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Key points

� The firing of subthalamic nucleus (STN) neurons and two types of external globus pallidus
(GP) neuron becomes excessively and rhythmically synchronised in Parkinsonism, but the
substrates for this are unknown.

� We recorded abnormal oscillatory firing of STN and GP neurons in vivo after chronic dopamine
loss, and then used computational models to explore the underlying effective connections and
physiological parameters.

� The best candidate model accurately reproduced our electrophysiological data and predicted
that the input and output connections of the two types of GP neuron are quantitatively different,
including inhibitory connections from striatum and excitatory connections from thalamus and
STN.

� The two types of GP neuron were also predicted to have different intrinsic physiological
properties, reflected in distinct autonomous firing rates.

� Our results elucidate potential substrates of GP functional dichotomy, and suggest that
rhythmic inputs from striatum, thalamus and cortex orchestrate STN–GP network activity
during Parkinsonian oscillations.

Abstract In Parkinsonism, subthalamic nucleus (STN) neurons and two types of external globus
pallidus (GP) neuron inappropriately synchronise their firing in time with slow (�1 Hz) or
beta (13–30 Hz) oscillations in cortex. We recorded the activities of STN, Type-I GP (GP-TI)
and Type-A GP (GP-TA) neurons in anaesthetised Parkinsonian rats during such oscillations to
constrain a series of computational models that systematically explored the effective connections
and physiological parameters underlying neuronal rhythmic firing and phase preferences in vivo.
The best candidate model, identified with a genetic algorithm optimising accuracy/complexity
measures, faithfully reproduced experimental data and predicted that the effective connections of
GP-TI and GP-TA neurons are quantitatively different. Estimated inhibitory connections from
striatum were much stronger to GP-TI neurons than to GP-TA neurons, whereas excitatory
connections from thalamus were much stronger to GP-TA and STN neurons than to GP-TI
neurons. Reciprocal connections between GP-TI and STN neurons were matched in weight,
but those between GP-TA and STN neurons were not; only GP-TI neurons sent substantial
connections back to STN. Different connection weights between and within the two types of GP
neuron were also evident. Adding to connection differences, GP-TA and GP-TI neurons were
predicted to have disparate intrinsic physiological properties, reflected in distinct autonomous
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firing rates. Our results elucidate potential substrates of GP functional dichotomy, and emphasise
that rhythmic inputs from striatum, thalamus and cortex are important for setting activity in the
STN–GP network during Parkinsonian beta oscillations, suggesting they arise from interactions
between most nodes of basal ganglia–thalamocortical circuits.
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Introduction

In idiopathic Parkinson’s disease (PD) and its animal
models, chronic loss of dopamine from basal ganglia
circuits profoundly alters the firing rates and patterns
of the neurons therein. Excessive synchronisation of
oscillatory neuronal activity is an especially prominent
functional change accompanying Parkinsonism (Bergman
et al. 1998; Hammond et al. 2007). In unmedicated
bradykinetic/rigid PD patients, synchronisation of neuro-
nal activity within and between the basal ganglia and
cerebral cortex preferentially occurs at beta (13–30 Hz)
frequencies (Brown et al. 2001; Hammond et al. 2007).
These clinically observed beta oscillations might be truly
pathological (Brown, 2006) and have been recapitulated in
studies of 6–hydroxydopamine (6-OHDA)-lesioned rats
in vivo; excessive beta oscillations emerge throughout
the basal ganglia including the output nuclei, sub-
thalamic nucleus (STN), external globus pallidus (GP)
and striatum, as well as in the cortex (Sharott et al. 2005;
Mallet et al. 2008a,b; Degos et al. 2009; Avila et al. 2010;
Moran et al. 2011). The appearance of such rhythms after
chronic dopamine loss is associated with hyperactivity
and hypoactivity in the STN and GP, respectively, and
a shift from mostly uncorrelated ensemble activities to
highly synchronised firing across the network (Mallet et al.
2008a,b).

The widespread occurrence of such abnormal neuronal
rhythms across the Parkinsonian basal ganglia, together
with the myriad interactions between these nuclei,
challenges ready definition of the underlying cellular
substrates. Experimental and computational modelling
studies have highlighted the possibility that the STN–GP
network is a ‘pacemaker’ for synchronised oscillations
(Bevan et al. 2002; Gillies et al. 2002; Terman et al. 2002;
Holgado et al. 2010). However, past work has taken the
mainstream view that GP is populated by a single cell type
with homogeneous functional properties, despite a host
of contrary evidence (Kita, 2007). Importantly, functional
diversity in GP comes to the fore in Parkinsonism, such

that two main classes of GP neuron (termed here Type–I
and Type–A neurons; see below) can be readily defined in
vivo according to the distinct rates and preferred phases
of their firing during ongoing slow (�1 Hz) and beta
oscillations (Magill et al. 2001; Zold et al. 2007; Mallet
et al. 2008a). This temporal dichotomy persists across
extreme brain states, suggesting it is largely subserved by
immutable connections (Mallet et al. 2008a). Functional
dichotomy within GP aside, neither STN nor GP alone
readily generates synchronous pathological oscillations
and, although the precise origin of abnormal beta rhythms
is undefined, it is likely that they emerge in PD as a
consequence of wider network interactions (Bevan et al.
2002; Holgado et al. 2010; Moran et al. 2011). The
STN receives massive GABAergic input from GP, and
major glutamatergic inputs from the cerebral cortex and
intralaminar thalamus (Smith et al. 1998; Bevan et al.
2007). The GP receives most of its GABAergic inputs
from striatal and GP neurons, and major glutamatergic
input from STN (Smith et al. 1998; Kita, 2007). Which
of these key glutamatergic or GABAergic connections of
the STN–GP network are mechanistically imperative for
generating synchronised oscillations with the hallmark
phase differences in GP is unclear, as is the impact
of distinct cell types within GP. A resolution would
be facilitated by synergising experimental approaches
and innovative computational models that embrace GP
dichotomy (Jaeger, 2013).

To address these issues and better define the effective
connectivity and other parameters underpinning both
slow and beta oscillations in the Parkinsonian STN–GP
network, we generated a series of firing rate-based
computational models that differed in terms of structural
and/or ‘physiological’ architecture. We used extracellular
recordings of unit activity in the STN–GP network of
6–OHDA-lesioned rats in vivo to constrain the models and
provide an empirical benchmark to quantitatively assess
their utility and accuracy. Our models offer several new
experimentally tractable predictions, including that the
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intrinsic properties and connections of GP-TI and GP-TA
neurons are quantitatively different.

Methods

Ethical approval

All experiments on animals were conducted in accordance
with the Animals (Scientific Procedures) Act, 1986 (UK).

Overview of experimental and computational
strategy

We explored the effective connectivity underpinning
abnormal oscillations in the Parkinsonian STN–GP
network in a series of computational models that
were successively more complex in terms of either
structural and/or physiological architecture (see below).
Each computational model was tightly constrained by
data from our in vivo electrophysiological recordings of
cortical oscillations and neurons in the STN–GP network
in a clinically relevant rat model of PD, as well as by
biological data in existing publications. As detailed below,
our general strategy was to mathematically define several
firing rate-based computational models with distinct
combinations of fixed and unknown parameters, and
then use machine learning techniques to estimate the
unknown parameters of most interest, namely those
describing the effective connectivity of the neural system.
We quantitatively assessed the utility of each model
with measures of an accuracy/complexity trade-off, which
effectively gauge how well the experimental data are being
fitted while penalising model complexity. We use the
term ‘effective connectivity’ to distinguish the approach
used here (a model-based characterisation of predicted
causal influences) from studies elucidating ‘functional
connectivity’, which entail descriptive characterisations of
the statistical dependence between two time series (see
Moran et al. 2011). From the outset here, we follow the
widely held view that neither the STN nor GP alone can
generate synchronous pathological oscillations and thus,
that they emerge in PD as a consequence of wider network
interactions (Bevan et al. 2002; Holgado et al. 2010; Moran
et al. 2011).

Electrophysiological data collection

Experimental procedures were carried out on adult,
male Sprague–Dawley rats (Charles River). Some of
the electrophysiological data that were gathered in
6-hydroxydopamine (6-OHDA)-lesioned Parkinsonian
rats to constrain our computational models have been
published (Mallet et al. 2008a), although we have
executed new analyses of these data. The lesioning
and recording methods have been documented in
detail elsewhere (Mallet et al. 2008a). Briefly, unilateral

6–OHDA lesions were carried out on rats (190–305 g)
anaesthetised by inhalation of 2–4% v/v isoflurane (Isoflo,
Schering-Plough, Welwyn Garden City, UK) in O2.
The neurotoxin 6–OHDA (hydrochloride salt; Sigma,
Gillingham, UK) was injected (3 μl of a 4 mg ml−1

solution) adjacent to the medial substantia nigra. The
extent of the dopamine lesion was assessed 14 or 15 days
after unilateral 6–OHDA injection by challenge with
apomorphine (0.05 mg kg−1, S.C.; Sigma). The lesion
was deemed successful in animals that made �80 net
contraversive rotations in 20 min. Electrophysiological
recordings were performed ipsilateral to successful
6–OHDA lesions in 27 anaesthetised rats (285–470 g at
the time of recording) 21–45 days after surgery.

Anaesthesia for electrophysiology was induced with
isoflurane (as above), and maintained with urethane
(1.3 g kg−1, I.P.; Sigma), and supplemental doses
of ketamine (30 mg kg−1, I.P.; Pfizer, Sandwich,
UK) and xylazine (3 mg kg−1, I.P.; Bayer, Newbury,
UK). Frontal electrocorticograms (ECoGs), electro-
cardiographic activity and respiration rate were constantly
monitored to ensure the animals’ wellbeing. Extracellular
recordings of the spikes fired by ensembles of single
neurons in the STN and/or GP were typically made
using multi-electrode arrays (‘silicon probes’; NeuroNexus
Technologies, Ann Arbor, USA). Because STN neurons are
highly active and densely packed, silicon probe contacts
within STN often registered multiunit activity (Mallet
et al. 2008b). To increase our sample of well-isolated single
units, some recordings of STN neurons were made using
higher-impedance glass electrodes (Mallet et al. 2008a,b).
Unit activity in the STN–GP network was recorded during
two cortically defined brain states (see below). After the
recording sessions, the animals were killed with ketamine
(150 mg kg−1, I.P.) and perfused via the ascending aorta
with 100 ml of 0.01 M PBS (pH 7.4), followed by 300 ml of
0.1% w/v glutaraldehyde and 4% w/v paraformaldehyde
in 0.1 M phosphate buffer (pH 7.4), and then by 100 ml of
PBS. Brains were sectioned 24–72 h later for verification of
recording locations using standard histological procedures
(see Mallet et al. 2008a).

Neuronal activity

Unit activity was recorded during cortical slow-wave
activity (SWA), which is similar to activity observed
during natural sleep, and during episodes of spontaneous
‘cortical activation’, which contain patterns of activity
that are more analogous to those observed during the
awake, behaving state (Steriade, 2000). Both brain states
were defined according to the frontal ECoGs recorded
simultaneously with unit activity in the STN–GP network
(Mallet et al. 2008a). Beta oscillations are only exaggerated
in cortico-basal ganglia circuits after a profound and
chronic (>4 days) disruption of dopaminergic trans-
mission (Mallet et al. 2008b). Moreover, in anaesthetised
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6–OHDA-lesioned animals, exaggerated beta oscillations
emerge in these circuits during spontaneously activated
brain states (Mallet et al. 2008a,b), thus accurately
mimicking the oscillatory activity recorded in awake,
unmedicated PD patients (Brown, 2006).

When recorded in epidural ECoGs, the slow (�1 Hz)
oscillation that dominates SWA contains surface-positive
‘active’ components, which are correlated with the
synchronous discharges of cortical projection neurons,
and surface-negative ‘inactive’ components, which are
correlated with a widespread and profound reduction in
cortical neuron activity (Fig. 1). We first quantified the
temporal relationship between the cortical slow oscillation
and single-unit activity in the STN and GP as detailed
previously (Mallet et al. 2008a). In doing so, we were able
to define one type of STN neuron and two main types
of GP neuron in 6–OHDA-lesioned rats (Fig. 1). Type-A
GP neurons (GP-TA) were statistically defined as those
preferentially discharging during the active component
of the slow oscillation in ECoGs, whereas Type-I GP
neurons (GP-TI) preferentially discharged during the
inactive component (Fig. 1). Note that STN neurons pre-
ferentially fire during the active component of the slow
oscillation (Magill et al. 2001; Walters et al. 2007; Mallet
et al. 2008a). Neurons of the same type tend to fire together,
with small phase differences, whereas different types of
neuron tend not to do so (Mallet et al. 2008a). This
diversity in temporal coupling persisted across SWA and
activated brain states, suggesting it is strongly governed
by ‘hard wiring’, that is, the connections we endeavoured
to model here (Mallet et al. 2008a; see Fig. 1). From the
recorded single-unit activities, we calculated the average
maximum, mean and minimum firing rates (during an
oscillatory cycle) for each neuronal population for direct
comparison with data from our computational models
(see below). In our recordings, the peak frequency of the
cortical slow oscillation during SWA was 0.92 ± 0.03 Hz
(Mean ± SEM), whereas the peak oscillation frequency in
the beta band during cortical activation was 20.3 ± 0.3 Hz.
These oscillation frequencies were used to guide extrinsic
rhythmic inputs to the STN–GP network in our models
(see below).

Population-level computational models

A key innovation of our computational modelling
approach here is that we consider that GP neurons belong
to one of two major populations, that is, either GP-TA or
GP-TI, as supported by electrophysiological studies in vivo
(Magill et al. 2001; Zold et al. 2007; Mallet et al. 2008a).
While the axonal projections of electrophysiologically
defined GP-TA and GP-TI neurons have recently been
elucidated in part (Mallet et al. 2012), their synaptic
inputs are unknown. However, we started the current
study knowing that published work strongly suggested

that all GABAergic GP neurons in the rat emit local
axon collaterals (Sadek et al. 2007) and also innervate
STN (Baufreton et al. 2009). Moreover, all GABAergic
GP neurons are thought to receive inputs from both
striatum and STN (Smith et al. 1998; Kita, 2007). It is also
now widely acknowledged that STN receives substantial
monosynaptic inputs from ipsilateral frontal neocortex
(Fujimoto & Kita, 1993; Nambu et al. 2002; Magill
et al. 2004). We thus incorporated these fundamental
structural elements as likely effective connections of
GP-TA, GP-TI and STN neurons in all our computational
models. Another innovation in our approach is the
inclusion (in only some of the studied models) of a
direct thalamic projection to the STN–GP network. We
explore this connection because glutamatergic neurons
of the intralaminar thalamus, and particularly those of
the parafascicular nucleus (Pfn), innervate both STN
and GP (Bevan et al. 1995; Yasukawa et al. 2004), and
because intralaminar thalamic projections to the basal
ganglia may play a key role in the pathophysiology of PD
(Smith et al. 2009). Our full model architecture, which
has all connections that are considered in this study,
is shown in Fig. 2. This architecture captures all the
major intrinsic/extrinsic glutamatergic and GABAergic
connections of the STN–GP network, although we note
that the extrinsic afferents to these nuclei also include
monoaminergic and other inputs with functions that
are poorly understood. Although dopaminergic inputs
to basal ganglia–thalamocortical circuits are important
for controlling the activity patterns therein (Hammond
et al. 2007), we did not include the connections of
midbrain dopaminergic neurons in our computational
models because we sought to investigate only the
pathophysiological sequelae of profound and chronic
dopamine depletion, a key feature of Parkinsonism. In
short, we explored only the effective connectivity of
major glutamatergic and GABAergic inputs that directly
impinge on STN and/or GP neurons. Corticostriatal
and thalamostriatal projections were thus not explicitly
modelled with weights, but are included in Figs 2–5 for
completeness. For our purposes here, it was not imperative
to simulate the STN and GP connections to other basal
ganglia structures (i.e. output nuclei and striatum).

Another novel aspect of our modelling strategy is that
we sought to reproduce the firing rates (oscillations) of
STN and GP neurons that prevail across two brain states,
namely SWA and cortical activation. To characterise the
firing rates of neuronal populations in STN and GP we
use the well-described ‘mean firing rate model’ (Dayan &
Abbott, 2001; Vogels et al. 2005). We have already used
population-level mean firing rate models to successfully
reproduce some key electrophysiological features of the
STN–GP network, including beta oscillations, albeit
with a single cell type in GP (Holgado et al. 2010).
Mean firing rate models have the additional advantage
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of providing simple mathematical descriptions, i.e. a
first-order differential equation to simulate firing in each
neural population. This allowed us to both reproduce our
extensive electrophysiological data sets, and to analytically
study the model afterwards. All firing rates in this study are
expressed as the number of action potentials (‘spikes’) fired

per second (spk s−1). The mean firing rate model describes
the changes in the firing rate of a neural population by the
following equation:

τv̇ = F ( �w�u) − v (1)
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Figure 1. Spike timing of subthalamic nucleus and external globus pallidus neurons during slow-wave
activity and cortical activation in 6–OHDA-lesioned Parkinsonian rats
A, frontal electrocorticogram (ECoG) simultaneously recorded with a typical STN neuron, GP-TA neuron and GP-TI
neuron during SWA. All subsequent panels refer to the same three neurons. Cortical activity is dominated by a slow
oscillation (�1 Hz) that can be divided into ‘active’ (Act) and ‘inactive’ (In) components. Vertical calibration bars:
400 μV (ECoG), 200 μV (units). B, during cortical activation, the slow oscillations are replaced by excessive beta
oscillations (�20 Hz). Grey lines centred on peaks of the cortical beta oscillation (0 deg) exemplify spike-timing
relationships. Calibration bars: 100 μV (ECoG), 200 μV (units). C, activity histograms of the neurons in relation
to the two components of the cortical slow oscillation. While STN and GP-TA neurons preferentially discharge
during the active component, GP-TI neurons fire more vigorously during the inactive component. D, linear phase
histograms of neuron firing with respect to the cortical beta oscillations (two cycles shown for clarity). Note that,
irrespective of brain state, oscillation frequency or changes in absolute firing rate, STN and GP-TA neurons tended
to fire together (‘in-phase’), whereas GP-TI neurons tended to fire in ‘anti-phase’ to both. These and similar
recordings in vivo were used to generate several statistical measures of firing rates and other activity parameters
that each computational model had to fit.
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In eqn (1), v is the firing rate of the neural population
being modelled, v̇ denotes the rate of change in the firing
(i.e. derivative of v), �u is the vector of firing rates of the
presynaptic neural populations, �w is the vector of weights
describing strengths of connections from the presynaptic
populations, and τ is the firing-rate time constant
describing how rapidly the postsynaptic population reacts
to its inputs. F(·) is the input–output relationship (or
‘activation function’) of the neurons in the steady state; this
is often termed the frequency–current (f–I) relationship in
experimental studies. Using eqn (1) to describe the activity
in the STN population and activity in the two distinct GP
populations, as mapped onto the full model architecture

of Fig. 2, we obtain the following set of differential
equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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− GPI (t)
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Figure 2. Full architecture of the computational model of the STN–GP network and its major
glutamatergic and GABAergic connections
In this and subsequent figures, different brain regions are represented by boxes, with those extrinsic to the STN–GP
network shaded in grey. The model contains a single population of STN neurons and two populations of GP neurons
(GP-TI and GP-TA). Modelled connections are portrayed by continuous lines, terminating in either an arrowhead
(to indicate an excitatory glutamatergic connection) or a circle (to symbolise an inhibitory GABAergic connection).
Note that only some models included connections from the thalamic parafascicular nucleus (Pfn) to the STN–GP
network. Italic text pertains to variables used in model equations. Adjacent to each modelled connection are
the associated weight (w) and, where appropriate, transmission delay (�t). Corticostriatal and thalamostriatal
projections (dashed lines) were not explicitly modelled with weights but are included here for completeness.
Each population of GP-TI, GP-TA and STN neurons was described by a differential equation (see eqn (2)), which
modelled a variable mean firing rate that tends to a stable constant value (FI(in), FA(in) and FS(in), respectively). The
input–output function of each population is diagrammatically shown as a sigmoidal f–I curve, where Mn and Bn

are the maximum and basal firing rates, respectively, of neural population n. Bn effectively captures autonomous
activity in the absence of inputs. τn is the membrane time constant. Other parameters: wnm, weight of connection
from population n to population m; �tnm, delay in transmission from population n to m. Indices G, I, A, S, C, X

and P pertain to the GP, GP-TI, GP-TA, STN, cortex, striatum and Pfn neuronal populations, respectively.
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In eqn (2), STN is the firing rate of the STN neural
population, GPA is the firing rate of the GP-TA neural
population, and GPI is the firing rate of the GP-TI
population. SṪN, ĠPA and ĠPI denote rates of change in
the firing of these populations. Ctx, Str and Pfn are the
inputs from cortex, striatum and thalamic parafascicular
nucleus, respectively. τS, τA and τI are the firing-rate
time constants for STN, GP-TA and GP-TI populations,
respectively. FS(·), FA(·) and FI(·) are the input–output
relationships for STN, GP-TA and GP-TI populations.
wnm denotes the weights of the connections from neural
population n to neural population m. �tnm denotes the
transmission delays of the connections from population
n to population m. The indices n and m indicate different
neural populations and they can be: S for STN, A for
GP-TA, I for GP-TI, C for cortex, X for striatum and P
for Pfn.

The firing rates of STN, GP-TA and GP-TI neurons
are simulated with differential equations (eqn (2)), while
cortical, striatal and thalamic firing rates are treated
as external inputs to these differential equations. The
firing rates of most neurons in cortex, striatum and
parafascicular nucleus are oscillatory (at �1 Hz) during
SWA in 6–OHDA-lesioned rats (Mallet et al. 2006, 2008a;
Ballion et al. 2008; Parr-Brownlie et al. 2009). During
the activated brain state, synchronised beta oscillations
(�20 Hz) are instead observed at the population level
(as evinced in local field potentials) in the cortex and
striatum of these Parkinsonian rats (Moran et al. 2011).
We assume that the firing rates of the neurons in these
brain regions oscillate accordingly. Thus, the firing
rates of cortical, striatal and thalamic projection neuron
populations are described in the computational model by
sinusoidal waves, with means, amplitudes and frequencies
inferred from the appropriate experimental studies (see
below). The equation of this sinusoidal wave for each
neural population is:

αsRsn sin(2πf s t + θn)/2 + Rsn (3)

in spikes per second. In eqn (3), fs represents the frequency
of oscillations during the specific brain state s (i.e. 1 Hz
for SWA and 20 Hz for the activate state), θn represents
the phase of activity in nucleus n with respect to ongoing
cortical oscillations, and Rsn the mean firing rate of nucleus
n during the specific brain state s. The amplitude of
oscillations in eqn (3) is equal to αsRsn, thus αs is a scaling
constant that describes how large the amplitude of the
oscillation is with respect to the mean firing rate during
the specific brain state s. The indices s and n indicate,
respectively, the brain state and the nucleus related to the
parameters α, θ, f and R. The index n can take the values
C (cortex), X (striatum) or P (parafascicular nucleus),
while s can take the values Act (cortical activation) or Swa
(slow-wave activity). Using this notation, the activity of

striatum during cortical activation, for instance, becomes:

Str(t) = αActRActX sin(2πfActt + θX)/2 + RActX (4)

in spikes per second.
How the firing rates of STN neurons vary as a

function of their inputs, as mimicked by somatic current
injections (that is, their f–I relationships), has been
studied in detail in vitro (Nakanishi et al. 1987; Bevan
& Wilson, 1999; Hallworth et al. 2003; Wilson et al. 2004;
Barraza et al. 2009). Most STN neurons show sigmoidal
f–I relationships (‘curves’). Some GP neurons have f–I
curves that approximate a sigmoidal function (Deister
et al. 2009), while other GP neurons probably do not
(Kita & Kitai, 1991; Nambu & Llinas, 1994; Bugaysen
et al. 2010). We explore the impact of heterogeneity
in the intrinsic properties of GP neurons in some of
our computational models (see Results). However, with
respect to f–I relationships, theoretical studies have shown
that a population of neurons with varied f–I curves can be
approximated in a population-level mathematical model
by a unit with a sigmoidal input–output relationship
(Wilson & Cowan, 1972). Therefore, in all our models,
populations of both STN and GP neurons have sigmoidal
f–I curves, which we mathematically describe with the
function Fn(·). To unambiguously determine the Fn(·)
function, we specify the values of the maximum firing rate
(maximum point of Fn(·), called Mn), the ‘basal’ firing
rate (Fn(0), called Bn), which is equivalent to the mean
firing rate when deprived of all synaptic inputs, and the
slope of the sigmoid function (determined by Sn). Note
that because most STN and GP neurons are able to fire
autonomously, i.e. fire at a steady rate in the absence of
applied current or synaptic inputs (Surmeier et al. 2005),
Bn is not zero. Using these three parameters to define the
activation function, its equation becomes:

F n(in) = sig(in, Mn, B n, Sn)

= Mn

1 + exp (−Snin/Mn) (Mn − B n) /B n
(5)

In eqn (5), the index n represents the neural population
being modelled, and ‘in’ the input that this population
receives.

Model parameters

There are a large number of parameters in the differential
equations of the mathematical models. Following the
same procedure used by Holgado et al. (2010), we fixed
the values of those parameters that could be accurately
determined on the basis of published experimental studies,
while we estimated as best as possible the values of the
parameters that could not be fixed. Table 1 lists the
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parameter values that were fixed in most models. Note
that, to fix model parameters, all values used were derived
from experimental studies carried out in rodents (rats),
partly because our own electrophysiological data were
obtained in rats but also because the basal ganglia of
rats is the most thoroughly studied of all species (end-
owing a large resource of data). In the case of some
parameters, it can be debated whether it is better to fix
a value to the available experimental data or to estimate it.
To study which parameters should be fixed and which ones
should not be fixed, we designed different computational
models based on our full architecture (see Fig. 2), and
these models differed slightly from each other in terms of
which parameters are fixed and estimated. These different
models will be described in detail below. Table 2 shows the
various parameters that were fixed and estimated for each
model.

During the description of the different model
parameters below, the index notation introduced in the
previous subsection will be followed. These indices may
be presented with the wild-card letters n or m to indicate
neuronal population names, and they can take the values
S for STN, A for GP-TA, I for GP-TI, C for cortex, X
for striatum and P for parafascicular thalamus. We use
an additional index to represent brain state, which is pre-
sented with the wild-card letter s and may take the values
Act for cortical activation or Swa for slow-wave activity.

The following is a description of the parameters used in
our computational models (also see Tables 1 and 2).

Transmission delays (�tnm). This parameter describes
the delay in information transmission between two
connected neuronal populations n and m, and is a sum
of axonal conduction and synaptic transmission times.
More specifically, once a change in firing rate occurs in the
presynaptic population (n), this parameter describes the
time required for this change to affect the firing rate of the
postsynaptic population (m). These parameters are fixed
at the same values in all but one of our models, and the
values for connections between STN and GP neurons can
be readily extracted from electrophysiological studies in
vivo (Kita et al. 1983; Kita & Kitai, 1991). However, because
the transmission delays between GP neurons themselves
are unknown, we approximated the parameter as half of
the transmission delay between STN and GP neurons; the
spread of the local axon collaterals of GP neurons is less
than half the separation between STN and GP in the rat
(Sadek et al. 2007).

Firing-rate time constants (τn). Once the input to a
group of postsynaptic neurons changes, this parameter
measures the time required for the mean firing rate of
these postsynaptic neurons to adapt to such a change,
i.e. to acquire the new stable firing rate indicated by its
sigmoidal input–output relationship. The time constant

of a firing rate model is approximately equal to the
experimental membrane time constant of the neurons
being modelled (Dayan & Abbott, 2001) and therefore we
set this parameter to the membrane time constant in all
models, as in Holgado et al. (2010). In our models there are
three such time constants: for STN (τS), GP-TA (τA) and
GP-TI (τI). Their values were estimated from published
intracellular recordings of STN and GP neuron membrane
potentials (Kita et al. 1983; Nakanishi et al. 1987; Kita &
Kitai, 1991), that is, the time needed for these neurons
to reach approximately two-thirds of a final ‘stable’ firing
rate in response to somatic injection of a step current. In
the absence of definitive empirical evidence, we assume
that τA and τI are equal.

Synaptic weights (wnm). These parameters describe
the synaptic influence that each presynaptic neuronal
population (n) has on each postsynaptic population (m).
The set of values of all the synaptic weights represents the
effective connectivity of the neuronal network. Because
deriving estimates of effective connectivity to and within
the STN–GP network was the principal goal of this study,
all wnm parameters were estimated in all models.

Oscillation frequencies (fs). These parameters determine
the frequencies of the firing rate oscillations taking place
in cortex, striatum and thalamus, which are treated as
external inputs to our computational models of the
STN–GP network (variables Ctx, Str and Pfn in eqn
(2)). We used two such frequency parameters, one when
simulating cortical activation (fAct) and the other when
simulating SWA (fSwa), with values of 20.0 Hz and
1.0 Hz, respectively, as approximated from our electro-
physiological recordings (see above).

Relative oscillation amplitudes (αs). These parameters
determine the amplitude of the oscillations taking place
in cortex, striatum and thalamus, as a proportion of the
mean firing rate of the neuronal population in each of
these brain regions. There are two amplitude parameters,
one used when simulating cortical activation (αAct) and
other one used when simulating SWA (αSwa). In all but
one of the models, αs parameters were estimated; they
were fixed to a value of 1.0 in the exceptional case (see
Table 2).

Mean firing rates (Rsn). These parameters represent the
mean firing rates of oscillating neurons in cortex, striatum
and thalamus during each brain state (SWA or activation).
For consistency with our own experimental data, we
fixed most of these parameters using values reported
in published studies of unit activity recorded during
defined brain states in anaesthetised Parkinsonian rats (see
Table 1).
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Table 1. Model parameters with values fixed on published results

Parameter Value Source of biological data

Transmission �tSA and �tSI 2.8 ms (Kita & Kitai, 1991)
delays (�t) �tAS and �tIS 1.3 ms (Kita et al. 1983)

�tAA, �tIA, �tAI

and �tII

1 ms Based on the above and the assumed closer proximity
between GP neurons

Time constants (τ) τS 10 ms (Kita et al. 1983; Nakanishi et al. 1987)
τA and τI 15 ms (Kita & Kitai, 1991)

Oscillation fAct 20.0 Hz (Mallet et al. 2008a,b)
frequency (f) fSwa 1.0 Hz (Magill et al. 2001; Mallet et al. 2008a)

Mean firing rates (R) RActC 2.5 spk s−1 (Mallet et al. 2005)
RSwaC 2 spk s−1 (Ballion et al. 2008)
RSwaX 0.6 spk s−1 (Mallet et al. 2006)
RSwaP 3 spk s−1 (Parr-Brownlie et al. 2009)

Intrinsic properties of MS 250 spk s−1 (Hallworth et al. 2003; Barraza et al. 2009)
STN and GP neurons MA and MI 100 spk s−1 (Kita & Kitai, 1991; Deister et al. 2009)
(f–I curves) BS 10 spk s−1 (Abbott et al. 1997; Hallworth et al. 2003; Baufreton et al.

2009)
BG 20 spk s−1 (Deister et al. 2009; Miguelez et al. 2012)
BA 20 ± 3.5(BGdiff) spk s−1 Based on BG and reports of intrinsic cellular

heterogeneity in GP (see main text)
BI 20 ± BGdiff spk s−1 Based on BG and reports of intrinsic cellular

heterogeneity in GP (see main text)
SS �5 (Nakanishi et al. 1987; Hallworth et al. 2003)
SA and SI �2 (Kita & Kitai, 1991; Deister et al. 2009)

The value of each fixed model parameter is given together with the literature source from which it was derived. In the rare case that
direct experimental evidence was not available, an assumption was made as described. Not all these parameter values were used in
all models. Moreover, in some models, a number of the parameters were instead estimated with the fitting algorithm. Table 2 shows
the parameters that were estimated as well as those fixed to the values of this table. Swa, slow-wave activity; Act, cortical activation;
M, maximum firing rate; B, basal firing rate; S, slope of the f–I curve; BGdiff, basal firing rate difference between GP-TA and GP-TI
neurons. Indices G, I, A, S, C, X and P pertain to the GP (as a whole), GP-TI, GP-TA, STN, cortex, striatum and Pfn neuronal populations,
respectively. Note that BA and BI take into account the relative proportions of GP-TA neurons to GP-TI neurons (ratio of 1:3.5), and
were set to be symmetrically distributed around the mean basal firing rate of all GP neurons (BG), i.e. if one population had a basal
firing rate higher than BG then the other population had a basal firing rate lower than BG. spk s−1, spikes fired per second (a measure
of firing rate).

Phase difference with cortex (θn). These parameters
represent the phase difference of oscillations in cortex,
striatum and thalamus with respect to cortex. There are
three phase parameters (θC, θX and θP), one for each of
these neural populations. By definition then, θC is equal
to 0. In all but one of the models, θX was estimated;
it was fixed to a value of 0 in the exceptional case
(see Table 2). In the absence of experimental data to
argue otherwise, θP was also conservatively fixed to 0.
Although the time taken for action potential propagation
and synaptic transmission could introduce appreciable
phase differences, both experimental data and dynamical
system theory suggest that widely distributed neuronal
populations can synchronise their activity with no phase
difference (Roelfsema et al. 1997; Izhikevich, 2007).

Intrinsic properties or f–I curve parameters (Mn, Bn

and Sn). These unambiguously define the shape of the
sigmoidal activation functions Fn(·) for STN, GP-TA and

GP-TI neurons. To fix parameters of maximum and basal
firing rates (Mn and Bn) we chose, whenever possible,
values detailed in published studies of rat neurons that
were recorded using ‘near physiological’ techniques in
vitro. This was particularly important for Bn to ensure that
our models best captured the autonomous firing rates
of STN and GP neurons. Thus, we preferentially used
data from cell-attached or perforated-patch recordings
of neurons that were performed at �35°C (Abbott et al.
1997; Hallworth et al. 2003; Baufreton et al. 2009; Deister
et al. 2009) to minimise the effects of cell dialysis that
often cause gradual changes in activity profiles over time
(see Barraza et al. 2009; Bugaysen et al. 2010). For Bn, we
focused on data recorded in the presence of antagonists
of glutamate and GABA receptors. We chose the values
of Sn on the basis of experimental data (Nakanishi et al.
1987; Kita & Kitai, 1991; Hallworth et al. 2003; Deister
et al. 2009), such that the Fn(·) function reached the
firing rates Bn and Mn evident in published f–I curves
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Table 2. Classification of model parameters

Computational model

Parameters Definitions 1-NoTB 2-NoB 3-Optimal 4-NoT 5-Noθ 6-Noα 7-NoR 8-Do�

Transmission delays
(�t)

�tSA, �tSI, �tAS, �tIS . . . Fix Fix Fix Fix Fix Fix Fix EST

Time constants (τ) τS, τA and τI Fix Fix Fix Fix Fix Fix Fix Fix
Synaptic weights (w) wSA, wSI, wAS, wAI . . . EST EST EST EST EST EST EST EST
Oscillation fAct Fix Fix Fix Fix Fix Fix Fix Fix

frequency (f) fSwa Fix Fix Fix Fix Fix Fix Fix Fix
Relative oscillation αAct EST EST EST EST EST Fix EST EST

amplitude (α) αSwa EST EST EST EST EST Fix EST EST
Mean firing rates (R) RActC Fix Fix Fix Fix Fix Fix Fix Fix

RSwaC Fix Fix Fix Fix Fix Fix Fix Fix
RActX EST EST EST EST EST EST Fix EST
RSwaX Fix Fix Fix Fix Fix Fix Fix Fix
RActP — EST EST — EST EST Fix EST
RSwaP — Fix Fix — Fix Fix Fix Fix

Phase difference c.f. θC Fix Fix Fix Fix Fix Fix Fix Fix
cortex (θ) θX EST EST EST EST Fix EST EST EST

θP — Fix Fix — Fix Fix Fix Fix
Intrinsic properties of MS Fix Fix Fix Fix Fix Fix Fix Fix

STN and GP neurons MA and MI Fix Fix Fix Fix Fix Fix Fix Fix
(f–I curves) BS Fix Fix Fix Fix Fix Fix Fix Fix

BA and BI — — Fix Fix Fix Fix Fix Fix
BG Fix Fix — — — — — —
BGdiff — — EST EST EST EST EST EST
SS Fix Fix Fix Fix Fix Fix Fix Fix
SA and SI Fix Fix Fix Fix Fix Fix Fix Fix

We studied 8 models, each of which incorporated a unique set of parameters that were either estimated with the fitting algorithm
or fixed to the values arising from the experimental findings listed in Table 1. The estimated and fixed parameters for each model
are marked as ‘EST’ and ‘Fix’, respectively. Parameters not used by a model are marked with dashes. For clarity, the parameters with
EST/Fix classifications that differed as compared to those of Model 3-Optimal (the model that best fitted the experimental data) are
in bold and italic. For definitions of symbols and other abbreviations, see Table 1.

derived from recordings of neuron responses to somatic
current injections (in pA); with appropriate input scaling,
the activation functions shown in Figs 3–5 mimic these
published f–I curves. Because the intrinsic membrane
properties and f–I relationships of physiologically defined
GP-TA and GP-TI neurons are unknown (they have
not been intracellularly recorded), we were conservative
in initially estimating Mn and Sn to be equal for these
different cell types. Accordingly, in some of our models,
we assumed that both types of GP neuron shared the
same basal firing rate (BG). In other models, we assumed
that GP-TA and GP-TI neurons have different basal firing
rates, that is, BA and BI, and the difference between them
is described by the parameter BGdiff. This is supported
by experimental evidence that not all GP neurons can
autonomously fire in a robust manner (Nakanishi et al.
1987; Nambu & Llinas, 1994; Cooper & Stanford, 2000;
Bugaysen et al. 2010; Chuhma et al. 2011; Miguelez
et al. 2012), including those recorded in vitro after
6–OHDA lesions (Chan et al. 2011; Miguelez et al. 2012).

Modification of BA and BI to take BGdiff into account will
produce horizontal shifts in the two f–I curves. We did not
bias the estimation of BGdiff with respect to the polarity
of any difference; BA could thus be higher than BI, or vice
versa. Nevertheless, BA and BI were set such that not only
was their average equal to the experimentally observed
mean basal firing rate of all GP neurons (BG), but also that
they were symmetrically distributed, i.e. if one population
had basal firing rate above BG then the other population
had basal firing rate below BG. In ensuring that the
average of BA and BI was equal to BG, we also accounted
for the relative proportions of GP-TA neurons to GP-TI
neurons, which is approximately 1 to 3.5 (Mallet et al.
2008a), by weighting BGdiff according to cell type (see
Table 1).

Candidate models of effective connectivity

To investigate the model assumptions about physio-
logical properties and connectivity patterns that lead
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to the best explanation of (i.e. closest fit to) our in
vivo electrophysiological data, we studied eight different
computational models based on the mathematical
descriptions presented above. All studied models were
described by eqn (2), and each is based on different
assumptions that define which of the parameters listed in
Table 2 were fixed and which were estimated. All models
followed a similar division between fixed and estimated
parameters, and each model classified only one or a few
parameters differently from those commonly employed
by all other models (see Table 2). For clarity, the specifics
of each model are described with respect to the model
that showed the best accuracy/complexity trade-off when
fitting the experimental data; this model is referred to as
Model 3-Optimal (see Results). Therefore, the first model
we present in detail in the Results is called Model 1-NoTB
(see Fig. 3) because it differs from Model 3-Optimal in that
it has neither thalamus nor basal firing rate differences in
GP (see Table 2).

Estimating effective connectivity

Our principal goal was to derive estimates of the
effective connections between neurons of the STN–GP
network and their extrinsic inputs. To achieve this, we
used a fitting technique to determine the values of all
estimated parameters in all models (Table 2), while placing
special emphasis on those describing the synaptic weights
of the connections (wnm). This fitting technique was
designed to find, for a given model, the combination of
parameter values that simultaneously best reproduced two
experimental data sets, namely the unit activity recorded in
the STN–GP network during SWA and cortical activation.
Each data set contained measures that could be used
to unambiguously describe the oscillations in firing rate
taking place in each modelled population of STN, GP-TA
and GP-TI neurons. These activity measures are listed
in Table 3, and were derived from the experimental data
as follows. First, activity histograms and linear phase
histograms of single-unit activity with respect to cortical
slow and beta oscillations, respectively, were calculated for
each qualifying STN, GP-TA and GP-TI neuron as pre-
viously described in detail (Mallet et al. 2008a). Next,
average phase histograms were computed for each of
the three neuronal populations in each of the two brain
states. For each population, we repeatedly concatenated
the average phase histogram to form a synthetic sequence
of periodic firing rates, and then smoothed these firing
rates by low-pass filtering. Thus, all components of the
fast Fourier transform with frequencies higher than a
threshold value were eliminated; these thresholds were set
at 1.75 Hz and 22 Hz when filtering SWA data and cortical
activation data, respectively, i.e. just above the dominant
frequencies of oscillatory firing. Subsequently, we divided
the filtered firing rates into individual oscillation cycles,

from which we calculated the average ‘firing-rate profile’
for each neuronal population in each brain state. These
profiles express the average firing rate for each phase value
and are convenient for the qualitative visual assessment of
a given model (see panels A and B in Figs 3–5). For each
neuronal population (STN, GP-TA and GP-TI) and brain
state (SWA and cortical activation), we also determined the
following statistical activity measures to be fitted with the
models: the mean, minimum and maximum of the average
firing rate during an oscillation cycle (3 per population
per brain state); the average phase difference of peak firing
with respect to cortex (1 per population per brain state);
and the dominant oscillation frequency (1 per brain state).
This gives a total of 26 experimental measurements fitted
with each model (see Table 3).

To determine the combination of estimated parameter
values that best reproduced or best fitted the experimental
data sets, we used a computational search technique
that employed an advanced, adaptive ‘genetic algorithm’,
so-called because such algorithms are inspired by the
optimisation of genes during the course of evolution
(Goldberg, 1989; Mitchell, 1998; Eiben & Smith, 2007).
The details of this fitting method are described in Section
A of the Supplemental material (available online). Briefly,
for each estimated parameter, this technique explores
possible values that lie within the boundaries listed in
Table 4, and seeks the combination of these values that
best reproduces all experimental data sets simultaneously,
that is, STN and GP unit activity recorded during both the
slow (�1 Hz) and beta oscillations (�20 Hz) prevalent in
SWA and cortical activation, respectively. The boundaries
of most of the parameter values in Table 4 were iteratively
selected to give a sufficiently wide exploratory range
around values listed in published experimental studies
(also see Table 1), while also taking into consideration
that the fitting algorithm will fail when boundaries are
set too wide (see Section A of Supplemental material).
With respect to effective connections, the lower and upper
boundaries for the synaptic weights between STN and
GP neurons were set at 0 and 5, respectively, because
the firing rates and numbers of these neurons are of
the same order of magnitude (Oorschot, 1996; Mallet
et al. 2008a). The boundaries of synaptic weights of
striatal efferents were set wider (0 and 20) to take into
account that, first, the firing rates of striatal projection
neurons are an order of magnitude lower than those of
GP neurons (Mallet et al. 2006, 2008a), and secondly,
that the number of striatal neurons (and, presumably,
their efferents) is several orders of magnitude larger
than the number of GP neurons (Oorschot, 1996). The
genetic algorithm we used here is essentially an extension
of the one used for the same purpose by Holgado
et al. (2010), but with the refinement of additional
Multiobjective Optimisation, using Pareto sets, and a
new measure of model fit, using fuzzy logic operands
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Table 3. Experimental data used to constrain the computational models

SWA data Cortical activation data

STN GP-TI GP-TA STN GP-TI GP-TA

Minimum firing rate (spk s−1) 6.5(1) 12.2(3) 2.9(2) 29.0(1) 12.3(3) 17.5(2)

Mean firing rate (spk s−1) 21.8(1) 24.7(3) 12.6(2) 34.0(1) 14.1(3) 19.7(2)

Maximum firing rate (spk s−1) 42.2(1) 35.8(3) 24.7(2) 38.0(1) 16.6(3) 21.7(2)

Phase difference with cortex (deg) 0.0(1) 194.7(3) 18.7(2) 0.0(1) 160.0(3) 30.3(2)

Oscillation frequency (Hz) 1.0(1) 1.0(1) 1.0(1) 20.0(1) 20.0(1) 20.0(1)

In the genetic algorithm, each partial objective function Ei assesses how closely the experimental measurements are being fitted by
the model. Here we show all 26 activity measurements (note that a single oscillation frequency is listed three times for a given brain
state for completeness), indicating in superscript the index of the partial objective function that assesses each quantity. Experimental
data sets used here were obtained after additional analyses of the cortical oscillations and STN–GP unit activity reported in Mallet
et al. (2008a,b). Note that phase differences here are given with respect to the modelled input rather than the ECoG waveform. deg,
degrees.

Table 4. Ranges of estimated parameters that were explored in the models

Parameters Definitions Exploration boundaries (units)

Synaptic weights (connections not involving striatum) wSA, wSI, wAS, wAI . . . [0.0, 5.0] (a.u.)
Synaptic weights of connections from striatum wXA and wXI [0.0, 20.0] (a.u.)
Transmission delays �tSA, �tSI, �tAS, �tIS . . . [0.5, 5.0] (ms)
Relative oscillation amplitude αAct [0.0, 2.0] (spk s−1)

αSwa [0.0, 2.0] (spk s−1)
Mean firing rates RActX [0.0, 5.0] (spk s−1)

RActP [0.0, 10.0] (spk s−1)
Phase difference with cortex θX [–20.0, 20.0] (ms)
Intrinsic properties (i.e. f–I curve parameters) BGdiff [–5.6, 5.6] (spk s−1)

Lower and upper boundaries of the parameter values searched by the fitting algorithm are indicated. In searching for the combination
of free parameter values that allowed each model to best reproduce the experimental data, the genetic algorithm tested only values
within these boundaries. a.u., arbitrary units.

(Mitchell, 1997; Eiben & Smith, 2007). This combination
of techniques attempts to maximise several measures
of fit accuracy simultaneously, where each measure is
calculated through a partial objective function (Ei). These
fuzzy-Pareto functions compare the previously described
experimental data with model simulations produced for a
given set of parameters. There are three partial objective
functions in total, numbered from 1 to 3, and each one
of them monitors a series of experimental measurements
as indicated by the superscripts in Table 3. Each one
of these functions can take any value from 0.0 to 1.0,
where 1.0 indicates that the corresponding combination
of parameters perfectly reproduces all experimental data
(zero error in all experimental measures). To find the
combination of parameter values that best reproduces
the experimental data, the algorithm seeks the parameter
values with the highest scores in these three partial
objective functions.

To confirm that we were using sufficient amounts of
experimental data to estimate the value of the unknown
parameters, we executed the genetic algorithm 500 times

over the same experimental data, and obtained 10,000
potential parameter values, which we refer to as ‘fittings’.
We report on our studies of the most accurate fittings in the
Results section. The algorithm code was implemented in
object oriented C++ (Deitel & Deitel, 2007) and executed
over a Linux operating system on an IBM BlueCrystal
supercomputer with 2500 processors in the Advanced
Computing Research Centre, University of Bristol. Once
the algorithm was executed 500 times, the final Pareto
front obtained by each execution was stored in a file.
These Pareto fronts were subsequently included into a
global collection of possible parameter sets. From this
global collection, we selected the 66 parameter sets that
produced the best fits (i.e. the ones giving highest fuzzy
value E1 × E2 × E3, where in the case of Model 3-Optimal
all Ei values were higher than 0.8). These were designated
as the ‘best sets’. The mean and standard deviation were
then calculated for each estimated parameter across the
best sets. The resulting mean of each parameter value was
considered to be a correct estimation, as the corresponding
standard deviations were small (i.e. generally <5% of
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the exploration boundary size of the algorithm on that
parameter). These means and standard deviations are
shown in panel C of Figs 3–5. The simulations with the
parameters that gave the best fit were used to produce,
after graphing in MatLab (MathWorks), the data in panels
A, B and E of Figs 3–5; similar results were observed when
using some of the other 66 best sets, suggesting that no
local maxima with similar fitting measures existed in the
parameter space. The absence of other maxima further
indicates that the model is not ambiguous, i.e. it could
not equally well explain the experimental data with a sub-
stantially different combination of parameters.

Comparing the models

The relative adequacy of the models to describe the
experimental data was determined by first calculating the
sum of squared errors for each model. We then used the
sum of squared errors to derive the finite-size-corrected
Akaike information criterion (AICC), which additionally
penalises model complexity, before finally transforming
the AICC into so-called ‘Akaike weights’ that estimate the
probability of each model being the best with respect to
an accuracy/complexity trade-off and all other considered
models. The AICC (Hurvich & Tsai, 1989) is a modification
of the traditional Akaike information criterion (Akaike,
1974); it is designed to correct for biases that arise when
the number of simulated parameters is in the same order
of magnitude as the number of fitted data points. The
AICC thus contains a bias-correction term and measures
the sum of squared errors of each computational model
with respect to the experimentally derived data, while
penalising each model depending on the number of
parameters that it contains:

AICC(j ) = n ln

(
n∑

i=1

(
ei − sij

)2

)
+ 2k + 2k (k + 1)

n − k − 1
(6)

In eqn (6), j is an index indicating the model for which
AICC is being calculated, k is the number of parameters of
the mathematical model, n is the number of experimental
values that the model tries to reproduce (as listed in Table 3,
i.e. n = 26), ei are the experimental values that the model
tries to reproduce (Table 3), and sij are the corresponding
simulation values for model j. Although AICC values
give a relative measure of which model carries the
best accuracy/complexity trade-off, the related Akaike’s
weights are more intuitive quantities (Wagenmakers &
Farrell, 2004). Akaike’s weights are derived through a
simple transformation of AICC values, and attempt to
approximate the probability of each model being the best
among all the considered alternatives (8 models were
compared here, with higher Akaike’s weights indicating

better accuracy/complexity trade-offs). These quantities,
denoted AW(j), were calculated from the AICC as follows:

AW(j ) =
exp

(
−1

2
AICC(j ) − min

i
{AICC(i)}

)
∑

l
exp

(
−1

2
AICC(l) − min

i
{AICC(i)}

) (7)

In eqn (7), j again indicates the model for which the
Akaike’s weight is being calculated, while i and l are indexes
ranging through all considered models.

Results

Experimental data sets

We recorded frontal electrocorticograms as well
as single-unit activity in the STN–GP network of
6–OHDA-lesioned rats during two brain states, slow-wave
activity and cortical activation (Fig. 1). Initially focusing
on SWA, we quantified the temporal relationships
between the dominant cortical slow (�1 Hz) oscillation
and the spike firing of STN and GP neurons. We could
define one type of STN neuron and two main types of
GP neuron by their temporal signatures; STN neurons
(n = 32) and GP-TA neurons (n = 83) preferentially
fired during the active component of the cortical
slow oscillation, whereas GP-TI neurons (n = 350)
preferentially discharged during the inactive component
(Fig. 1A and C). Importantly, this cell-type-dependent
diversity in temporal coupling with cortex persisted
across brain states, such that the distinct phase-locked
firing of STN and GP neurons with slow oscillations
(Fig. 1A and C) was maintained with the excessive beta
oscillations (�20 Hz) that emerged during cortical
activation (Fig. 1B and D). Thus, during activation, STN
neurons (n = 49) and GP-TA neurons (n = 62) tended
to fire with relatively small phase differences (‘in-phase’),
whereas GP-TI neurons (n = 280) fired in ‘anti-phase’
to both. We derived several measures of neuronal activity
from these experimental data sets to test the validity of
the model data (see below). In short, the suitability of
each computational model was quantitatively assessed by
its ability to match these experimental in vivo data.

Model architecture

We studied eight firing-rate-based computational models
that each incorporated various features of the full
architecture shown in Fig. 2. In this architecture, the
STN–GP network is embodied as a reciprocally coupled
system; glutamatergic STN neurons project to and exert
excitatory postsynaptic effects on GP neurons, whereas
GABAergic GP neurons project to and exert inhibitory
postsynaptic effects on STN neurons (and other GP

C© 2013 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Figure 3. Data fits and effective connectivity obtained with Model 1-NoTB
This model excluded thalamus and also assumed that all GP neurons have identical input–output functions. A,
left, average firing-rate profiles of STN, GP-TA and GP-TI neurons within a single cycle of the slow oscillation
(peak at 1 Hz) during slow-wave activity. Grey bins indicate experimental data and black lines indicate model
data. All data sets were individually normalised according to the minimum average firing rates (0%) and the
maximum average firing rates (100%). Right, comparison of average firing rates, network oscillation frequencies
and phase relationships in experimental data (crosses) with the best data fits from this model (circles). Note the
models attempted to fit these statistical activity measures rather than the firing-rate profiles per se. B, firing-rate
profiles of neurons (left) and their activity measures (right) during the beta oscillations (peak at 20 Hz) that prevail
in cortical activation. This model reproduced the activity of STN neurons, but not that of either GP-TI or GP-TA
neurons, with reasonable accuracy for both SWA (A) and activation (B). C, the estimated and fixed parameter
values in this model. Data are means (±SEM) of the estimated parameter values in the 66 best fits derived from
multiple executions of the genetic algorithm. Parameters fixed to a value of zero are represented as stars. D,
the input–output functions (f–I curves) that were fixed for each neuron population. Input is scaled to mimic
experimental f–I curves of neuron responses to somatic current injections (in pA). Note that curves for GP-TI and
GP-TA neurons are the same in this model. E, graphical representation of the effective connectivity estimated with
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neurons). The STN (only) receives additional excitatory
inputs from cortex, and the GP (only) receives additional
inhibitory inputs from striatum. Both STN and GP
can also receive excitatory inputs from the thalamus,
embodied by connections originating in Pfn. In all our
models, GP neurons are explicitly divided into two
major populations (GP-TA and GP-TI). We explored
only the effective connectivity of those glutamatergic and
GABAergic inputs that directly impinge on STN and/or GP
neurons (Fig. 2). All our computational models contained
a group of parameters whose values were fixed on the basis
of published experimental data (see Methods and Table 1),
and another group of parameters whose values were
estimated. The models differed from one another in terms
of the parameters that were fixed and estimated (Table 2).

Model data fits and effective connectivity

We used our recordings of ECoGs and unit activities
made during both SWA and activation to calculate a
set of statistical measurements for STN, GP-TA and
GP-TI neurons, according to brain state. These statistical
measures summarise the suprathreshold activity patterns
of each of the modelled neuronal populations, and the
computational models were therefore fitted to them. The
activity measures we used were: the mean, minimum and
maximum of the average firing rate during an oscillation
cycle; the average phase difference of peak firing with
respect to cortex; and the dominant oscillation frequency
(see Table 3). We also generated ‘firing-rate profiles’
that embodied the average firing rate during each phase
of the dominant ongoing network oscillation (peak
frequencies of either �1 Hz or �20 Hz; see Methods). For
each model, we used a genetic algorithm (see Section A
of Supplemental material) to find the combination of
parameter values that allowed the model to best fit
or reproduce the activity measures arising from these
experimental data. Among the estimated parameters, the
‘synaptic weights’ (wnm) are of special interest because
they define the effective connectivity of the STN–GP
network as predicted by each model.

The first, and simplest, of the three models presented
in detail here is Model 1-NoTB (Fig. 3). It includes one
STN population and two GP populations, which receive
extrinsic inputs from cortex and striatum, respectively, and
is based on two key assumptions: (1) that the parafascicular
nucleus of the thalamus does not significantly contribute

to the patterned firing rate fluctuations of neurons in
the STN–GP network during slow and beta oscillations,
and (2) that GP-TA and GP-TI neurons have the same
intrinsic properties, i.e. the same input–output (f–I)
curves (Fig. 3D). To implement the first assumption,
the synaptic weights coming from Pfn to the STN–GP
network (wPS, wPA and wPI) were ignored by setting them
to 0. Likewise, the parameters describing the firing rates
of Pfn during SWA (RSwaP; see Table 1) and cortical
activation (RActP) are irrelevant because they have no effect
on the behaviour of this model. The second assumption
constrains the basal firing rates of both GP populations
to be the same, and therefore BG from Table 1 is used
in the model instead of BA and BI (BGdiff was thus
set at 0). In summary, this first model had 29 fixed
parameters and 15 estimated parameters, as indicated in
Table 2. Model 1-NoTB provided reasonably good fits
of the firing-rate profiles and activity measures of STN
neurons during SWA (Fig. 3A) and cortical activation
(Fig. 3B). However, this first model struggled to accurately
reproduce the activity measures of both GP-TA and GP-TI
neurons, evident as substantial deviations of the model
data from the experimental data (Fig. 3A and B). Despite
the low accuracy of the best fits, the genetic algorithm gave
stable values for the estimated parameters (Fig. 3C). When
synaptic weight parameters were graphically represented,
the resulting map of the effective connectivity of the
STN–GP network (Fig. 3E) suggested a number of salient
features, including: connections from striatum are much
stronger to GP-TI neurons than to GP-TA neurons (ratio
of striatal connection weights of �20:1); connections
within and between the two populations of GP neuron
are not equivalent; and connections from both GP
populations to the STN are relatively weak. Model 1-NoTB
also suggested that STN connections are stronger to GP-TA
neurons than to GP-TI neurons.

Because the ability of Model 1-NoTB to accurately
reproduce the experimental data was not entirely
satisfactory, we designed and tested a second model
called Model 2-NoB, which explored in detail whether
the inclusion of thalamic connections to STN and GP
improved the ability of the model to reproduce the
experimental data (Fig. 4). This second model, in common
with the previous one, is based on the assumption that
the intrinsic properties of GP-TA and GP-TI neurons
are the same (i.e. no basal firing rate differences in GP;
Fig. 4D). However, in contrast to the previous model,

this model. Modelled connections (continuous lines) terminating in circles are inhibitory, while those terminating
in arrowheads are excitatory. Connections are scaled relative to each other (w values in C), with thicker lines and
larger terminations indicating higher connection weights. This model suggested that connections from striatum are
stronger to GP-TI neurons than to GP-TA neurons, connections between the two populations of GP neuron are not
equivalent, and connections from both to the STN are relatively weak. Dashed grey lines indicate connections that
were not explicitly modelled with weights. a.u., arbitrary units. For definitions of other symbols and abbreviations,
see Fig. 2 and Table 1.
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Figure 4. Data fits and effective connectivity obtained with Model 2-NoB
This model included thalamus, but again assumed that all GP neurons have identical input–output functions. A,
left, average firing-rate profiles of STN, GP-TA and GP-TI neurons within a single cycle of the slow oscillation during
SWA. Grey bins indicate experimental data and black lines indicate model data. Right, comparison of average firing
rates, network oscillation frequencies and phase relationships in experimental data (crosses) with the best data fits
from this model (circles). B, firing-rate profiles of neurons (left) and their activity measures (right) during the beta
oscillations that prevail in cortical activation. This model reproduced the activity of both GP-TI and GP-TA neurons,
but not that of STN neurons, with reasonable accuracy for both SWA (A) and activation (B). C, the estimated and
fixed parameter values in this model. Estimated parameter values are means (±SEM), with the fixed parameter
represented as a star. D, the f–I curves that were fixed for each neuron population (same as in Model 1-NoTB).
E, scaled graphical representation of the effective connectivity estimated with this model, with thicker lines and
larger terminations indicating relatively higher connection weights. This model recapitulated many of the salient
features of effective connectivity of Model 1-NoTB, but also suggested that thalamic Pfn connections to STN and
GP-TA neurons are much stronger than those to GP-TI neurons. This figure follows the conventions of Figs 2 and
3.
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Figure 5. Data fits and effective connectivity obtained with Model 3-Optimal
Of the 8 models explored, this model provided the closest fits to the experimental data. It included thalamus, and
assumed that GP-TA neurons and GP-TI neurons have different input–output functions. A, left, average firing-rate
profiles of STN, GP-TA and GP-TI neurons within a single cycle of the slow oscillation during SWA. Grey bins
indicate experimental data and black lines indicate model data. Right, comparison of average firing rates, network
oscillation frequencies and phase relationships; note the overlap of the experimental data (crosses) with the best
data fits from this ‘optimal’ model (circles). B, firing-rate profiles of neurons (left) and their activity measures (right)
during the beta oscillations that prevail in cortical activation. This model accurately reproduced the activity of all
three neuronal populations during both SWA (A) and activation (B). C, estimated parameter values (means ± SEM)
in this model. Negative BGdiff values indicate a lower basal firing rate for GP-TA neurons as compared to GP-TI
neurons. D, the f–I curves that were fixed for each neuron population. Note the horizontal separation of the GP-TA
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Model 2-NoB assumed that the thalamus contributes to
the experimentally observed firing rates of neurons in the
STN–GP network. Because Pfn was included in this model,
the synaptic weights coming from the thalamus were not
equal to 0, and they were included in the list of estimated
parameters that the fitting algorithm had to calculate (see
Table 2). Likewise, the parameter describing the firing
rates of Pfn neurons during cortical activation (RActP)
became part of the list of estimated parameters, as its value
could not be derived from existing literature but should
nevertheless affect the behaviour of the model. Compared
to the first model, Model 2-NoB provided relatively poor
fits of the activity measures of STN neurons during SWA
(Fig. 4A) and cortical activation (Fig. 4B). Notably though,
Model 2-NoB was able to more accurately reproduce the
activity measures of GP-TA neurons and GP-TI neurons
(Fig. 4A and B). The first and second models were similar
in other respects, with the latter recapitulating many
of the previously estimated parameter values (Fig. 4C)
and salient features of effective connectivity (Fig. 4E).
Moreover, the inclusion of thalamic connections served
to reinforce the finding of Model 1-NoTB that STN
connections to GP-TA neurons are of a higher weight
than those to GP-TI neurons (ratio of STN connection
weights of �4:1; Figs 3E and 4E). Perhaps most striking,
Model 2-NoB suggested that Pfn connections to STN
neurons and GP-TA neurons are much stronger than
Pfn connections to GP-TI neurons (ratio of thalamic
connection weights of �8:1; Fig. 4E).

Although the accuracy of Model 2-NoB in reproducing
the experimental data was better than that of
Model 1-NoTB, neither could adequately reproduce all
the experimental measures of activity in all three neuro-
nal populations in the STN–GP network. Because of
this shortcoming, we designed and tested a third model,
called Model 3-Optimal, which explicitly accounted for
the possibility that the two types of GP neuron have
intrinsic physiological differences (Fig. 5). This seemed a
reasonable way forward given that: (1) not all GP neurons
can fire autonomously in a robust manner, i.e. at 20 spk s−1,
which was the basal firing rate assumed for all GP neurons
in the absence of inputs (fixed parameter BG) in Models
1 and 2 (Nakanishi et al. 1987; Nambu & Llinas, 1994;
Cooper & Stanford, 2000; Bugaysen et al. 2010; Chuhma
et al. 2011; Miguelez et al. 2012); and (2) GP-TA and
GP-TI neurons have significantly different firing rates in

vivo (Mallet et al. 2008a), which might be underpinned
by differences in their intrinsic membrane properties.
Thus, Model 3-Optimal differs from Model 2-NoB in that
the basal firing rates of GP-TA and GP-TI neurons were
assumed to be different from each other. This difference
was introduced into the mathematical definition of the
model by using the parameters BA and BI which, through
the estimated parameter BGdiff, give a different basal firing
rate to each GP population (Table 1). Like in Model
2, however, the Pfn connections were included, which
meant that the parameters wPS, wPA, wPI and RActP were
retained in the list of estimated parameters (Table 2).
Compared to the previous two models, Model 3-Optimal
provided much better fits of the firing-rate profiles and
activity measures of STN, GP-TA and GP-TI neurons;
it almost perfectly reproduced the experimental data
recorded during either SWA (Fig. 5A) or cortical activation
(Fig. 5B). These better fits were associated with clear
horizontal shifts in the f–I curves of GP-TA and GP-TI
neurons (with respect to each other), such that BA was
6 spk s−1 and BI was 24 spk s−1 (Fig. 5D). Thus, the
genetic algorithm estimated that GP-TA neurons have
substantially lower autonomous firing rates than GP-TI
neurons. Model 3-Optimal further reiterated many of the
salient features of effective connectivity that had emerged
in the previous two models. For example, the connection
from striatum to GP-TI neurons was �20 times stronger
than that to GP-TA neurons, whereas the connection from
Pfn to GP-TA neurons (and to STN neurons) was more
than 10 times stronger than that to GP-TI neurons (Fig. 5C
and E). A further contrast between GP-TA and GP-TI
neurons was evident at the level of their inputs from STN,
with the subthalamic connection to the GP-TA population
being �4 times stronger. Different connection weights
between and within the two populations of GP neuron
were also a consistent feature: the connection from GP-TI
neurons to GP-TA neurons was approximately twice the
weight of the reciprocal connection; the local connections
between GP-TA neurons were more modest; and the
weight of the local connections between GP-TI neurons
was almost negligible (Fig. 5C and E). Model 3-Optimal
also revealed two more notable features of effective
connectivity. First, although the connection from GP-TI
neurons to STN was relatively modest, the connection
from GP-TA neurons to STN was tiny. Thus, while
the reciprocal connections between GP-TI and STN

and GP-TI curves. E, scaled graphical representation of the effective connectivity estimated with this model, with
thicker lines and larger terminations indicating relatively higher connection weights. In recapitulating and refining
some salient features of effective connectivity of Models 1 and 2, this model suggested that the connection
from striatum was much stronger to GP-TI neurons than that to GP-TA neurons, whereas the connection from
thalamic Pfn to GP-TA neurons (and to STN neurons) was much stronger than that to GP-TI neurons. Moreover, the
reciprocal connections between GP-TI and STN neurons were well matched in weight, but those between GP-TA
and STN neurons were not. Different connection weights between and within the two populations of GP neuron
were also evident. This figure follows the conventions of Figs 2–4.
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neurons were well matched in weight, those between
GP-TA and STN neurons were far from being equivalent.
Second, the connection weight from Pfn to STN became
larger than the connection weight from cortex to STN
(Fig. 5E).

Further model comparison

The findings above indicate that, among the three models
described in detail, Model 3-Optimal most accurately
reproduced the electrophysiological data sets. We next
compared the models systematically, and assessed which
showed the best accuracy/complexity trade-off for our
experimental data set. The fitting algorithm we used
here employs a specialised measure of fitting accuracy,
the so-called ‘fuzzy-Pareto estimation functions’ (see
Methods). This measure evaluates how accurately each
combination of estimated parameter values reproduces
the experimental data, and it is designed on the basis
of heuristic considerations, which maximise the capacity
of the algorithm to find good fits. For this reason,
fuzzy-Pareto functions are not entirely suitable for formal
comparisons of model accuracy. We therefore used more
standard error measures for model comparison: the sum
of squared errors, which directly measures the accuracy
of each fit; and the so-called Akaike’s weights, which are
derived from the sum of squared errors and additionally
take into account the mathematical complexity of each
model (see Methods). Akaike’s weights are thus a useful
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Figure 6. Comparison of abilities of all models to reproduce
the experimental data
For each of the 8 model fits, the sum of the squared error (A) is
shown together with the corresponding Akaike’s weight (B). A
smaller squared error indicates that a given model can better
describe or fit the experimental data, while the Akaike’s weight
approximates the probability of a given model being the one with
best accuracy/complexity trade-off as compared to the other models
tested. Note that Model 3-Optimal provides the best fit, even
though it is not the most complex model tested.

metric for selecting models with the best trade-off
between accuracy and complexity, with higher values
indicating better matches between a model and the
constraining (experimental) data as compared to the other
models being considered. As expected, Model 3-Optimal
had a lower summed squared error (Fig. 6A) and a
higher Akaike’s weight (Fig. 6B) than Model 2-NoB and
Model 1-NoTB. Furthermore, Model 2 had a substantially
lower squared error and a higher Akaike’s weight than
Model 1 (Fig. 6), indicating that the Pfn connections in
the former were particularly important for more accurate
fits. To explore this further, we constructed a fourth
model (Model 4-NoT) that differed from Model 1 only
in that it assumed that the two types of GP neuron have
intrinsic differences (see Table 2). Model 4-NoT did not
perform better than Model 1-NoTB (Fig. 6). Together
with the comparison of Model 2 with Model 3, this
indicates that the freedom to estimate parameters BA,
BI and BGdiff only improved model fits when thalamic
inputs were already included. However, Models 1–4 clearly
suggest that intrinsic differences between the two GP
populations, and Pfn connections, both contribute to the
experimentally observed activity in the STN–GP network.
Equally important, these comparisons also provide a first
indication that model accuracy did not improve by simply
adding complexity (i.e. extra estimated parameters), but
rather, that fits were highly dependent on the connections
present and the precise combination of estimated and fixed
parameters.

To explore further whether the assumptions (i.e.
combinations of estimated and fixed parameters) of
Model 3-Optimal were necessary and sufficient to explain
the experimental data, we built on Model 3 to characterise
four additional models (Table 2) and compared their
accuracies as above. The first of these additional models,
Model 5-Noθ, was only different from Model 3 in that it
assumed that the phase difference between the oscillations
taking place in cortex and striatum (see Table 4) is not
necessary to explain the experimental data, and therefore
sets parameter θX to 0. Model 6-Noαwas similar to Model 3
but assumed that the firing rate oscillations taking place
in cortex, striatum and Pfn have the same amplitude
during SWA and cortical activation, which is equal to
the mean firing rate in each structure. This constrained
the parameters αSwa and αAct to be equal to 1 (Table 4).
Model 7-NoR assumed that the firing rates of striatal
and Pfn neuronal populations do not significantly change
upon transition from SWA to the activated state. This
constrained RActX and RActP to be equal to RSwaX and
RSwaP, respectively (see Table 1). Finally, we constructed an
eighth model that had many more estimated parameters
than Model 3-Optimal in order to re-examine whether
adding complexity brought further improvements in the
fitting accuracy. This Model 8-Do� had the freedom to
explore different transmission delays (�tnm) from those
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fixed in all other models on the basis of published electro-
physiological data (see Table 1), i.e. it allowed the genetic
algorithm to find the values of transmission delays that
best fitted the experimental data. Again, Model 3-Optimal
had a lower summed error and a higher Akaike’s weight
as compared to Models 5, 6 or 7 (Fig. 6). In summary,
these results suggest that a small phase difference between
cortex and striatum is of some importance (Fig. 5C), that
the firing rate oscillations in cortex, striatum and Pfn have
different amplitudes during SWA and cortical activation
(Fig. 5C); and that the firing rates of striatal and Pfn neuro-
nal populations change upon transition from SWA to the
activated state (Fig. 5C). Indeed, our models predict that,
as compared to activity during SWA (Table 1), their firing
rates approximately double (Fig. 5C). Although Model
3-Optimal and Model 8-Do� had similarly low summed
errors, the Akaike’s weight of Model 3 was much higher
than that of Model 8 (Fig. 6). The transmission delays
estimated by Model 8 were �2 ms between STN and GP
(both directions), and 1 ms between GP neurons, which
are in good agreement with the values fixed from the
literature (Table 1) and used in all other models. This
also implies that the additional complexity in Model 8 is
not statistically justified, and again highlights that more
complex models are not necessarily more accurate.

Elements required for experimentally observed phase
relationships

During Parkinsonian network oscillations, STN and
GP-TA neurons tend to oscillate in-phase with each other,
but anti-phase to GP-TI neurons (Fig. 1). Our best
candidate computational model accurately reproduced
the experimental data, including these persistent phase
relationships. However, although this model is optimal
with respect to explaining the totality of our experimental
data, it does not reveal which of its elements are responsible
for the in-phase and anti-phase firing observed across
the STN–GP network. In a final investigation, we thus
sought to analytically identify the key elements under-
lying these oscillatory phase relationships. In essence, we
mathematically derived the set of minimal conditions that
the model (of six neuronal populations; see Fig. 5E) needed
to satisfy in order to reproduce the inverted phase of GP-TI
neuron oscillations. We provide a detailed explanation of
our analysis in Section B of the Supplemental material.
Briefly, as an initial step, we were able to eliminate
from the main differential equation of our model (see
eqn (2)) the elements that are unlikely to play major
roles in the phase inversion of GP-TI neurons. These
elements were the sigmoidal activation functions and
time constants of the modelled STN, GP-TA and GP-TI
neurons, as well as the transmission delays between
them; this elimination step reduced eqn (2) to a linear
equation. Then, using complex numbers to represent

the oscillations present in each neuronal population (i.e.
‘phasors’ algebra), we were able to derive the minimal
conditions in this linear equation that inverted the phase
of GP-TI neuron oscillations. We observed, first, that these
conditions were critically dependent on the connection
weights of eqn (2) and, secondly, that they clearly divided
the neuronal populations into two groups. Each group
was characterised by the predominant phase at which
the member population(s) oscillated; the first group was
GP-TI neurons, and the second group consisted of all other
neuronal populations. Figure 7 graphically represents the
derived conditions, and shows how excitatory connections
were prominent between member populations of the
second group, all of which oscillated in-phase with each
other. In contrast, inhibitory connections were prominent
(and excitatory connections were low) between this second
group and the GP-TI neurons that oscillated in anti-phase
to them (Fig. 7). In summary, the excitatory connections
tend to maintain in-phase firing, while the inhibitory
connections tend to maintain anti-phase firing. This seems
intuitive given that neurons receiving strong excitatory
inputs will tend to fire most when the firing of these
afferents is maximal, whereas neurons receiving relatively
strong inhibitory inputs will tend to fire least during
the period of the oscillation at which the firing rate of
the afferent neurons is maximal. It is important to note,
however, that this derivation with phasors algebra shows

Cortex

S
tri

at
um

STN

Thalamus (parafascicular nucleus)

GP-TI

GP-TA

Figure 7. Connection weights promoting the experimentally
observed phase relationships between neuronal oscillations
Thick and thin black connections denote the high and low
connection weights, respectively, that promote the observed phase
relationships. Note that excitatory connections (lines terminating in
arrowheads) are prominent between the neuronal populations that
oscillate in-phase, whereas inhibitory connections (lines terminating
in circles) are prominent between populations that oscillate
anti-phase to each other. All other symbols and features follow the
conventions of Figs 3–5.
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it is these connection features, rather than more exotic
dynamics, that are responsible for the phase relationships
observed in the STN–GP network in vivo. Thus, strong
excitatory connections along an axis of cortex, thalamus,
STN and GP-TA would promote firing therein at �0 deg,
whereas strong inhibitory inputs to and from GP-TI
neurons would promote their firing at �180 deg to
that of the other neuronal populations (Fig. 7). This is
especially pertinent for cases in which the transmission
delays between neuronal populations are much shorter
than the oscillation period, as would be the case for
the slow oscillations that dominate SWA. However, as
the oscillation period becomes shorter and approaches
the transmission delays, additional phase shifts between
nuclei may appear. This helps explain why, during beta
oscillations, the phases of STN, GP-TA and GP-TI neurons
are not as close to the values 0 and 180 deg.

Discussion

We generated a series of computational models to explore
the effective connections and physiological parameters
underlying the distinct firing rates and phases of STN
neurons and two populations of GP neurons that were
experimentally observed during excessively synchronised
oscillations in the Parkinsonian brain in vivo. Our best
candidate model (Model 3-Optimal) was able to reproduce
the experimental data across two brain states with great
accuracy, and predicted how the afferent and efferent
connections of each type of neuron in the STN–GP
network are quantitatively different.

Limitations of the computational models

We studied several firing rate-based computational models
of the STN–GP network, each of which contained dozens
of fixed and estimated parameter values. Because we used
a genetic algorithm to find the combination of estimated
values that endowed the best model fits to the experimental
data, it could be argued that our approach is relatively
slow and computationally extensive. However, it gave
us the opportunity to incorporate a large amount of
biological data to fix or guide model parameter values.
Dynamic causal modelling (Friston et al. 2003) of effective
connections in Parkinsonian brain networks has proven
utility (Moran et al. 2011), and would probably be quicker
to implement, but this approach cannot yet be constrained
by key experimental measurements used here (i.e. unit
activity data). Models simulating large networks of spiking
neurons would provide an extra step towards biological
reality, but would be a challenge to implement for our
purposes here, not least because a substantial number of
extra parameters of unknown empirical value would arise.
Our firing rate-based models thus provided a reasonable
and tractable ‘middle ground’. In them, we assumed

that the populations of glutamatergic neurons in STN,
cortex and thalamus exert only excitatory effects on their
direct targets, and that the populations of GABAergic
GP-TA, GP-TI and striatal neurons exert inhibitory effects.
Studies in vitro show that synaptic dynamics in the
STN–GP network extend beyond classical excitation and
inhibition, and inputs may cause phase locking, ‘rebound
bursting’, and/or the ‘shunting’ or enhancement of other
inputs (Bevan et al. 2007; Atherton et al. 2010). Our
models were not designed to explore such dynamics, but
rather, because our strategy is innovative, we chose to
constrain them using a physiologically well-characterised
data set comprising hundreds of single units recorded
extracellularly in vivo (Mallet et al. 2008a,b). Although
imperfect, Model 3-Optimal still generated excellent fits to
these experimental data. That said, modelled connection
weights do not reveal the precise biological substrates,
e.g. a strong connection weight could be subserved by a
few powerful synapses and/or by many weak synapses.
We can nevertheless interpret our estimates of effective
connectivity in light of the known structural and physio-
logical properties of STN and GP neurons and their inputs.

Predicted effective connectivity of the Parkinsonian
STN–GP network

In order for Model 3-Optimal to accurately reproduce
the patterns of unit activity recorded in the STN–GP
network, it incorporated certain assumptions about the
effective connectivity and electrophysiological properties
of the constituent neurons. By using the term effective
connectivity, we distinguish our approach (a model-based
characterisation of predicted causal influences) from
studies of functional connectivity. In accepting that the
computational model is a useful tool for reproducing
STN–GP activity, we can conclude that the model
assumptions are not only necessary to reproduce STN–GP
network dynamics in silico, but are also important to
explain the experimental data. Some of these assumptions
and their corresponding predictions are unintuitive, and
their necessity would be difficult to infer without model
simulations. We generated four sets of novel predictions
about the effective connectivity of the STN–GP network
during the excessively synchronised oscillations that arise
in idiopathic PD and its animal models.

First, our modelling data provide a compelling
theoretical basis to assume that thalamic neurons
innervating STN and GP, and nominally those in
the parafascicular nucleus in the caudal intralaminar
group, play important roles in setting activity levels in
the STN–GP network during Parkinsonian oscillations.
Indeed, adding Pfn connections substantially increased
the ability of the models to accurately reproduce our
experimental data (compare Models 1–4). Importantly,
our best candidate model also suggested that Pfn
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innervation of the STN–GP network is highly selective
in strength. Thus, while the weights of Pfn connections
to STN and GP-TA neurons were similarly large, the Pfn
connection to GP-TI neurons was tiny. Anatomical data
suggest that intralaminar thalamic projections to STN
are modest, at least when compared to thalamostriatal
projections (Smith et al. 2004). However, our models
indicate that the weight of this connection to STN is
large (even greater than that of the corticosubthalamic
projection), suggesting a paradoxically strong impact.
Electrophysiological analyses combined with selective
activation of intralaminar thalamic efferents, e.g. through
optogenetic approaches (Ellender et al. 2012), will be
required to test this prediction. For the GP, a selective
or specific innervation of GP-TA neurons, the smaller
of the two neuron populations, could be one substrate
by which a relatively small thalamopallidal input (Smith
et al. 2004) could still powerfully impact on local activity
and, thence, the wider STN–GP network. With respect to
STN–GP activity during slow oscillations, our predictions
are supported by the demonstration in 6–OHDA-lesioned
rats that Pfn neurons fire in time with STN neurons
(Parr-Brownlie et al. 2009) and thus, GP-TA neurons.
Whether and how Pfn neurons, or any other type of
thalamic neuron, fire individually or collectively during
Parkinsonian beta oscillations is unknown (see below).
However, our model predictions help explain why surgical
interventions targeted to the intralaminar thalamus have
some therapeutic benefits in Parkinsonism (Smith et al.
2009; Jouve et al. 2010), as is the case for those targeted to
STN or GP (Limousin et al. 1998; Vitek et al. 2004).

Secondly, all of our models identified a mismatch in
the weight of striatal connections to GP-TI and GP-TA
neurons. Ultimately, the connection to GP-TI neurons
was an order of magnitude higher than the connection to
GP-TA neurons. This might partly explain why GP-TI
neurons (but not GP-TA neurons) fire anti-phase to
striatopallidal neurons during SWA (Mallet et al. 2006,
2008a). Our model data concurred that striatopallidal
neurons fire infrequently (Mallet et al. 2006) but their huge
numbers, convergent projections and synchronised firing
could still result in powerful postsynaptic effects. The key
prediction then is that rhythmic striatal outputs are better
suited to directly influence the activities of GP-TI neurons
than those of GP-TA neurons during network oscillations.
This prediction has recently been validated for slow
(�1 Hz) oscillations by pharmacological manipulations
of striatum in 6–OHDA-lesioned rats (Zold et al. 2012).
Moreover, an optogenetics study in vitro identified two
classes of GP neuron that can be readily distinguished
by the strengths of their striatal inputs, amongst other
electrophysiological differences (Chuhma et al. 2011). It is
thus tempting to speculate that these cell classes receiving
strong and weak striatal inputs in vitro are GP-TI and
GP-TA neurons, respectively.

Thirdly, our models predicted that the reciprocal
connections between GP-TI and STN neurons are modest
and well matched in weight, but those between GP-TA
and STN neurons are not balanced. The connection from
GP-TI neurons to STN is stronger than that from GP-TA
neurons, whereas the connection from STN is stronger
to GP-TA neurons. Thus, while connections from STN
neurons might directly and powerfully impact on GP-TA
neuron firing, the reverse might not be true. An entirely
different modelling approach has also suggested that
GP-TI neurons are more important than GP-TA neurons
for sculpting STN neuron firing during beta oscillations
(Cruz et al. 2011). This surprising prediction appears
valid because it has very recently been shown that only
GP-TI neurons substantially innervate STN (Mallet et al.
2012). Importantly then, our current models corroborate
these previous theoretical and experimental findings,
thus providing further ‘face validity’. There is insufficient
experimental evidence to validate the prediction that
connections from STN are relatively stronger to GP-TA
neurons, although this idea is supported by the fact that
GP-TA neurons (but not GP-TI neurons) tend to fire
in-phase with STN neurons. Yet, this could also result from
disparate striatal innervation and/or a common input such
as that from Pfn (see above). Recording the responses of
GP-TA and GP-TI neurons to selective stimulation of STN
efferents would help resolve this.

Fourthly, our models pointed to substantial differences
in the strengths of the local connections within and
between the two populations of GP neurons. Of these
local connections, that from GP-TI to GP-TA was relatively
strong, while the reciprocal was modest. The connection
between GP-TA neurons was similarly modest, while
that between GP-TI neurons was negligible. Recent
anatomical data establish the precedent that GP-TI and
GP-TA neurons innervate other GP-TI neurons, though
quantification is lacking (Mallet et al. 2012). Whether
GP-TI and GP-TA neurons innervate other GP-TA
neurons is unknown. Nevertheless, our models make
the novel prediction that there is considerable cell-type
selectivity in the innervation patterns and postsynaptic
impact of local axon collaterals of GP neurons. Moreover,
the current models and past theoretical studies (Cruz et al.
2011) concur that inhibitory interactions between GP-TI
and GP-TA neurons could promote anti-phase firing
across the two populations (also see Miguelez et al. 2012).

Additional predictions

Further predictions arise from estimated parameter
values other than those describing connection weights.
As discussed above, our models suggested that oscillatory
outputs from striatum (striatopallidal neurons) and
thalamus (Pfn neurons) are important for the slow and
beta oscillations recorded in the STN–GP network in

C© 2013 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.



J Physiol 592.7 Effective connectivity of subthalamic nucleus–globus pallidus network 1451

Parkinsonism. How striatopallidal and Pfn neurons fire
during excessive beta oscillations is unknown, but our
models predict not only that they will rhythmically
synchronise at beta frequencies but also that their firing
rates will approximately double with respect to those
during SWA. Because excessive beta oscillations emerge in
striatal field potentials after 6–OHDA lesions (Moran et al.
2011), it is likely that the firing of some striatal projection
neurons will be phase-locked accordingly. Moreover,
the fact that neurons in basal ganglia output nuclei,
some of which will innervate thalamus, are engaged
by excessive beta oscillations (Brown et al. 2001; Avila
et al. 2010), together with anecdotal thalamic recordings
in unmedicated PD patients (Kempf et al. 2009), lend
support to the prediction of recruitment of Pfn activity to
abnormal beta oscillations. It remains to be determined
whether striatal and thalamic neuron firing rates increase
as predicted (but see Zold et al. 2012).

Model 3-Optimal also predicted that, in the absence of
synaptic inputs, the rate of basal activity of GP-TA neurons
is markedly lower than that of GP-TI neurons. Whether the
autonomous firing of GP-TA and GP-TI neurons differs
is unknown, partly because their definition currently
requires electrophysiological recordings in vivo rather
than in vitro. However, this prediction is corroborated
by reports that not all GP neurons can produce robust
(>10 spk s−1) autonomous activity (Nakanishi et al.
1987; Nambu & Llinas, 1994; Cooper & Stanford, 2000;
Bugaysen et al. 2010; Chuhma et al. 2011; Miguelez et al.
2012). The idea that GP-TA neurons are intrinsically less
active would also fit well with their predicted connectivity;
these cells might not need to generate robust activity
themselves because, as compared to GP-TI neurons,
they receive stronger excitatory connections from STN
and thalamus, and weaker inhibitory connections from
striatum. In line with this, in vitro work has revealed a
class of unusually slow-firing GP neurons that receive only
weak striatal inputs (Chuhma et al. 2011). Because the
autonomous firing of some (but not all) GP neurons
might be compromised after 6–OHDA lesions (Chan et al.
2011; Miguelez et al. 2012), the basal firing differences
predicted here could reflect pathological changes in
the intrinsic membrane properties of GP neurons in
Parkinsonism. Such pathological alterations might be
cell-type selective, with the excitability/activity of GP-TA
and GP-TI neurons being differentially regulated by
dopaminergic transmission or its disruption (also see
Billings & Marshall, 2004).

Further functional considerations

Here, we used computational modelling to gain new
insights into the factors underlying the complex activity
dynamics of the Parkinsonian STN–GP network in vivo.
Our models are the first to explicitly divide the GP

into two neuronal populations, and to reproduce the
firing rates/phases of STN–GP neurons that prevail in
two brain states and the distinct oscillations that define
them. We formally demonstrate using mathematics tools
that the connections of GP-TA and GP-TI neurons are
quantitatively different. GP-TA neurons receive stronger
excitatory connections from STN and thalamus, whereas
GP-TI neurons receive stronger inhibitory connections
from striatum. The inhibitory connections from each type
of GP neuron to STN are also of different weights, as are
their local connections. Together with intrinsic physio-
logical differences in GP-TA and GP-TI neurons, these
distinct connectivity patterns are predicted to be of causal
significance for the observed STN–GP network activity,
particularly for the in-phase vs. anti-phase oscillatory
firing relationships. Our data reiterate that the GP should
not be considered a functionally homogeneous structure
in circuit-level descriptions (Mallet et al. 2012), and
argue for a cell-type-specific diversity of connections
being incorporated into future schemes of the functional
organisation of the basal ganglia.

We have previously established some conditions that
are theoretically necessary for the STN–GP network to
independently generate beta oscillations (Holgado et al.
2010; Pavlides et al. 2012). The current models do not
address the issue of whether the connections between STN
neurons and the two types of GP neurons could subserve a
central pattern generator function in vivo (this would not
apply for slow oscillations anyway because they originate
in cortex; see Chauvette et al. 2010). Instead, our new
results emphasise the importance of rhythmic inputs to
the STN–GP network, and particularly those arising in
cortex, striatum and thalamus, for setting the activity of
STN, GP-TA and GP-TI neurons during Parkinsonian
oscillations. Excessive beta oscillations are thus likely
to arise from the interactions of most nodes of basal
ganglia–thalamocortical loop circuits.

Although we focused our investigations on the excessive
beta oscillations that arise after severe and chronic
dopamine depletion (Mallet et al. 2008b), it is important
to note that lower levels of beta oscillations can be
observed in basal ganglia–thalamocortical circuits when
dopamine is intact (Mallet et al. 2008b; Leventhal et al.
2012). The neural basis of these ostensibly ‘normal’ beta
oscillations, which are presumably beneficial (Leventhal
et al. 2012) and well controlled in time and space by
midbrain dopaminergic outputs, is unknown. However,
the differences in connections and intrinsic properties of
neurons that we have elucidated here could still apply,
at least qualitatively, to the STN–GP network in the
dopamine-intact brain. Assuming sufficient experimental
data are available for model comparison and constraint,
our computational strategy and models can be used in
the future to investigate the effective connectivity of the
STN–GP network in health and, as part of this, extended
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to incorporate the activity patterns and connections of
midbrain dopaminergic neurons.
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Translational perspective

Dopamine loss from the basal ganglia in idiopathic Parkinson’s disease (PD) leads to abnormally
synchronised, oscillatory neuronal activity in these brain circuits. The disturbed activities of neurons
in the subthalamic nucleus (STN) and external globus pallidus (GP) are causally important for
the cardinal motor symptoms of PD, but how the connection patterns and intrinsic physiological
properties of these neurons might support the emergence of widespread pathological oscillations is
still largely unknown. Here, we used electrophysiological recordings of STN and GP neurons in the
6–hydroxydopamine-lesioned rat model of PD to constrain a series of computational models designed
to address this issue. Importantly, we took a novel approach that was founded on the premise that
GP contains two major types of projection neuron that have dissimilar input–output connections
and firing properties. Our optimal computational model, which accurately reproduced our in vivo
electrophysiological data, predicted that the major input–output connections of the two types of GP
neuron are indeed quantitatively distinct. We further demonstrate that, together with the intrinsic
physiological differences of these GP neurons, such mismatched connections explain some of the
complex patterns of STN–GP network activity observed in experimental Parkinsonism. These data
collectively reiterate the need to incorporate GP functional dichotomy into contemporary schemes
of basal ganglia organisation. They additionally suggest that inappropriate interactions between most
nodes of basal ganglia–thalamocortical circuits underlie the excessive neuronal oscillations seen in
Parkinsonism. This study also provides further rationale for exploring the external globus pallidus as
a target for improved surgical interventions in PD.
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