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Abstract

Background

In February 2012 the ten-valent pneumococcal conjugate vaccine (PCV10) with a 2+1

doses schedule (3, 5, 12 or 14 months of age) without catch-up vaccination was introduced

in Austria. We assessed direct and indirect vaccine effects on invasive pneumococcal dis-

ease (IPD) by a population-based intervention study.

Methods

The study period was divided into pre- (2009–2011) and post-period (2013–2017, Febru-

ary), regarding 2012 as transition year. Outcomes were defined as PCV10 ST-IPD, the

PCV10-related ST 6A and 19A IPD and non-PCV10 excluding ST 6A-/19A-IPD (NVT-IPD).

We used national surveillance data and compared average monthly incidence rate (IR)

between pre- and post-period among <5, 5–49 and�50 years old. Additionally, for the 5–49

and�50 years old, and the 50–59 and�60 years old, we analyzed monthly incidence data

of the pre-, post-period, and estimated trend and level changes by using a segmented time-

series regression.

Results

The PCV-10 IPD was reduced by 58% (95% CI: 30%; 74%) and 67% (95% CI: 32%; 84%)

among <5 and�50 years old; the reduction in�60 years was 71% (95% CI: 36%; 88%).

There were no significant changes in the pre-post-rate or incidence trend of NVT-IPD in the

<5 and�50 years old. ST-specific analyses revealed no ST 6A- and ST 19A IPD decline in

any age-group, and a ST 8 IPD increase among�50 years old (IR ratio: 3.5; 95% CI: 1.7;

7.2). We found no vaccine effects among 5–49 years old.
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Conclusions

Our study adds to the evidence on direct and indirect protection of a childhood PCV10 vac-

cine program. Elderlies seem to benefit the most. Findings did not support PCV 10 cross-

protection, but indicate replacement at least for ST 8 among the�50 years old. Follow-up

analyses of IPD surveillance data are needed to fully characterize the magnitude of serotype

replacement and further vaccine-attributable IPD reduction with time.

Introduction

Streptococcus pneumoniae (pneumococcus), a gram-positive diplococcus, is adapted to colo-

nize the human nasopharynx (NP). Pneumococcal NP colonization is prevalent among chil-

dren during the first few years of life and declines with age. Depending on host and agent

factors, pneumococcus may spread in the respiratory tract, causing non-invasive pneumococ-

cal diseases or through the bloodstream to other sites, leading to invasive pneumococcal dis-

eases (IPD) such as meningitis, septicemia, bacteremic pneumonia, osteomyelitis or arthritis

[1]. The highest burden of serious pneumococcal disease occurs in infants, the<2 years old,

and the elderly [2–4]. Prior to the widespread introduction of pneumococcal conjugate vac-

cines (PCV) into national childhood immunization programs (NIPs), Europe and the United

States reported annual rates of IPD between 11 and 70 per 100,000 persons [1,5–7].

Conventional serotyping and molecular analyses have identified at least 97 different pneu-

mococci capsular polysaccharide STs [8]. Two types of pneumococcal vaccines, i.e. unconju-

gated and conjugated, are currently available for use in humans, varying with respect to

design, composition, target populations, immunogenicity and efficacy. The unconjugated

pneumococcal polysaccharide vaccine is a 23-valent vaccine (PPV23), and the pneumococcal

polysaccharide conjugate vaccines (PCV) are available in several formulations. The first pneu-

mococcal polysaccharide conjugate vaccines (PCV), a 7-valent PCV (PCV7) covering the STs

4, 6B, 9V, 14, 18C, 19F, 23F, became available in 2001 and was introduced into national immu-

nization programs (NIPs) of many European countries. In 2009, PCV10 (covering PCV7 STs

plus STs 1, 5, 7F) and PCV13 (covering PCV10 STs plus STs 3, 6A, 19A) became available,

replacing PCV7 in most European countries. All PCVs are characterized by markedly

improved immunogenicity in neonates and young children [9]. Unlike PPV23, the PCVs pre-

vent NP colonization of vaccine serotypes, thereby conferring protection in unvaccinated and

vaccination-ineligible individuals as a result of diminished transmission of vaccine serotypes

(indirect vaccine effect) [10,11]. The impact of PCV introduction into NIPs has exceeded the

IPD reducing effects observed in vaccine efficacy studies due to the indirect PCV effects [12–

14]. The magnitude of indirect vaccine effects depends on age of the non-vaccine target popu-

lation, PCV coverage of the vaccine-target population and the time elapsed since nationwide

PCV implementation [15]. Following the routine use of PCV7 in many countries worldwide

for over ten years, a systematic review of vaccine effectiveness studies found a median before-

after rate reduction in VT-IPD among all age-groups of 65.5% [6]. After switching from PCV7

to PCV13, many European countries, such as the United Kingdom, Denmark, Spain, France

and Norway, and the US reported a pronounced decrease in IPDs due to STs additionally cov-

ered by PCV13 (defined as PCV13-PCV7 ST-IPD) among vaccinated and also non-vaccinated

population groups [16–21].

More than 30 countries worldwide have introduced PCV10 in their NIPs, of which several

demonstrated high vaccine efficacy and effectiveness among vaccinated and unvaccinated
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children and adults such as Finland, Kenya and Chile (PCV7-naïve countries), and New Zea-

land and the Netherlands (with PCV7 before PCV10 introduction) [22–28].

A vaccination-induced increase in non-vaccine type (NVT) colonization, referred to as

"replacement" carriage, may potentially lead to increased NVT disease rates in both vaccinated

and unvaccinated populations. Findings on the extent of NVT replacement in carriage and dis-

ease following introduction of PCVs vary, depending on factors such as previous vaccine and

antibiotics use, vaccination program (VP) details, vaccination coverage, surveillance activity

and, in particular, on the methods used for trend analyses to quantify the vaccination contri-

bution [29]. NVT replacement disease has been reported in the era of PCV7 and after intro-

duction of PCV13 and PCV10. However, in young children the rise in NVT-IPDs is generally

smaller than the decrease in VT-IPDs, resulting in a net benefit. For older adults, some coun-

tries (Norway, The Netherlands, US, Denmark) reported decreases in overall IPD, while others

(Finland, New Zealand, Quebec, France, South Africa, Sweden, Germany, UK) did not

[17,18,20,24,30–37].

In Austria, based on national sales figures (MAT data) as per pharmacy statistics, the esti-

mated uptake of PPV23, which has been recommended, but not publically funded, since 1998

for�50 years old, was 5.7 doses per 1000 adults of�50 years between July 2017 and July 2018

(the only available data), assuming all doses administered in this age group. A dual recommen-

dation of PPV23/PPV13 for all�50 years old and high-risk groups was introduced in 2013.

The PCV13 uptake was estimated at 9.2, 7.3 and 9.1 doses per 1000 adults of�50 years for the

years 2016, 2017, 2018.

Similar to Finland and The Netherlands, having introduced a PCV10 (2+1 doses) VP in

2010 and 2011, the Austrian Ministry of Health introduced the PCV10 vaccination with a 2+1

doses schedule (3, 5, and 12 or 14 months of age) without catch-up vaccinations into the publi-

cally funded childhood NIP in January 2012. All children born January 1st, 2012 or thereafter

were eligible for vaccination.

The aim of our study was to evaluate for the first time the effects of the PCV10 (2+1 doses)

VP, on vaccine-type (VT) IPD and non-VT IPD in children and adults in Austria.

Methods

Data-sources and study cases

In 2002, IPD became notifiable in Austria. Since this year, active surveillance of IPD among

<5 years old patients of all pediatric wards in Austrian hospitals has been operated by the

Institute of Specific Prophylaxis and Tropical Medicine (ISPTM) at the Medical University

Vienna and supported by third party funding [38]. The data were collected after signed

informed consent, and a report form including the clinical cases, demographic parameters,

such as age and gender along with the initials were sent from the pediatric units to the Institute

of Specific Prophylaxis and Tropical Medicine at the Medical University Vienna. The collected

data sets were matched with those of AGES to complete the number of IPD cases. This IIR of

prospective active surveillance of IPD in infant< 5 years was approved by the Ethics Commit-

tee of the Medical University Vienna (013/06/201/, EKnr 252/2008).

In 2009, the national surveillance system for all mandatorily notifiable infectious diseases

was improved in acceptability and simplicity by introducing a nation-wide, web-based-case

recording system to which clinicians and laboratories report cases according to the EU case

definitions for surveillance [39]. Since then, the Austrian Agency for Health and Food Safety

(AGES) has been responsible for data quality assurance and regular analyses.

We used the national surveillance data from January 2009 until February 2017 on IPD,

including information on age, clinical presentation, and month of diagnosis and on serotype
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for each case of IPD, complemented with data from the national reference laboratory for pneu-

mococci at AGES. Cases identified through active surveillance of the Austrian pediatric wards

were cross-checked with cases reported through the national surveillance system and case data

added if necessary. The annual population data were obtained from Statistics Austria.

A case of IPD was defined according to the laboratory-based EU surveillance case definition

2012 [39], as a patient with a specimen obtained from a normally sterile site (e.g. blood, cere-

brospinal fluid), which tested culture or PCR positive for S. pneumoniae. Isolates were sero-

typed by Quellung reaction at the National reference laboratory for pneumococci, as described

elsewhere [40].

We estimated the vaccination coverage for�2 PCV10 doses among children in the 2nd year

of life for the birth cohorts 2009–2015, and among the <5 years old for the years 2009 until

2016 through dividing the birth cohort specific number of�2 doses administration by the

respective birth cohort. We used data from the provincial vaccine registers of the nine Austrian

provinces, and data on the annual birth cohorts provided by the provincial public health

authorities and Statistics Austria.

Study design, intervention and outcomes

For the population-based intervention study, we used a non-experimental classical before-

after study design with pre-post comparison of average rates for the age groups <5, 5–49, and

�50 years old, and the age-subgroups <2, 2–4, 50–59 and�60 years. Furthermore, we applied

an interrupted time series (ITS) design with segmented regression for the 5–49 and�50 years

old, and the age-subgroups 50–59 and�60 years. The intervention under study was the intro-

duction of a PCV10 (2+1 doses) VP in the publically funded NIP in January, 2012 without

catch-up vaccinations. The study period February 2009 until February 2017 was divided into

the pre-intervention period (i.e. pre-period), from January 2009 to December 2011 and into

the post-intervention (post-period), from January 2013 until February 2017. The year 2012

was excluded from the study as the transition period.

Outcomes were defined as the group of IPDs due to PCV10 serotypes (PCV10 ST-IPD;

‘intervention outcome’) and IPDs due to the serotypes 6A and 19A, for which PCV10 cross-

protection is discussed (ST 6A IPD, ST 19A IPD; ‘intervention-related outcome’). In order to

assess a PCV10-VP induced increase of non-vaccine serotype IPDs (‘replacement outcomes’):

ST 3 IPD, and the group of IPDs due to serotypes other than PCV10 STs, while excluding

cases of ST 6A and ST 19A IPD (referred to as non-PCV10 ex ST 6A-/19A-IPD).

Outcomes for assessing net changes were serotyped IPD (i.e. PCV10 ST-IPD and non-

PCV10 ST-IPD) and overall IPD, comprising non-serotyped and serotyped IPD. Table 1 lists

the age-group-specific outcomes under study by category (intervention, replacement, net

change) including their definition, and specifies the methodologies (pre-post rate comparison,

segmented regression analysis) applied for measuring the outcome changes.

Descriptive analyses

All IPD cases were described by their clinical presentation and availability of serotype informa-

tion. We calculated the proportion of PCV10 STs among the serotyped IPD cases of the pre-

period for the<5, 5–59 and�50 years old.

Statistical analyses

We compared the<5, 5–49 and�50 years old, in addition the<2, 2–4, 5–49, 50–59,�60 years

old, of the post-period, defined as the intervention population (i.e. exposed to the VP including

vaccinated and unvaccinated) to the corresponding age-groups of the pre-period (reference
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population) with respect to the period-specific monthly average incidence rate (IR) per 100,000

person-months (pm). The period-specific IRs were calculated through dividing the period-spe-

cific number of IPD cases by the period-specific mid-term population multiplied by the respec-

tive number of observation months (pre-period: 36 months; post-period: 50 months). The

vaccine effects were measured through calculating the IR difference per 100,000 pm between

the pre- and post-period (pre-post IR difference: IRpre − IRpost) and the IR ratio (IRR:
IRpost
IRpre

). A

Chi2 test was used to test for significance of the pre-post IR difference and IR ratio. We calcu-

lated for the<5 years old, and the age-subgroups<2 and 2–4 years, the proportionate reduction

Table 1. Age-group specific outcomes by category, their definition and the applied methodology (pre-post rate comparison indicated by A, segmented regression

analysis of ITS by B).

Age-group in yrs Outcome category Outcome definition Methodology

<5 intervention PCV10 ST-IPD A

intervention-related ST 6A IPD A

intervention-related ST 19A IPD A

replacement non-PCV10 ex ST 6A-/19A-IPD A

replacement ST 3 IPD A

net change I serotyped IPD A

net change II overall IPD A

<2 intervention PCV10 ST-IPD A

replacement non-PCV10 ex ST 6A-/19A-IPD A

net change I serotyped IPD A

net change II overall IPD A

2–4 intervention PCV10 ST-IPD A

replacement non-PCV10 ex ST 6A-/19A-IPD A

net change I serotyped IPD A

net change II overall IPD A

5–49 intervention PCV10 ST-IPD A and B

intervention-related ST 6A IPD A

intervention-related ST 19A IPD A

replacement non-PCV10 ex ST 6A-/19A-IPD A and B

replacement ST 3 IPD A

net change I serotyped IPD A and B

net change II overall IPD A and B

�50 intervention PCV10 ST-IPD A and B

intervention-related ST 6A IPD A

intervention-related ST 19A IPD A

replacement non-PCV10 ex ST 6A-/19A-IPD A and B

replacement ST 3 IPD A and B

net change I serotyped IPD A and B

net change II overall IPD A and B

50–59 intervention PCV10 ST-IPD A and B

replacement non-PCV10 ex ST 6A-/19A-IPD A and B

net change I serotyped IPD A and B

net change II overall IPD A and B

�60 intervention PCV10 ST-IPD A and B

replacement non-PCV10 ex ST 6A-/19A-IPD A and B

net change I serotyped IPD A and B

net change II overall IPD A and B

https://doi.org/10.1371/journal.pone.0210081.t001
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in post-period IR of the intervention and net change outcomes relative to the pre-period (vaccine

effectiveness, VE), using the formula VE %ð Þ ¼ 1 �
IRpost
IRpre

� �
x 100. The corresponding 95% confi-

dence intervals (95% CI) was calculated by using the method described by Wald [41]. Among the

<5 years old, for identifying pre-, post-intervention time trends in the outcomes of interest, we

additionally calculated average percent change (APC) in the monthly incidence for the pre-period

and post-period using two separate negative binomial regression models.

For age groups 5–49 years and�50 years old, and the age-subgroups 50–59 and�60 years,

we additionally applied the interrupted time series regression. We used a segmented negative

binomial regression model, including a seasonal component, on the monthly IPD incidence of

the period January 2009—February 2017 in order to compare time series data on IPD of the

pre-period with that of the post-period [42,43]. The model can be written as:

log Ytð Þ ¼ logðpoptÞ þ b0 þ b1t þ b2sin
2pt
12

� �

þb3cos
2pt
12

� �

þ b5ðt � toÞ
þ

þ dðt � toÞ½b4 þ b6sin
2pt
12

� �

þb7cos
2pt
12

� �

� þ et:

Here, Yt is the number of IPD cases observed in month t; popt is the population size in 100,000

at month t, t0 is the last month (month 48) of the pre-period including the transition time, δ(x)

is the indicator function (it is 0 if x�0 and 1 if x>0), (x)+ is the cut off operator (it is x if x>0

and 0 otherwise), seasonality is modelled as a sinusoidal function (sin and cos terms to account

for a phase shift), and et denotes the residual. The parameters of the model can be interpreted

as follows: β0 estimates the number of cases per 100.000 in the month at the beginning of the

pre- period (i.e. baseline level), β1 estimates the linear trend, and β2 and β3 the seasonality of

the monthly incidence of the pre-period (i.e. baseline trend and seasonality); β4 estimates the

change (jump or drop) in the level of the incidence at the post-period beginning, and β5, β6

and β7 the change in trend (slope increase or decrease) and seasonality of the monthly inci-

dence during the post-period, compared to the pre-period (i.e. baseline). The vaccine effects

were expressed by percent change in post-period trend and post-period level, relative to the

pre-period trend and level of the monthly incidence (% change/month, % change), calculated

through inserting β4 and β5 in the formula: f(x) = (exp(x) − 1) � 100. The 95% confidence inter-

vals (95% CI) were calculated using the bootstrap method by resampling model residuals 5000

times [44–46]. As a second vaccine effect measure, we calculated, based on the above explained

model, the proportionate reduction in the post-period IPD, relative to the pre-period (i.e. VE)

by using the formula VE %ð Þ ¼
nnoVP� nVP

nnoVP
x 100. Here, nnoVP refers to the expected number of

cases in the population of the post-period, if there was no VP, and nVP refers to the modelled

number of IPD cases based on the observed number of cases in the population of the post-

period (i.e. population exposed to the VP). The 95% CI was calculated using the bootstrap

method, as described above.

To describe pre-post changes in the occurrence of the serotype-specific IPDs, we calculated

annual average incidence rates (IR) per 106 pm of ST-specific IPD in the<5 years old and�50

years old. We ranked the ten most frequent IPD causing serotypes of the pre-period (2009–

2011), the early post-period (2013/2014) and late post-period (2015–2016) from rank 1 (R1) to

R10 by the IR per 106 pm or alphanumerically, in case of equal IR. The ST-specific IPD IR

ratios (IRR) for the ten most frequent STs, comparing early and late post-period with the pre-

period were tested for significance using Chi2 tests. In order to identify pre-, post-intervention

time trends in the monthly incidence of ST-specific IPDs, we additionally estimated the

monthly APC for the pre- and post-period by two separate negative binomial regression

Invasive pneumococcal diseases and national vaccination program in Austria
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models, when a segmented negative binomial regression model was not appropriate due to too

small cases numbers.

Additionally, we illustrated among the <5 and�50 years old the top 20 and 25 IPD causing

serotypes by the annual average IR per 106 pm using a scatterplot based on frequency distribu-

tion rank for the pre-period and late post-period. All statistical analyses were performed using

the R-software version 3.4.1 [47]. We considered a p-value of<0.05 to be significant.

Results

Study cases and descriptive analysis

During the study period 2009–2017, 2952 cases of IPD were identified in the Austrian popula-

tion, 2905 cases through the national surveillance system and additional 47 cases through

active surveillance at the Austrian pediatric wards (including 13 cases in 2009 and 6, 7, 8, 5, 4,

1, 3 and 0 cases in the years 2010-02/2017). Of the 2952 IPD cases, information on clinical pre-

sentation was available for 2923 cases (99%). Bacteremic pneumonia was the most frequent

clinical presentation (1404; 48%) followed by primary bacteremia (1063; 36%), meningitis

(430; 15%) and empyema with bacteremia or pneumonia (26; 1%). Of the 2952 identified and

recorded cases, in 2635 (89%) information on ST was available and these cases were included

in the analyses of serotyped IPD cases; 172 (73%) serotyped cases of a total of 237 were in <5

years old, 447 (88%) serotyped cases of 507 were in 5–49 years old and 2016 (91%) serotyped

cases of a total of 2208 were in�50 years old adults. The proportion of cases serotyped among

the<5 and 5–49 years old did not differ significantly between the pre- and post-period (<5

years old: 71.3% (pre), 73.3% (post); 5–49 years old: 88.6% (pre), 88.4% (post)). Among the

�50 years old, the post-period proportion of serotyped cases was significantly lower (89.5%)

than that of the pre-period (94.2%) with a difference of 4.7% (95% CI: 2.2%; 7.2%).

In the pre-period (2009–2011), the PCV10 STs accounted for 53.2% of the 77 serotyped

IPD cases among the <5 years old, with a PCV10 STs proportion of 58.8% of the 51 serotyped

IPD cases among the <2 years old, and 42.3% of the 26 serotyped cases among the 2–4 years

old. Among the 5–49 years old, 53.8% of the 171 serotyped IPDs and 36.8% of the 638 sero-

typed IPD cases among the�50 years old were PCV10 STs, from which 34.2% out of 146 sero-

typed cases were among the 50–59 years old and 37.6% of 492 among the�60 years old.

The vaccination coverage for�2 doses of PCV10 among infants in the 2nd year of life was

9% for the birth cohort 2009, 10% for the birth cohort 2010, and 30%, 70%, 68%, 69% and 72%

for the birth cohorts 2011–2015. Among the<5 years old the cumulative vaccination coverage

was 5.8%, 7.7% and 8.7% in the years 2009–2011 (pre-period) and increased gradually from

18.2% in the year 2012 (transition period) to 30.7%, 42.0%, 54.5% and 62.6% in the years

2013–2016 (post-period) (Fig 1).

Effects of PCV10 in children

Effect on PCV10 ST-IPD. Among the<5 years old, the monthly average IR of PCV10

ST-IPD declined from 0.29 in the pre-period to 0.12 per 100,000 pm in the post-period, result-

ing in a VE of 58% (95% CI: 30%; 74%). The VE was at 77% (95% CI: 53%; 89%) in the <2

years old (Table 2 and S1 Table). Among the 2–4 years old no significant pre-post rate change

in the PCV10 ST-IPD was found (Table 2), whereas the pre-period monthly APC, already, was

−5.3% (95% CI: −10.9%; −0.1%; incidence level: 0.28/100,000); the post-period monthly APC

was −2.8% (95% CI: −6.3%; +0.6%; incidence level: 0.89/100,000).

Effect on PCV10-related ST-IPDs. The ST 6A IPD pre-post IRD was non-significant

(−0.01/100,000 pm). The same holds for the ST 19A IPD pre-post IRD (+0.03/100.000 pm), as

given in Table 2. However, the post-period monthly APC in the ST 19A IPD incidence was of
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+3.4% (95% CI: −0.3%; +7.7%; incidence level: 0.003/100,000) and the pre-period monthly

APC of +0.5% (95% CI: −7.3%; +9.0%, incidence level: 0.021/100,000).

Effect on non-PCV10 ex ST 6A-/19A-IPD and ST 3 IPD. A non-significant pre-post drop

occurred in the non-PCV10 ex ST 6A-/19A-IPD IR and ST 3 IPD IR (Table 2). For the non-

PCV10 ST ex 6A-/19A-IPD, a pre-period monthly APC of −0.7% (95% CI: −4.4%; +3.0%, inci-

dence level: 0.158/100,000) and post-period monthly APC of +1.7% (95% CI: −0.6%; +4.0%, inci-

dence level: 0.036/100,000) indicated a trend reversal. Similar was found for the ST 3 IPD, which

showed a pre-period monthly APC of −1.3% (95% CI: −7.8%; +5.3%; incidence level: 0.06/100,000)

and post-period monthly APC of +2.6% (95% CI: −1.9%; +8.0%; incidence level: 0.004/100,000).

Net change. The monthly average IR of overall IPD among the<5 years old decreased

from 0.76 in the pre-period to 0.50 per 100,000 pm in the post-period, resulting in a propor-

tionate rate reduction of 35% (95% CI: 15%; 50%). The proportionate pre-post rate reduction

in serotyped IPD was 33% (95% CI: 8%; 51%) (S1 Table). A greater net benefit was found in

the<2 years with a proportionate rate reduction of 48% (95% CI: 25%; 64%) in overall IPD

and of 53% (95% CI: 27%; 69%) in serotyped IPD (S1 Table). No net changes were found in

the 2–4 years old (Table 2).

Effects of PCV10 in 5–49 years old

For the 5–49 years old, we found no significant changes in trend and level of the monthly inci-

dence of PCV10 ST-IPD, non-PCV10 ST ex 6A-/19A-IPD, all serotyped IPD and overall IPD

in the post-period, compared to the pre-period. The monthly average IRs of ST 3 IPD, ST 6A

Fig 1. Vaccination coverage for�2 doses of PCV10 among the<5 years old per year during the pre-intervention

period, transition period and post-intervention period, 2009–2016.

https://doi.org/10.1371/journal.pone.0210081.g001
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IPD and ST 19A IPD remained almost unchanged between the pre- and post-period (Fig 2,

Tables 2 and 3).

Effects of PCV10 in�50 years old

Effect on PCV10 ST-IPD. Among the�50 years old, the monthly average IR of PCV10

ST-IPD decreased significantly from 0.22 (pre) to 0.14 (post) per 100,000 pm, as shown in

Table 2. Monthly average incidence rates of the pre-period (IR pre) and post-period (IR post), pre-post IR ratios (IRR) and pre-post IR difference (IRD)/100,000

pm with 95% confidence interval (CI) for intervention, replacement and net change outcomes among<5, 5–49 and�50 years old, additionally among the age-sub-

groups<2, 2–4, 50–59 and�60 years, Austria, January, 2009-February, 2017.

Age-group Outcome category IPD by ST IRpre IRpost IRR (95% CI) IRD (95% CI)

<5 intervention PCV10 ST-IPD 0.29 0.12 0.42 (0.26; 0.70) −0.17 (−0.27; −0.07)

intervention-related 6A IPD 0.02 0.01 0.46 (0.08; 2.78) −0.01 (−0.04; +0.02)

intervention-related 19A IPD 0.04 0.07 1.63 (0.62; 4.23) +0.03 (−0.02; +0.08)

replacement non-PCV10 ex ST 6A-/19A-IPD 0.19 0.16 0.85 (0.51; 1.42) −0.03 (−0.12; +0.06)

replacement 3 IPD 0.06 0.04 0.62 (0.24; 1.61) −0.02 (−0.07; +0.03)

net change I serotyped IPD 0.54 0.36 0.65 (0.50; 0.85) −0.27 (−0.44; −0.09)

net change II overall IPD 0.76 0.50 0.67 (0.49; 0.92) −0.18 (−0.33; −0.03)

<2 intervention PCV10 ST-IPD 0.54 0.12 0.23 (0.11; 0.47) −0.42 (−0.62; −0.21)

replacement non-PCV10 ex ST 6A-/19A-IPD 0.27 0.24 0.87 (0.44; 1.72) −0.03 (−0.21; +0.14)

net change I serotyped IPD 0.92 0.43 0.47 (0.31; 0.73) −0.48 (−0.77; −0.19)

net change II overall IPD 1.19 0.62 0.52 (0.36; 0.75) −0.57 (−0.90; −0.23)

2–4 intervention PCV10 ST-IPD 0.13 0.12 0.96 (0.44; 2.08) −0.01 (−0.10; +0.09)

replacement non-PCV10 ex ST 6A-/19A-IPD 0.14 0.12 0.82 (0.38; 1.77) −0.03 (−0.12; +0.07)

net change I serotyped IPD 0.30 0.32 1.05 (0.64; 1.73) +0.02 (−0.14; +0.17)

net change II overall IPD 0.49 0.42 0.85 (0.57; 1.28) −0.07 (−0.26; +0.11)

5–49 intervention PCV10 ST-IPD 0.05 0.03 0.66 (0.49; 0.89) −0.02 (−0.03; +0.00)

intervention-related 6A IPD 0.002 0.002 1.23 (0.29; 5.13) +0.00 (−0.00; +0.00)

intervention-related 19A IPD 0.004 0.005 1.37 (0.55; 3.42) +0.00 (−0.00; +0.01)

replacement non-PCV10 ex ST 6A-/19A-IPD 0.04 0.06 1.44 (1.08; 1.92) +0.02 (−0.00; +0.03)

replacement 3 IPD 0.01 0.01 0.86 (0.50; 1.48) 0.00 (−0.01; +0.00)

net change I serotyped IPD 0.10 0.10 1.02 (0.83; 1.24) 0.00 (−0.02; +0.02)

net change II overall IPD 0.11 0.11 1.02 (0.85; 1.22) 0.00 (−0.02; +0.02)

�50 intervention PCV10 ST-IPD 0.22 0.14 0.62 (0.52; 0.75) −0.08 (−0.12; −0.05)

intervention-related 6A IPD 0.03 0.02 0.58 (0.34; 0.99) −0.01 (−0.02; +0.00)

intervention-related 19A IPD 0.03 0.05 1.55 (1.05; 2.27) +0.02 (+0.00; +0.03)

replacement non-PCV10 ex ST 6A-/19A-IPD 0.31 0.50 1.62 (1.43; 1.84) +0.19 (+0.15; +0.24)

replacement 3 IPD 0.11 0.19 1.73 (1.40; 2.14) +0.08 (+0.05; +0.11)

net change I serotyped IPD 0.59 0.71 1.20 (1.09; 1.32) +0.12 (+0.06; +0.18)

net change II overall IPD 0.63 0.79 1.26 (1.15; 1.39) +0.17 (+0.10; +0.23)

50–59 intervention PCV10 ST-IPD 0.13 0.07 0.51 (0.34; 0.77) −0.06 (−0.10; −0.02)

replacement non-PCV10 ex ST 6A-/19A-IPD 0.21 0.22 1.03 (0.78; 1.35) +0.01 (−0.05; +0.06)

net change I serotyped IPD 0.38 0.32 0.85 (0.69; 1.05) −0.06 (−0.13; +0.02)

net change II overall IPD 0.41 0.37 0.92 (0.75; 1.12) −0.03 (−0.11; +0.05)

�60 intervention PCV10 ST-IPD 0.27 0.18 0.67 (0.54; 0.82) −0.09 (−0.14; −0.04)

replacement non-PCV10 ex ST 6A-/19A-IPD 0.37 0.68 1.86 (1.61; 2.15) +0.32 (+0.25; +0.38)

net change I serotyped IPD 0.71 0.95 1.34 (1.20; 1.49) +0.24 (+0.15; +0.33)

net change II overall IPD 0.75 1.05 1.40 (1.26; 1.56) +0.30 (+0.21; +0.39)

For the <2, 2–4 years old the pre-post rate comparison for ST 3, 6A and 19A IPD were not performed due to the small case numbers

https://doi.org/10.1371/journal.pone.0210081.t002
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Table 2. The segmented regression model revealed a PCV10 ST-IPD incidence trend change of

−1.7% per month (95% CI: −3.1%; −0.2%) in the post-period and incidence level drop at the

beginning of the post-period of −48.2% (95% CI: −18.2%; −67.1%), compared to the pre-

period trend and level (Fig 3, Table 3). The resulting VE was 67% (95% CI: 32%; 84%),

Fig 2. Monthly incidence of (A) PCV10 ST-IPD, and (B) non-PCV10 ST ex ST 6A-/19A-IPD per 100,000

population among the 5–49 years old, observed and modelled by a segmented negative binominal regression,

Austria, January, 2009-February, 2017, shown are overall and seasonal trends. The dashed, red line indicates the

beginning of the transition year.

https://doi.org/10.1371/journal.pone.0210081.g002

Table 3. Trend change in the monthly incidence during the post-period and level change at the begin of the post-period of the intervention, replacement and net

change outcomes, controlled for the baseline among the 5–49 and�50 years old, and additionally among the age-subgroups 50–59 and�60 years, Austria, January

2009-February 2017.

Trend change Level change

Age-group Outcome category IPD by ST % change/month % change (95% CI)

5–49 intervention PCV10 ST-IPD +1.0 (−1.8; +3.9) +22.9 (−48.5; +207.6)

replacement non-PCV10 ex ST 6A-/19A-IPD −0.7 (−3.7; +2.2) −1.0 (−57.6; +157.3)

net change I serotyped IPD +0.7 (−1.1; +2.6) +11.5 (−37.2; +100.3)

net change II overall IPD +1.0 (−0.7; +2.8) +10.0 (−35.7; +90.2)

�50 intervention PCV10 ST-IPD −1.7 (−3.1; −0.2) −48.2 (−67.1; −18.2)

replacement non-PCV10 ex ST 6A-/19A-IPD −0.9 (−2.2; +0.5) −27.6 (−51.9; +11.0)

replacement 3 IPD +0.2 (−2.0; +2.5) −21.5 (−59.8; +60.4)

net change I serotyped IPD −0.9 (−2.1; +0.3) −35.9 (−55.2; −8.3)

net change II overall IPD −1.0 (−2.1; +0.2) −32.8 (−53.1; −3.9)

50–59 intervention PCV10 ST-IPD +0.3 (−3.1; +3.8) −54.9 (−84.6; +33.9)

replacement non-PCV10 ex ST 6A-/19A-IPD −1.4 (−3.8; +1.1) −46.7 (−74.2; +12.3)

net change I serotyped IPD −0.6 (−2.5; +1.3) −45.4 (−69.0; −2.6)

net change II overall IPD −0.9 (−2.7; +0.9) −44.5 (−67.8; −3.6)

�60 intervention PCV10 ST-IPD −2.2 (−3.9; −0.5) −46.9 (−68.3; −10.7)

replacement non-PCV10 ex ST 6A-/19A-IPD −0.7 (−2.3; +0.9) −20.7 (−51.0; +29.0)

net change I serotyped IPD −1.0 (−2.2; +0.3) −33.4 (−54.7; −2.0)

net change II overall IPD −1.0 (−2.2; +0.3) −29.6 (−52.5; +4.2)

https://doi.org/10.1371/journal.pone.0210081.t003
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corresponding to 462 (95% CI: 109; 1182) cases of PCV10 ST-IPD prevented (S1 Table). For

the age-group�60 years, the pre-post change in the monthly average rate of PCV10 ST-IPD

was more pronounced (Table 2). A significant incidence trend and level decrease, compared

with the baseline, resulted in a VE of 71% (95% CI: 36%; 88%). Among the 50–59 years old,

the trend and level changes in the PCV10-ST IPD incidence were not significant (Table 3, S1

Table).

Effect on PCV10-related ST-IPDs. Among the�50 years old, we found a significant pre-

post decrease in the monthly average IR of 6A IPD (Table 2). The pre-period monthly APC

was −2.9% (95% CI: −6.8%; +1.1%) and the post-period monthly APC was −1.0% (95% CI:

−3.6%; +1.6%). For ST 19A IPD, there was a significant pre-post increase in the monthly aver-

age IR (Table 2). However, the monthly APC in ST 19A IPD incidence in the pre-period was

+4.0% (95% CI: +0.7%; +7.7%, incidence level: 0.012/100,000) versus +1.2% (95% CI: −0.2%;

+2.7%, incidence level: 0.019/100,000) in the post-period.

Effect on non-PCV10 ST-IPDs. In the age-group�50 years, the monthly average IR of

the two replacement outcomes, non-PCV10 ex ST 6A-/19A-IPD and ST 3 IPD were signifi-

cantly higher in the post-period, compared to the pre-period, as shown in Table 2. However,

compared with the pre-period, there was no significant post-period trend or level change in

the non-PCV10 ex ST 6A-/19A-IPD incidence, as revealed by the segmented time series

regression analysis (Table 3, Fig 3 (B)). The same holds for ST 3 IPD (Table 3). Similar findings

were made, when splitting the age group into the 50–59 and�60 years old (Table 3).

Net change. Among the�50 years, old there were non-significant incidence trend

changes of −0.9% and −1.0% per month in the serotyped IPD and overall IPD during the post-

period, compared to the baseline trends (Table 3 and Fig 4). Together with a significant drop

in the post-period incidence levels, compared to the baseline levels, it resulted in significant

reductions in serotyped IPD and overall IPD of 52% (95% CI: 10%; 74%) and 51% (95% CI:

8%; 74%), respectively. After splitting the�50 age group, a 51% reduction in serotyped IPD

(95% CI: 3%; 76%) and 49% reduction in overall IPD (95% CI: −1%; 75%) were identified for

the�60 years. We found no vaccine net benefits in the 50–59 years old (S1 Table).

Fig 3. Monthly incidence of (A) PCV10 ST-IPD and (B) non-PCV10 ex ST 6A-/19A-IPD, among the�50 years

old, observed and modelled by a segmented negative binominal regression, Austria, January 2009-February 2017,

shown are overall and seasonal trends. The dashed, red line indicates the beginning of the transition year.

https://doi.org/10.1371/journal.pone.0210081.g003
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Serotype-specific IPD among the <5 and�50 years old in the pre-period

and early and late post-period

Among the<5 years old, ST 19A contributed the most to the IPD in in the late post-period,

accounting for 8 of the 36 serotyped cases (22.2%), versus 6 of the 77 serotyped cases in the

pre-period (7.8%) (Table 4, S2 Table, S1 Fig). The non-vaccine ST 3 was the second most prev-

alent ST in the late post-period and pre-period, accounting for 13.9% and 11.7% of the sero-

typed cases, respectively. The NVTs 15B and 23A, and the VTs 14, 23F, 7F appeared with two

cases each in the late post-period (ranks R3-R7). The monthly average IR of IPD due to the VT

14 dropped significantly from 1.06/106 pm in the pre-period (R1) to 0.20/106 pm in the late

Fig 4. Monthly incidence of (A) serotyped IPD, (B) overall IPD per 100,000 population among the�50 years old,

observed and modelled by a segmented negative binominal regression, Austria, January 2009-February 2017,

shown are overall and seasonal trends. The dashed, red line indicates the beginning of the transition year.

https://doi.org/10.1371/journal.pone.0210081.g004

Table 4. Number of cases of overall IPD (N) and serotyped IPD (nST), the proportion of serotyped IPD among overall IPD, the proportion of non-PCV10-IPD

(nnon-PCV10) among nST, the IR of overall IPD and serotyped IPD/106 pm, the serotype-specific IPD ranked from R1-R10 by IR/106 pm and alphanumerically in the

pre-period (2009–2011), early post-period (2013–2014) and late post-period (2015–2016) among the<5 and�50 years old, Austria.

Overall

IPD

Serotyped

IPD

Portion of

non-PCV10 IPD

Serotype-specific IPD

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Age Study period N IR /106 pm nST IR /106 nnon-PCV10/nST in % IR / 106 pm

<5 Pre 14 3 19A 18C 1 7F 11A 19F 6A 6B

108 7.63 77 5.44 46.8 1.06 0.64 0.42 0.35 0.28 0.28 0.21 0.21 0.21 0.21

Early post 14 19A 1 10A 15A 19F 24F 3 6A 7F

45 4.66 32 3.31 53.1 0.62 0.31 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21

Late post 19A 3 14 15B 23A 23F 7F 1 10A 19F

50 4.95 36 3.56 72.2 0.79 0.49 0.20 0.20 0.20 0.20 0.20 0.10 0.10 0.10

�50 Pre 3 14 7F 19A 19F 4 6A 22F 9N 9V

677 6.14 638 5.79 63.2 1.08 0.48 0.42 0.34 0.27 0.26 0.26 0.24 0.21 0.18

Early post 3 19A 7F 14 4 6C 9N 22F 11A 23B

530 6.70 472 5.97 76.5 1.4 0.39 0.32 0.27 0.24 0.24 0.24 0.22 0.18 0.18

Late post 3 19A 22F 8 14 9N 23B 6C 4 11A

679 8.24 608 7.38 83.2 2.12 0.55 0.45 0.32 0.29 0.25 0.22 0.22 0.19 0.18

https://doi.org/10.1371/journal.pone.0210081.t004
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post-period (R3). The remaining IPD cases of the late post-period were due to the VTs 1, 4,

6B, 19F and the NVTs 10A, 22F, 23B, 24B, 24F, 28A, 33A, 35F, 38 with one case each (IR: 0.10/

106 pm). The dominant occurrence of the two non-vaccine serotypes 19A and 3 in the early

and late post-period did not set-off the post-period drop of the PCV10 ST-IPDs due to the STs

1, 6B, 14, 18C and 19F (Table 4, S2 Table, S1 Fig). S2 Table illustrates findings of pre-post sero-

type-specific IPD changes by means of early post- and late post-period IR ratio, compared

with the pre-period IR per 106 pm of the top 10 serotypes among the<5 years old and�50

years old. S1 and S2 Figs, scatterplots of the top 25 serotypes, illustrate the rank shift between

pre-period and late post-period based on incidence rate per 106 pm and alphanumerical order

for these two age groups.

Among the�50 years old, the non-VTs (NVTs) constituted 83.2% of all serotyped IPD

cases in the late post-period versus 63.2% in the pre-period (Table 4). The NVT 3 was the most

prominent ST in the late post-period (28.7% of the serotyped IPD), as well as in the early post-

period (23.5%) and pre-period (18.7%), and experienced a significant IR increase in the late

post-period, compared with the pre-period (S1 Table, S2 Fig). The vaccine-related ST 19A

shifted from rank 4 in the pre-period (5.9% of serotyped IPD) to rank 2 in the late post-period

(accounting for 7.4% of serotyped IPD) with a significant IR increase in the late post-period

(S2 Table, S2 Fig). The NVT 22F shifted from rank 8 in the pre-period (4% of serotyped IPD)

to rank 3 in the late post-period (6.1% of serotyped IPD) (Table 4, S1 Table, S2 Fig) with a

monthly APC of +7.2% (95% CI: 2.8%; 12.4%) in the pre-period and +2.2% (95% CI: 0.5%;

4.1%) in the post-period. NVT 8 took rank 4 in the late post-period and the NVTs 23B and 6C,

the ranks 7 and 8. None of these three serotypes ranked among the top 10 STs in the pre-

period. All three NVT IPDs showed a significant IR increase in the late post-period, compared

to the pre-period (S2 Fig). The ST 8 IPD incidence increased by 4.7% per month (APC: 95%

CI: 2.2%; 7.4%) during the post-period versus an APC of −2.6% per month in the pre-period

(APC: 95% CI: −9.0%; 3.9%). In contrast, the ST 6C IPD incidence showed already a monthly

increase of 13.6% (95% CI: 0.3%; 41.5%) and ST 23B IPD of 4.5% (95% CI: −3.1%; +14.0%) in

the pre-period. Both were at high post-period incidence levels without post-period monthly

incidence changes (ST 6C IPD APC: −0.3%/month, 95%CI: −2.6%; 2.0%; ST 23B IPD APC:

+ 0.2%/month, 95%CI: −2.6%; 2.0%). The monthly average IR of IPD due to VT 14 dropped

significantly between the pre-period, taking rank 2 (R2), and the late post-period (R5), as also

seen for the IPDs due to VT 7F (pre-period: R3; late post-period: no longer among the top 10

STs) and 19F with a shift to lower ranks (pre-period: R5; late post-period: no longer among the

top 10 STs) (S2 Table, S2 Fig). The hereby-resulting overall trends of the annual incidence of

serotyped IPD (PCV10 ST-IPD and non-PCV10 ST-IPD), and separated, of non-PCV10 IPD

and PCV10-IPD among the�50 years old from 2009 to 2016 are illustrated in Fig 5.

Discussion

We report on the first population-based study that evaluated direct and indirect effects of

PCV10 as part of the publically funded Austrian childhood immunization program on IPD

among the predominantly PCV7-naïve Austrian population. We analyzed the vaccine effec-

tiveness, net vaccine benefits, and serotype-specific changes including analyses of PCV10

cross-protection and serotype-replacement.

Vaccine effectiveness in <5 years old, and in <2 years old: Among the<5 years old, the

PCV10 IPD rate experienced a reduction of 58% in the post-period relative to pre-period,

which corresponds to estimated 55 cases of PCV10 ST-IPD prevented by the PCV10-VP. The

2–4 years old already showed a decreasing trend in PCV10 (VT)-IPD during the pre-period,

which along with slowly increasing PCV10 coverage among the <5 years old during the post-
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period explain the lower vaccine effectiveness among the<5 years old, compared to other

observations. Finland, as a PCV7-naïve European country, is well comparable with Austria

concerning the history of PCV exposure and the PCV10 2+1 doses schedule. They found in a

population-based cohort-study a 92% reduction in the VT-IPD rate among the vaccine-eligible

children for which a PCV10-uptake was estimated at 95%, and a 56% reduction among the

2–4 years old children [36]. In Austria, the vaccine coverage for at least two PCV10 doses

among infants within the 2nd year of life reached about 70% following program introduction,

which suggests a larger protective effect of the PCV10-VP among older children for the follow-

ing years. Among the<2 years old the PCV10-IPD rate was reduced by 77% in the post-

period.

Serotype-specific IPD changes: Among the vaccine-types causing IPD, in the<5 years old,

the VT 14 experienced the largest decrease in the post-period, relative to the pre-period, fol-

lowed, by the vaccine-serotypes 1, 6B, 7F, 18C and 19F, showing substantial decline. Consis-

tent with our findings, a population-based matched case-control study on PCV10 effectiveness

on IPD in Brazilian children found high effectiveness against the two most common vaccine

STs, the VTs 14 and 6B [48].

Cross-protection and ST-replacement: The relevant increase in the monthly ST 19A IPD

incidence during the post-period, compared to the pre-period, could be attributable to VP

introduction in terms of a vaccine-induced replacement. Also increasing antibiotic selection

pressure, as discussed previously, could play an additional role [24]. Our data do not support

cross-protection against serotype 19A among children <5 years old, which is in accordance

with findings from the PCV10 using countries, The Netherlands and Sweden [49,50]. In con-

trast, the Finnish population based cohort-study in children, and both population-based case-

control studies in Brazil and Quebec, Canada, found significant reductions in ST 19A IPDs

Fig 5. Annual incidence of serotyped IPD, and of non-PCV10 IPD and PCV10-IPD per 100,000 persons among

the�50 years old, 2009 to 2016, Austria.

https://doi.org/10.1371/journal.pone.0210081.g005
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among vaccine-eligible children following PCV10 introduction [36,48,51–53]. However, the

impact in Finland was no longer significant when the follow up analysis was adjusted for a

pre-VP existing decrease in the ST 19A disease incidence [27,54]. PCV10 has shown mixed

evidence of direct short-lived cross-protection and little to no effect on 19A NP carriage,

resulting in continued transmission and disease [27,55]. Given the increasing trend in ST 19A

IPD in children <5 years old in Austria combined with lacking conclusive evidence of

PCV10-evoked cross-protection against 19A, a discussion on the benefit of introducing

PCV13 as part of the childhood immunization program is justified. The recent population-

based before-after study by Ladhani et al. on IPD seven years following PCV13 introduction in

England and Wales found a vaccine effectiveness of 67% for ST 19A IPD across all ages [16]. A

2017 review on the impact of PCV10 and PCV13 on ST 19A showed significantly higher func-

tional immune responses for PCV13 than PCV10. The authors explain this by both direct

impact and reductions in 19A NP carriage in children, inducing herd protection and reducing

19A IPD in non-vaccinated children and adults [56]. In the current study, the non-vaccine ST

3 was—after ST 19A - the second most prevalent ST in the<5 years old in the late post-period.

Even though the descending pre-period trend and the ascending post-period trend in ST 3

IPD were non-significant, a trend reversal may indicate a ST 3 replacement in the long term

among the<5 years old. [24,57].

Net Benefit: Despite the ascending post-period trend in the non-PCV10 ex ST 6A-/

19A-IPD, we detected a net benefit among the<5 years old, with 33% and 35% reduction in

serotyped IPD and the overall IPD. These findings are consistent with observations among

children from other PCV7-naïve PCV10-countries (Finland, Kenya and Chile) and from

countries using PCV7 prior to PCV10 (New Zealand and the Netherlands) [24,36,48,58].

Indirect protection of the VP in�50 years old: Among the�50 years old we detected a

reduction in PCV10 ST-IPD of 67%, corresponding to 462 PCV10-IPD cases prevented due to

indirect VP effect. Among the�60 years old, the vaccine effectiveness was even greater, at

71%. The PCV10-IPD incidence dropped at the beginning of the VP introduction, followed by

a gradual decrease. This immediate incidence reduction was unexpected as there was no

catch-up vaccination in place and may be explained by a preventive vaccine effect having

already started in the transition year (2012) or by unknown secular trends in pneumococcal

spread in the total population. It is less likely due to a direct effect of the PCV13 vaccination,

because of the low vaccine uptake in this age group, as we know at least for the years 2017 and

2018. However, we did not control for a direct effect by use of the segmented regression

model, because yearly PCV13 uptake rates were unavailable for 2013–2016.

As the herd protection of childhood PCV programs increases with vaccination coverage of

the vaccine-eligible population and with time since VP introduction, we expect an even greater

indirect protection for the coming years [15]. In The Netherlands, a PCV10–PCV7 IPD inci-

dence reduction of 47% was observed for the 50–64 years old and of 25% for the�65 years old

in the third year after PCV10 VP introduction [58].

Serotype-specific IPD changes, ST-replacement and cross-protection: Among the�50

years old, ST 3 was the most prevalent IPD causing ST in the pre- and post-period, and its

average monthly incidence rate was almost two times higher in the late post-period, compared

to the pre-period. However, a vaccine-attributable ST 3 replacement in IPD is rather unlikely,

as the pre-existing increasing trend in the monthly incidence of ST 3 IPD continued without a

significant change in the post-period. Other factors such as antibiotic selection pressure may

explain the general increase in ST 3 IPD, as observed at least since 2009 in Austria [24]. ST

19A was the second most frequently observed serotype in the early and late post-period. We

observed a significant increasing trend already in the pre-period, which continued to lesser

extent in the post-period (meaning a smaller positive slope relative to the pre-period).
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However, this is unlikely due to indirect cross-protection for PCV10 against ST 19A IPD, as

our data do not suggest direct cross-protection in children. This is in accordance with reports

from other countries showing limited evidence, that PCV10 has any impact on NP carriage of

ST 19A [27,55,59]. Also findings of studies from the PCV10-countries Finland and The Neth-

erlands show no cross-protective herd effects in older children and adults [55,57,60,61]. Com-

pared to the pre-period, the non-vaccine ST 8 IPD increased significantly in the adults in the

post-period, which indicates a vaccine induced replacement. In summary, in the�50 years

old, we observed a shift from the previously predominating VTs 14, 7F, 19F in the pre-period

to the NVTs 3, 6C, 8, 9N, 22F, 23B in the late post-period. Our findings on the distribution of

IPD causing non-PCV10 serotypes among the�50 years old following PCV10 introduction

are consistent with findings in the PCV7- naïve PCV10-countries (Finland and Chile: con-

cerning 3, 19A, 22F) and in countries, which used PCV7 prior to PCV10 (New Zealand: STs 3,

19A, 22F, 6C and 8; and the Netherlands: 19A, 8) [24].

Net changes: A considerable post-period drop in the levels of serotyped IPD and overall

IPD together with smaller increase in the post-period, compared with pre-period level and

trend resulted in a net IPD reduction for the�50 years old. Also The Netherlands reported an

overall net IPD reduction following PCV10 introduction in older adults, compared to the

PCV7 era [58]. In contrast, other PCV10-regions such as Finland, New Zealand, Quebec and

PCV10-counties in Sweden reported no net IPD benefit in the older age groups due to consid-

erable NVT-IPD increase. However, no data were presented on pre-existing trends for these

countries [24,35,36,62]. As stated elsewhere, and supported by our data, secular trends in

NVT-IPD can exist already prior to VP introduction.

The interrupted time series regression proved valuable in controlling for pre-intervention

trends in the outcomes of interest, when we evaluated PCV10 program effects in the older pop-

ulations. Due to a major quality improvement in the Austrian IPD surveillance system at the

beginning of 2009, we decided to exclude previous years from our study. Hereby, we might

have missed long-term secular trends or interpreted long-term fluctuations as short-term

trends. However, observations from 36 months prior to VP introduction can be assumed as

sufficient to provide robust estimates for trends.

To conclude, our national population-based vaccine effectiveness study brought further evi-

dence for direct and indirect protection among children and the elderly following introduction

of a childhood PCV10 VP. Adults of�60 years old seem to benefit the most by the herd pro-

tection. Net vaccine benefits were found in<5 and�50 years old. There was no evidence for

PCV10-evoked cross-protection in all age groups. Our data suggest replacement possibly for

ST 3 and ST 19A in<5 years old and certainly for ST 8 among�50 years old. Follow-up analy-

ses of IPD surveillance data using the presented methodological approaches are strongly

needed to characterize fully the magnitude of serotype replacement, to identify delayed

PCV10-evoked cross-protection and to assess further vaccine-attributable IPD reduction with

time after VP introduction.
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Methodology: Lukas Richter, Daniela Schmid, Joanna Jasinska, Heinz Burgmann, Michael

Kundi.

Project administration: Elisabeth Eva Kanitz, Ines Zwazl, Eva Pöllabauer.
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