric/) were used and

analyzed with cBioportal (http://www.cbioportal.org/in

dex.do). CTNNB1 and YAP1 gene repression was

defined as mRNA expression levels less than three

standard deviations below the mean, and protein

repression was defined as being below the mean.

Expression data and Kaplan–Meier survival curves

were generated using the datasets compiled by May

2017 from the following database IDs: CTNNB1 and

YAP1 gene repression (2509 patients): http://bit.ly/

2hTTYOW, CTNNB1 and YAP1 protein repression

(887 patients): http://bit.ly/2jNmIgE. CTNNB1,

YAP1, and CDH1 protein analysis (410 patients):

http://bit.ly/2pHz5xx. Additionally, the Gene Expression

Omnibus2R database was used to analyze a dataset

(Dataset: GSE45827) to compare the MDA-MB-231

cell line to 41 TNBC patient samples https://www.ncb

i.nlm.nih.gov/geo/geo2r/?acc=GSE45827. For all clini-

cal database data, the log-rank test was performed to

determine whether observed differences between

groups were statistically significant. Data are expressed

as means � standard deviation (SD) or standard error

(SE). Statistical significance was determined using

ANOVA or Student’s t-test. Results were considered sig-

nificant when *P < 0.05, **P < 0.01, or ***P < 0.001.
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3. Results

3.1. Epithelial TNBC cells exhibit reduced YAP

but increased Wnt/b-catenin signaling

E-cadherin has been used routinely to demarcate

epithelial or mesenchymal states (Beerling et al., 2016;

Liu et al., 2014; Tsuji et al., 2008). Re-expression of

E-cadherin in E-cadherin-negative mesenchymal-like

MDA-MB-231 TNBC cells resulted in an epithelial-

like phenotype (Fig. 1A and Fig. S1: downregulation

of a set of mesenchymal genes N-CADHERIN,

SNAIL, SLUG, ZEB1, and ZEB2 and upregulation of

a set of epithelial genes E-CADHERIN, KERATIN 13,

KERATIN 15, and DSP). Notably, Wnt target genes

(TCF4, LEF1, and AXIN2, Fig. 1B) were upregulated

in E-cad+ MDA-MB-231 cells while YAP target genes

(CTFG, ANKRD1, and CYR61, Fig. 1C) were down-

regulated. This was corroborated by increased active

b-catenin and diminished YAP1 protein expression

(Fig. 1D). Increased Wnt activity in epithelial-like

TNBC cells was also confirmed using a 79TCF-eGFP

Wnt reporter that contains seven TCF/LEF consensus

binding sites upstream of a promoter expressing GFP

(Fig. 1E) (Fuerer and Nusse, 2010). Consistently,

siRNA knockdown of E-cadherin in epithelial-like

SUM 149 cells (an E-cadherinhigh inflammatory TNBC

line) led to a mesenchymal-like morphology (Fig. 1F),

an increase in YAP expression, and a decrease in

active b-catenin protein corroborated by the dimin-

ished 7xTCF-eGFP Wnt reporter activity (Fig. 1G and

Fig. S2). Thus, an epithelial phenotype inhibits YAP

while promoting Wnt signaling in TNBC.

3.2. Epithelial and mesenchymal TNBC cells

associate with distinct CSC properties

The existence of interconvertible mesenchymal and

epithelial populations and CSCs in breast cancer has

been associated with drug resistance, metastasis, and

diminished survival (Charafe-Jauffret et al., 2010; Li

et al., 2008; Liu et al., 2014; Yan et al., 2016). We

therefore asked whether conversion between mesenchy-

mal and epithelial phenotypes in TNBC also displayed

different CSC phenotypes. Indeed, mesenchymal

MDA-MB-231 cells contained substantial CD44high/

CD24�/low but almost undetectable ALDH+ CSCs.

After conversion to an epithelial phenotype, E-cad+
MDA-MB-231 cells possessed abundant ALDH+

CSCs with diminished CD44high/CD24�/low CSCs

(Fig. 2A,B, flow cytometry). Consistently, western blot

showed increased ALDH and diminished CD44 and

pluripotency marker Klf4 after MET (Fig. 2C). High

expression of Klf4 in breast mesenchymal cells has

been associated with metastasis, CSC self-renewal, and

tumorigenicity (Okuda et al., 2013; Yu et al., 2011). A

similar trend was also seen after partial knockdown of

E-cadherin in epithelial SUM149 TNBC cell line

(Fig. 2D–F). Epithelial CSCs have been associated with

enhanced proliferative properties (Liu et al., 2014).

Indeed, more colonies were observed in epithelial

TNBC cells in comparison with mesenchymal counter-

parts as determined by an in vitro colony-forming assay

(Fig. 2G). It seems that epithelial and mesenchymal

TNBC cells associate with distinct CSC properties.

3.3. Dual knockdown of Wnt and YAP inhibits

mesenchymal and epithelial bulk and CSC

subpopulations

We then investigated whether dual knockdown of Wnt

and YAP leads to inhibition of both epithelial and

mesenchymal bulk and CSC subpopulations. In epithe-

lial TNBC, Wnt reporter assays showed that b-catenin
knockdown (i.e., Wnt inhibition), but not YAP knock-

down, effectively repressed Wnt signaling, equivalent

to dual knockdown (Fig. 3A). In mesenchymal TNBC

cells, however, knockdown of either b-catenin or YAP

only moderately suppressed Wnt signaling, whereas

dual knockdown exhibited higher efficacy (Fig. 3A).

Interestingly, b-catenin knockdown (Fig. S3 showing

knockdown efficiency) inhibited the expression of YAP

target genes in epithelial TNBC cells but upregulated

the expression of YAP target genes in their mesenchy-

mal counterparts (Fig. 3B). Unexpectedly, while

siRNA knockdown of YAP1 effectively inhibited

CD44high/CD24�/low CSC subpopulation in mesenchy-

mal TNBC, it increased ALDH+ CSCs in epithelial

TNBC cells. In contrast, siRNA knockdown of b-cate-
nin was more effective in inhibiting ALDH+ CSCs in

an epithelial state but less effective in suppressing

CD44high/CD24�/low CSCs in a mesenchymal state.

These data suggest that Wnt and YAP inhibitions

alone exhibit differential effects on mesenchymal and

epithelial CSCs. As a result, dual knockdown of Wnt

and YAP was a more effective approach to inhibit

both CD44high/CD24�/low and ALDH+ CSC subpopu-

lations in both mesenchymal and epithelial states

(Fig. 3C,D).

3.4. Combination of ICG-001 and simvastatin

treatment inhibits epithelial and mesenchymal

TNBC bulk and CSC populations in vitro

To determine the effect of small molecules on dual

inhibition of Wnt and YAP signaling in TNBC cells,
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we used the FDA-approved ICG-001/PRI-724 (a Wnt

inhibitor) and simvastatin (inhibiting YAP signaling

revealed in 2014 (Wang et al., 2014) in addition to

other targets). Like that observed in b-catenin knock-

down experiments, ICG-001 treatment decreased Wnt

activity effectively in epithelial TNBC cells (Fig. 4A)
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and upregulated YAP target genes in mesenchymal

TNBC cells (Fig. 4B). Combination of ICG-001 and

simvastatin treatment was able to suppress both Wnt

signaling and YAP signaling, reduce cell viability, and

promote apoptosis in both mesenchymal and epithelial

TNBC cells (Fig. 4C,D, Fig. S4A, and S5A). Flow

cytometric analysis showed that the combination

treatment also diminished both mesenchymal

CD44high/CD24�/low and epithelial ALDH+ CSC

subpopulations compared to vehicle and single inhibi-

tors (Fig. 4F,G, Figs S4B and S5B–C), highlighting

the necessity of dual Wnt and YAP suppression. Addi-

tionally, normal mammary cells from patient breast

tissue were not significantly affected by the combina-

tion treatment (Fig. 4E). Hence, the dual inhibition of

Wnt and YAP signaling can be an effective approach

to halt the growth of epithelial and mesenchymal

TNBC cells in vitro.
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(5000 cells/well). Cells were seeded in soft agar and cultured for 21 days, and colonies were counted after staining with MTT for viability.

Scale bar = 100 lm. Data represent means � SD, n = 3 for all figures; *P < 0.05, **P < 0.01, ***P < 0.001.
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scrambled + CHIR99021 controls. (B) RT-qPCR analysis of YAP target genes: CTGF, ANKRD1, and CYR61 after b-catenin and/or YAP1
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3.5. Clinical TNBC patients’ samples exhibit

epithelial-like phenotypes, and dual inhibition of

Wnt and YAP signaling suppresses both bulk and

CSC populations

In comparison with mesenchymal MDA-MB-231 cell

line, almost all 41 primary TNBC tumors (Omnibus2R,

Dataset: GSE45827, Accessed July 14, 2017; Barrett

et al., 2013) showed increased expression of E-cadherin

(CDH1) and Wnt target gene TCF4 but decreased

YAP target gene AXL (Fig. 5A). Likewise, primary

TNBC patients’ tumor samples (CRDCA, SEM-1, and

ARI-1) also showed increased expression of E-cad-

herin, active b-catenin, and ALDH but decreased

expression of YAP and CD44 (Fig. 5C, Fig. S6). It

seems that patients’ TNBC samples exhibit a more

epithelial-like phenotype in comparison with the mes-

enchymal-like MDA-MB-231 TNBC cell line. In addi-

tion, the E-cadherin protein levels were positively

correlated with b-catenin expression in 410 breast can-

cer patients’ tumor samples (Fig. 5B, cBioportal) (Can-

cer Genome Atlas Network, 2012), consistent with the

data obtained from TNBC cell lines in Fig. 1.

We then treated three patients’ tumor fragments and

one patient-derived-xenograft (PDX) fragment

(DeRose et al., 2011) with Wnt and/or YAP inhibitors.

In all TNBC patients’ samples, dual inhibition of Wnt

and YAP reduced cell viability (Fig. 5D), and inhibited

both CD44high/CD24�/low and ALDH+ CSC subpopu-

lations than single inhibition alone (Fig. 5E–H).

3.6. Dual inhibition of Wnt and YAP signaling is

capable of retarding tumor growth and inhibits

CSC subpopulations and tumorigenesis in vivo

We next determined the effect of combination treat-

ment in vivo. Mesenchymal and epithelial MDA-MB-

231 (overexpressing E-cadherin) cells were injected into

the mammary fat pad of athymic mice. When tumor

reached a mean diameter of 3 mm, mice were random-

ized into four groups and injected intraperitoneally

with vehicle, ICG-001 (100 mg�kg�1 per day), simvas-

tatin (5 mg�kg�1 per day), or both for 15 days. As

expected, the combination treatment reduced tumor

burden of both mesenchymal and epithelial TNBC

(Fig. 6A,B). To determine CSC pool in vivo, we har-

vested tumors at the end of the treatment and assessed

CD44high/CD24�/low and ALDH+ subpopulation

using flow cytometry. As shown in Fig. 6C,D, dual

administration of ICG-001 and simvastatin reduced

both CD44high/CD24�/low and ALDH+ CSC subpopu-

lations in mesenchymal and epithelial-like TNBC,

respectively, in comparison with vehicle or single drug

treatments, suggesting the necessity of dual Wnt and

YAP inhibition for suppressing CSC subpopulations.

To determine whether co-administration of ICG-001

and simvastatin inhibits tumor-initiating potential, we

performed secondary transplantation. We serially

diluted tumor cells containing various percentage of

CD44high/CD24�/low and ALDH+ subpopulations iso-

lated from the primary tumors, and transplanted them

into athymic nude mice without further treatment for

6 weeks. Tumor cells isolated from mice receiving both

ICG-001 and simvastatin exhibited the least tumor-

initiating capacity in comparison with single treat-

ments and a vehicle control (Fig. 6E). Thus, dual inhi-

bition of Wnt and YAP signaling can reduce tumor

burden, but more importantly, it suppresses CSCs and

attenuates tumorigenesis in mesenchymal and epithelial

TNBC after secondary transplantation.

3.7. Low expression of CTNNB1 and YAP1 genes

correlates with low expression of CD44+ and

ALDH1A1+ genes and improved survival in breast

cancer patients

Analysis of a database containing gene expression of

2509 breast cancer patients using cBioportal (Cerami

Fig. 4. Dual inhibition of YAP and Wnt signaling with small molecules suppresses both mesenchymal- and epithelial-like bulk and CSC

populations. (A) Representative flow cytometric analysis of 7xTCF-eGFP Wnt reporter activity in mesenchymal-like (Mes) and epithelial-like

(Epi, overexpression of E-cadherin) MDA-MB-231 cells after 48 h of treatment with the vehicle (DMSO), ICG-001 (5 lM) and/or simvastatin

(100 nM). Cells were exposed to 2–3 lM CHIR99021 (CHIR, a GSK3 inhibitor activating Wnt signaling) and compared to vehicle control

+/� CHIR99021. (B) RT-qPCR analysis of YAP target genes (CTGF, ANKRD1, and CYR61) 48 h after treatment with vehicle (DMSO), ICG-

001 (2.5 lM), and/or simvastatin (100 nM) in mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 cells. Data represent

means � SE. (C) MTT viability analysis of mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 cells after 120 h of exposure to

vehicle (DMSO), ICG-001 (2.5 lM), and/or simvastatin (100 nM). (D) Flow cytometry analysis of apoptosis (Annexin V+/7AAD+) of

mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 cells after 120 h of exposure to vehicle (DMSO), ICG-001 (2.5 lM), and/or

simvastatin (100 nM). (E) Alamar blue viability assays of normal control mammary tissue (ASM) from patient after 120 h of exposure to

vehicle (DMSO) or ICG-001 (2.5 lM) and/or simvastatin (100 nM). (F–G) Flow cytometric analysis of CD44high/CD24low and ALDH+ CSCs after

120 h of exposure to ICG-001 (2.5 lM) and simvastatin (100 nM) in mesenchymal-like (Mes) and epithelial-like (Epi) MDA-MB-231 cells.

Insets within flow cytometric analysis depict DEAB control for ALDH baseline determination. Data represent means � SD; n = 3 for all

figures; *P < 0.05, **P < 0.01, ***P < 0.001, in comparison with the indicated groups or vehicle control.
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et al., 2012; Gao et al., 2013; Pereira et al., 2016)

showed that in breast tumor samples, decreased gene

expressions of CTNNB1 (a pivotal effector of the

canonical Wnt signaling pathway) and YAP1 (YAP)

were accompanied by reduced gene expressions of

CD44 and ALDH1A1 that are associated with mes-

enchymal and epithelial CSC phenotypes (Fig. 6F). In

addition, analysis of a dataset of 887 patients with

invasive breast carcinoma showed that coreduction of

CTNNB1 (Wnt) and YAP1 (YAP) protein expression

was correlated with improved patients’ survival

(Fig. 6G, median survival of 140.18 months versus

74.67 months in the unaltered control). Those with

either reduced expression of CTNNB1 or YAP1 pro-

tein alone showed only a moderate increase in survival

(32.66 months by CTNNB1 and 9.53 months by

YAP1) in comparison with the unaltered control

(Fig. S7).

4. Discussion

Epithelial–mesenchymal plasticity and CSCs are key

challenges for effective cancer treatment. In this study,

we observed that dynamic changes in Wnt and YAP

signaling and CSC phenotypes are dependent on

epithelial or mesenchymal states. YAP is upregulated

in mesenchymal TNBC cells while Wnt upregulated in

epithelial TNBC cells. These observations are clearly

supported within the TNBC literature. The intracellu-

lar domain of E-cadherin has been shown to mediate

YAP nuclear exclusion and b-catenin activity (Ben-

ham-Pyle et al., 2015; Kim et al., 2011). Additionally,

a-catenin and 14-3-3 proteins are known to associate

with YAP and prevent its dephosphorylation via

PP2A under the upstream control of E-cadherin (Sch-

legelmilch et al., 2011).

Importantly, we found that mesenchymal and

epithelial TNBC cells exhibited different responses to

Wnt and YAP inhibitions. Knockdown of Wnt/b-cate-
nin upregulated YAP target genes in mesenchymal-like

TNBC cells, which is consistent with a recent report

showing that inhibition of Wnt/b-catenin signaling

facilitates YAP/TAZ overexpression-induced liver

growth and tumor initiation (Kim et al., 2017). We

also found Wnt/b-catenin knockdown was more effec-

tive in suppressing ALDH+ CSCs in an epithelial state

than in suppressing CD44high/CD24�/low CSCs in a

mesenchymal state. In contrast, YAP knockdown

enriched ALDH+ CSCs in epithelial-like TNBC cells

although it potently inhibited CD44high/CD24�/low in

mesenchymal-like TNBC cells. These observations sug-

gest that inconsistent results reported in breast cancer

cells in response to Wnt or YAP inhibition (Anastas

and Moon, 2013; Green et al., 2013; Maugeri-Sacc�a

and De Maria, 2016) may be associated with ineffec-

tive CSC targeting due to epithelial and/or mesenchy-

mal states, TNBC EMT/MET plasticity, and YAP and

Wnt feedbacks. Dual inhibition of YAP and Wnt sig-

naling on the other hand can suppress both epithelial-

and mesenchymal-like bulk and CSC populations with-

out significantly affecting cultured normal mammary

tissue fragments in vitro and mice in vivo, suggesting a

favorable approach for this combination therapy. This

was supported by the alternations of CD44high/CD24�/

low and ALDH+ CSC subpopulations in both MDA-

MB-231 and SUM149-PT cell lines, although the

changes in SUM149-PT cells after siRNA knockdown

of E-cadherin (which induces a mesenchymal-like phe-

notype) were not as robust as seen in mesenchymal

MDA-MB-231 cells. This may be associated with

incomplete siRNA silence, recovery of E-cadherin after

knockdown, and/or experimental timing.

We also observed that knockdown of YAP or usage

of simvastatin suppressed Wnt signaling. The sup-

pressed Wnt signaling may be associated with the for-

mation of YAP, b-catenin, and TBX5 complex that is

essential for transformation and survival of b-catenin-
driven cancers (Rosenbluh et al., 2012). At present, it

is unclear why such an effect is significant in mes-

enchymal but less in epithelial TNBC cells, warranting

Fig. 5. Duel inhibition of YAP and Wnt signaling with small molecules effectively inhibits TNBC patients’ bulk and CSCs. (A) Wnt and YAP

target genes (TCF4 and AXL, respectively) and E-cadherin (CDH1) were detected in 41 TNBC patient samples and mesenchymal-like MDA-

MB-231 cell line using Affymetrix U133 Plus 2.0 transcriptome analysis Chips (n = 41 patients, *P < 0.05, **P < 0.01, ***P < 0.001). (B)

Positive Pearson correlation between CDH1 and CTNNB1 in protein expression (RPPA) in 410 invasive breast cancer patients’ samples

(*P < 0.05). (C) Representative western blot depicting b-catenin, YAP, E-cadherin, and pluripotency-related proteins (ALDH and CD44) of

two patient samples (CRDCA and ARI-1) and mesenchymal-like MDA-MB-231 cell line. See also Fig. S6 for additional patient’s sample. (D)

Alamar blue viability analysis of three primary patients’ TNBC samples (CRDCA, SEM-1 and ARI-1) and one PDX sample (HCI-001) after

120 h of exposure to vehicle (DMSO), ICG-001 (2.5 lM) and/or simvastatin (100 nM). (E–H) Representative flow cytometric analysis of

CD44high/CD24low and ALDH+ CSC subpopulations in patients’ sample CRDCA and ARI-1 after 120 h of exposure to vehicle (DMSO), ICG-

001 (2.5 lM) and/or simvastatin (100 nM) (E–F). The relative living CD44high/CD24low and ALDH+ CSCs in all clinical samples are tabulated

(G–H). Insets within flow cytometric plots depict DEAB control for ALDH baseline determination. All data in Fig. 5 represent means � SD,

n = 3–4; *P < 0.05, **P < 0.01, ***P < 0.001, in comparison with the indicated groups or vehicle control.
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further investigations. Nevertheless, as epithelial and

mesenchymal cancer cells are interconvertible, simulta-

neously targeting YAP and Wnt signaling should be

taken into consideration in future TNBC treatment.

Administration of ICG-001 and simvastatin was clini-

cally relevant; both are FDA-approved drugs for clinical

applications with defined pharmacological dynamics/ki-

netics and have the potential to be readily repurposed in

this clinical indication. ICG-001/PRI-724 is a fairly

specific Wnt inhibitor and is used for the treatment of

acute and chronic myeloid leukemia (NCT01606579).

Simvastatin is an inhibitor of HMG-CoA reductase and

widely employed as a cholesterol-lowering drug. In

addition, simvastatin has been reported to affect wide

plethora of targets including YAP, RhoA, Ras, Akt,

mTOR, and JAK2/STAT3 (Fang et al., 2013; Wang

et al., 2016; Wu and Liu, 2008). We have observed that

ICG-001 inhibits TNBC Wnt signaling, and simvastatin

suppresses YAP signaling although other off-target

effects coexist. As ICG-001 and simvastatin exhibited

effects resembling YAP1 and b-catenin knockdown in

TNBC cells, it is likely that the biological changes

observed in this study are associated with Wnt and YAP

inhibitions. This study identifies different expressions of

CSC phenotypes and cellular responses to YAP and

Wnt targeting associated with mesenchymal or epithelial

state. Through dual inhibition of Wnt and YAP signal-

ing, both epithelial and mesenchymal CSC subpopula-

tions can be inhibited and tumorigenesis can be halted

after secondary transplantation, which may reduce

TNBC recurrence. As simvastatin is commonly pre-

scribed and ICG-001/PRI-724 has been approved by

FDA for clinical trial evaluation, further investigation

of this combination and other Wnt and YAP inhibitors

may lead to an effective therapy with reduced toxicity

and attenuated CSC enrichment as compared to con-

ventional chemotherapy.
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Fig. S1. Overexpression of E-cadherin in mesenchy-

mal-like MDA-MB-231 TNBC cells resulted in an

epithelial-like phenotype.

Fig. S2. 7xTCF-eGFP Wnt reporter activity upon

E-cadherin knockdown in SUM 149-PT cells.

Fig. S3. CTNNB1 and YAP1 knockdown efficacy in

mesenchymal-like (Ctrl) and epithelial-like (E-cad+)
MDA-MB-231 TNBC cells.

Fig. S4. Suppression of Wnt and pluripotency-related

genes after treatment with ICG-001 and simvastatin in

mesenchymal-like (Mes) and epithelial-like (Epi)

MDA-MB-231 TNBC cells.

Fig. S5. Dual inhibition of YAP and Wnt signaling

suppresses both mesenchymal and epithelial-like bulk

and CSC populations in epithelial-like SUM149-PT

TNBC cells.

Fig. S6. Western blot analysis of patient TNBC tumor

fragment in comparison with MDA-MB-231 cell line.

Fig. S7. Kaplan–Meier curves for overall survival of

the patients with low levels of Wnt (CTNNB1) or

YAP (YAP1) protein expression in cancer samples.

Table S1. Primers used in RT-qPCR.
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