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Abstract

In immunoglobulin A nephropathy (IgAN), Cox regression analysis can select independent

prognostic variables for renal functional decline (RFD). However, the correlation of the

selected histological variables with clinical and/or treatment variables is unknown, thereby

making histology-based treatment decisions unreliable. We prospectively followed 946 Jap-

anese patients with IgAN for a median of 66 mo. and applied structural equation modeling

(SEM) to identify direct and indirect effects of histological variables on RFD as a regression

line of estimated glomerular filtration rate (eGFR) via clinical variables including amount of

proteinuria, eGFR, mean arterial pressure (MAP) at biopsy, and treatment variables such as

steroid therapy with/without tonsillectomy (ST) and renin–angiotensin system blocker

(RASB). Multi-layered correlations between the variables and RFD were identified by multi-

variate linear regression analysis and the model’s goodness of fit was confirmed. Only tubu-

lar atrophy/interstitial fibrosis (T) had an accelerative direct effect on RFD, while

endocapillary hypercellularity and active crescent (C) had an attenuating indirect effect via

ST. Segmental sclerosis (S) had an attenuating indirect effect via eGFR and mesangial

hypercellularity (M) had accelerative indirect effect for RFD via proteinuria. Moreover, M and

C had accelerative indirect effect via proteinuria, which can be controlled by ST. However,

both T and S had additional indirect accelerative effects via eGFR or MAP at biopsy, which

cannot be controlled by ST. SEM identified a systemic path links between histological vari-

ables and RFD via dependent clinical and/or treatment variables. These findings lead to clin-

ically applicable novel methodologies that can contribute to predict treatment outcomes

using the Oxford classifications.
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Introduction

The international histological classification for IgA nephropathy (IgAN) known as the Oxford

classification was developed by defining and selecting relevant pathological variables for renal

functional decline (RFD). This classification utilizes five pathological variables assessed indi-

vidually: mesangial hypercellularity (M), endocapillary hypercellularity (E), segmental glomer-

ulosclerosis (S), tubular atrophy/interstitial fibrosis (T), and cellular or fibrocellular (active)

crescent (C) [1–3]. Almost all previous studies used traditional Cox regression analysis,

which selects independent prognostic variables to propose high-risk patients. However, the

correlation of the selected histological variables with clinical and/or treatment variables is

unknown, and this is important information when choosing therapy. As a consequence, high-

risk patients, irrespective of either active or chronic histological variables, equally receive

immunosuppressive treatment at the time of biopsy [4, 5]. Due to a lack of sufficient evidence

for histology-based decision making, the Kidney Disease: Improving Global Outcomes

(KDIGO) guidelines recommend the choice of immunosuppressant therapy be made, not

based on histology, but mostly based on clinical features indicating more than 1 g/d protein-

uria around the time of biopsy and during the two years after biopsy [6]. Therefore, risk strati-

fication and treatment decisions currently still rely on inaccurate categorization of these risk

factors.

Recently, a new International Risk-Prediction Tool for IgAN has been proposed as a more

accurate tool to predict disease progression based on both histological and clinical risk factors,

including treatment choice [7–10]. This is a personalized prediction model using an equation

composed not only of clinical variables including urine protein excretion (UPE), estimated

glomerular filtration rate (eGFR), and mean arterial pressure (MAP) at biopsy and treatment

choice such as steroid therapy (ST) and renin–angiotensin system blocker (RASB) but also the

histological variables MEST. This personalized equation predicts the probability of developing

50% decrease in eGFR or end-stage renal disease in 5 years [8]. However, the formula is com-

posed of evenly evaluated histological, clinical, and treatment variables as a simple summation

in the exponential function [8, 11]. Therefore, it is still not known how each histological vari-

able will respond to treatment choice after renal biopsy.

RFD is associated not only directly with histological, clinical, and/or treatment variables,

but also indirectly and unequally with clinical and/or treatment variables. Structural equation

modeling (SEM) is a method which can estimate these complex interactions by adjusting for

measurement errors in dependent variables using the error term “ε,” reducing bias in correla-

tion estimates [12, 13].

In this prospective study, we therefore aimed to use SEM with multivariate linear regression

analysis to find structural paths of correlation between each histological variable and slope as a

regression line of eGFR (SLOPE) via clinical variables and treatment choice. The appropriately

fitting model, including direct and indirect effects on RFD of Oxford classification variables

via clinical and/or treatment variables, can then be implemented clinically.

Materials and methods

Objectives

This was a prospective clinical study. Patients with IgAN were recruited and their clinical data

and renal biopsy materials collected at 44 kidney centers across Japan. This clinical research

project was produced by the ethical committee of The Research Group on Progressive Renal

Diseases organized by the Ministry of Health, Labour and Welfare in Japan. The study proto-

col was in accordance with the standards of the ethics committee at each center, and each
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patient consented to participate after being informed of the purpose and procedure of the

study.

Patients with IgAN registered between April 2005 and August 2015 in the Japan IgA

Nephropathy Prospective Cohort Study (JIGACS), which is a prospective observational study

conducted at facilities throughout Japan, were included in the study. The protocol was

approved by the Jikei University School of Medicine’s Institutional Review Board on Human

Research, which acted as the main ethics committee for this study (No. 16–174 [4402]). Writ-

ten consent was obtained from each patient and the date of consent acquisition was recorded

in the designated column of the consent form. If the patient was below the age of 18 years, writ-

ten consent was obtained from his/her guardian. Of 1130 patients, we excluded those with

more than one of the following variables missing: MESTC score, baseline UPE, eGFR, or MAP,

and SLOPE measurements, or if they had no follow-up data after renal biopsy. Secondary cases

that showed mesangial IgA deposits, although with a predominant combined disease such as

diabetes mellitus, were excluded. After exclusions, 946 patients were included in the study.

Clinical data

Normally distributed variables, as determined using the Shapiro–Wilk test, non-parametric

variables and categorical variables were expressed as mean ± standard deviation, as median

and range, and as frequency and percentage, respectively. The data were analyzed using SPSS

version 24 (IBM Corp., USA).

Clinical variables, which were collected within 1 mo of biopsy and during follow-up, were

as follows. MAP was defined as diastolic pressure plus a third of the pulse pressure. The eGFR

was calculated as per the Japanese-based equation: eGFR (ml/min/1.73 m2) = 194 × serum cre-

atinine (sCr)−1.094 × age−0.287 (if female, ×0.739) [14]. In patients who were younger than 20

years, the eGFR was calculated incorporating polynomial formulas for sCr and body length

[15]. The Oxford study excluded initial GFR<30 ml/min and initial proteinuria <0.5 mg/d,

but no such exclusion criteria were applied in this study. Treatments taken within a year after

biopsy were recognized as selected treatments: immunosuppressive treatment including ST

with/without tonsillectomy (reported as an intended treatment regardless of the type or dura-

tion of therapy) or RASB indicating any exposure to angiotensin-converting enzyme inhibitor,

angiotensin receptor blockers, or both. If the patients had already received RASB at the time of

renal biopsy, this was also recorded as an initial treatment. Weight, height, sCr, and amount of

proteinuria (g/d) were also recorded.

Outcomes

In patients where more than two eGFR measurements were available, SLOPE was calculated as

a regression line and used as an outcome, as an indicator of RFD.

Pathological data

All cases were proven to be IgAN by biopsy. IgAN was defined by dominant mesangial deposi-

tions of IgA and its presence in more than 10 glomeruli. Pathological variables used in the

present study included M0, M1, E0, E1, S0, S1, T0, T1, or T2, and C0, C1, or C2, which were

defined according to the Oxford classification [1–3]. Briefly, M0 and M1 indicated the percent-

ages of glomeruli with a mesangial hypercellularity of 0%–50% and<50%, respectively accord-

ing to a simplification of the mesangial hypercellularity score as shown in the Oxford study [1,

2]. S0 or S1 and E0 or E1 indicated the absence or presence of S and E, respectively. T0, T1,

and T2 indicated interstitial fibrosis at 0%–25%, 26%–50%, and>50%, respectively. C0, C1,

and C2 indicated the percentage of glomeruli with either a cellular or fibrocellular crescent at
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0%, 1%–24%, and�25%, respectively. Renal biopsies were scored for pathological variables

according to the Oxford study by five renal pathologists (KJ, AH, AS, SH, RK) blinded to the

clinical data. When disagreement occurred between observers, scoring was repeated by all five

observers to reach a consensus. The agreement rate was good or moderate in our previous

study; the intraclass correlation coefficient of M, E, S, T1/T2, and C1/C2 were 0.54, 0.57, 0.64,

0.72, and 0.57, respectively, among the five pathologists [16].

SEM

SEM model building and estimation was done using STATA/SE version 15 (Light Stone,

USA). A two-sided P<0.05 was considered significant.

SEM included analysis of the direct paths between histological variables and SLOPE and

indirect paths between histological variables and SLOPE via clinical factors and treatment

choice, and linear regression analysis was used to find statistically significant direct and indi-

rect effects. Linear regression was used instead of Cox regression to find indices of the model’s

statistical fit, as goodness of fit could not be applied for the survival analysis model based on

Cox multivariate analysis.

The candidate variables were selected according to a previous study by Barbour et al. [8]

We first created a hypothetical model consisting of all histological, clinical, and treatment vari-

ables and SLOPE as a marker of RFD (Fig 1). Considering normality, clinical variables were

modified as follows: The baseline UPE0, baseline square root eGFR0 (SReGFR0), and MAP at

biopsy were centralized as each patient’s UPE0c, SReGFR0c, and MAPc, which was the value

subtracted by an average of 946 patients in each category. Direct paths are indicated by arrows

from each independent histological variable (M, E, S, T, and C), clinical variable (centralized

UPE [UPEc0], centralized square root eGFR [SReGFR0c], or centralized MAP dichotomized

with negative MAPc as MAPc0 and positive MAPc as MAPc1 [MAPc01]), and treatment

Fig 1. Hypothetical model incorporating all histological, clinical, and treatment variables and the slope of change

in estimated glomerular filtration rate (SLOPE), as a marker of renal functional decline (RFD).

https://doi.org/10.1371/journal.pone.0268731.g001
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variable (ST and RASB) after renal biopsy leading to SLOPE as an endpoint (Fig 1a–1c). Indi-

rect paths are indicated by arrows from each independent histological variable to each mediat-

ing variable (clinical and treatment; Fig 1d and 1e) and from each dependent clinical variable

to each dependent treatment variable (Fig 1f). As MAP and eGFR can affect the amount of

proteinuria [6], the correlations between UPE0c and MAPc01 or SReGFR0c were added as

clinical variables. The correlations of a–f were estimated using a multiple linear regression

model. We reported standardized path coefficients (SC), P values, and confidence intervals

(CI). In addition, error terms (ε1–ε6), which account for measurement error, were used in

addition to latent clinical variables and SLOPE.

Direct paths are indicated as arrows from each independent histological variable (M, E, S,

T, or C), clinical variable (UPEc0, SReGFR0c, and MAPc01), and treatment variable (ST with/

without tonsillectomy and renin–angiotensin system blocker [RASB]) after renal biopsy lead-

ing to SLOPE (Fig 1a–1c). Indirect paths are indicated as each histological variable pointing to

each mediating variable (clinical and treatment, Fig 1d and 1e) and pointing to each dependent

treatment variable from each dependent clinical variable (Fig 1f).

These calculations using the hypothetical model identified significant correlations among

histological, clinical, and treatment variables and SLOPE, allowing a new model to be drawn.

Only paths with correlations of P<0.1 were drawn as arrows in this revised model. To deter-

mine any elimination bias, it was checked whether link paths with correlations of P<0.1 were

the same as those with correlations of P<0.05. An appropriately fitting model was proven

using population error (root mean square error of approximation [RMSEA] < 0.05 with 90%

CI), baseline comparison (comparative fit index [CFI] > 0.90), and size of residuals (standard-

ized root mean square residual [SRMSR] < 0.05) [17–19]. The sample size of 946 observations

for the present analysis consisting of 19 variables including M0, M1, E0, E1, S0, S1, T0, T1 or

T2, C0, C1 or C2, UPE0c, SReGFR0c, MAPc0, MAPc1, ST0, ST1, RASB0, RASB1, and SLOPE

was appropriate because an ideal sample size-to-parameters ratio would be 20:1, indicating

that the minimum sample size should be 19 × 20 [20].

Results

Clinical profile

Clinical profiles of 946 Japanese with IgAN are shown in Table 1. Patients had a median age of

37.1 years old (2.8–87.5 years old) and were followed up for a median of 66 mo (1–174 mo).

There was an equal distribution of males (49%) and females (51%) indicating no gender-based

skewing of the results. MAP at renal biopsy was 90.0 ± 13.7 mmHg and dichotomized and cen-

tralized MAPc1 was 45%. eGFR0 was 75.6 ± 28.9 ml/min and UPE0 was 1.1±2.2 mg/dl. Body

mass index (BMI) was 22.1 ± 3.8. The SLOPE was −0.10 ± 0.51 ml/min/1.73 m2/y.

Treatment

Table 1 shows an overview of treatment choices for the study participants. ST was used to treat

64%, which included steroid pulse therapy in 20%, steroid pulse with tonsillectomy in 38%,

oral steroid therapy in 5%, and oral steroids with tonsillectomy in 1%. RAS blockade was used

to treat 57%. A small proportion (5%) was treated only with tonsillectomy, and 34% were not

treated at all.

Pathological profile

Histological results from renal biopsy samples are shown in Table 1. The proportion of the

patients with M1, E1, S1, T1, T2, C1, and C2 was 29%, 35%, 74%, 18%, 4%, 38%, and 1%,

respectively.
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SEM

A hypothetical model was drawn as described in the Methods and tested with a multivariate

linear regression model using SEM (Fig 1). After removing non-significant paths (P>0.1),

SEM was performed again to find an appropriately fitting model. The significant paths were

the same whether the significance threshold was set at P<0.05 or P<0.1 as shown in Fig 2.

Therefore, no elimination bias was apparent. As indices of the models’ statistical fit, RMSEA,

CFI, and SRMSR were 0.05 as same as 0.05, 0.93 as more than 0.90, and 0.03 as less than 0.05,

respectively. Therefore, these results indicate that the model was an appropriate fit according

to a likelihood estimation of appropriate fit as shown in the Methods [17, 18]. An analyzing

process was shown in a flow chart (S1 File).

Statistically significant paths between histological variables, clinical variables, or treatment

variables and SLOPE are shown as arrows with standardized coefficients marked. T, besides

ST, UPE0c, and SReGFR0c, showed direct correlations with SLOPE (P < 0.05) (blue arrows).

All histological variables showed indirect effects on SLOPE via clinical variables or ST (red

arrows).

Table 1. Clinical, treatment, and histological profiles of the IgAN patients in this study.

Clinical profile Histological profile

n (%)

Cohort 946 M

Male, n (%) 463 (49%) M0 671 (71%)

Female, n (%) 483 (51%) M1 275 (29%)

Age 37.1 (2.8–87.5) E

Ethnicity Japanese E0 611 (65%)

MAP at biopsy (mmHg) 90.0 ± 13.7 E1 335 (35%)

MAPc01, n (%) S

Yes 430 (45%) S0 247 (26%)

No 516 (55%) S1 699 (74%)

eGFR (ml/min/1.73 m2) 75.6 ± 28.9 T

UPE0 (at biopsy) 1.1 ± 2.2 T0 739 (78%)

BMI 22.1 ± 3.8 T1 170 (18%)

eGFR slope (ml/min/1.73m2/y) −0.10 ± 0.51 T2 37 (4%)

Period of follow-up (mo) 66 (1–174) C

C0 580 (61%)

Treatment choice n (%) C1 357 (38%)

ST C2 9 (1%)

Yes 605 (64%)

No 341 (36%)

RASB

Yes 539 (57%)

No 407 (43%)

BMI: body mass index; eGFR: estimated glomerular filtration rate; MAP: mean arterial pressure; MAPc01:

centralized dichotomized MAP; RASB: renin-angiotensin system blocker; ST: steroid therapy with/without

tonsillectomy; UPE0: baseline urine protein excretion. M0 and M1 indicated the percentages of glomeruli with a

mesangial hypercellularity of 0%–50% and <50%, respectively. S0 or S1 and E0 or E1 indicated the absence or

presence of S and E, respectively. T0, T1, and T2 indicated interstitial fibrosis at 0%–25%, 26%–50%, and >50%,

respectively. C0, C1, and C2 indicated the percentage of glomeruli with either a cellular or fibrocellular crescent at

0%, 1%–24%, and�25%, respectively.

https://doi.org/10.1371/journal.pone.0268731.t001

PLOS ONE Structural modeling of immunoglobulin A nephropathy Oxford classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0268731 September 9, 2022 6 / 12

https://doi.org/10.1371/journal.pone.0268731.t001
https://doi.org/10.1371/journal.pone.0268731


Analyzing indirect contributors to SLOPE, ST, which correlated with S, E, C, UPE0c,

SReGFR0c, and MAPc01, was correlated with SLOPE. RASB, which correlated with UPE0c,

SReGFR0c, and MAPc01, was not correlated with SLOPE. The error terms ε1–ε6 of each of

MAPc01, SReGFR0c, UPEc0, ST, RASB, and SLOPE were 0.93, 0.68, 0.89, 0.88, 0.83, and 0.95,

respectively.

In the SEM analysis, statistically significant direct correlations with SLOPE (P<0.05) were

independent accelerative histological variable T, independent accelerative clinical variables

UPE0c and SReGFR0c, and independent attenuating treatment variable ST. As well as the

direct correlations with SLOPE, correlations between clinical and histological variables and

between treatment and histological variables or clinical variables were calculated and indicated

indirect correlations with SLOPE (Fig 2 and Table 2). UPE0c positively correlated with M and

C and negatively correlated with SReGFR0c. MAPc01 positively correlated with S and T.

SReGFR0c negatively correlated with S and T. ST negatively correlated with MAP01c and posi-

tively correlated with UPE0c, SReGFR0c, S, E, and C. RASB, although correlated with UPE0c,

MAPc01, and SReGFR0c, was not an independent variable for SLOPE.

As shown in Table 3, direct and/or indirect effects of histological variables on SLOPE were

calculated as total coefficients by combining the direct and indirect coefficients for each histo-

logical variable (Table 3). An analyzing process was shown in a flow chart (S1 File). The total

coefficients were the sums of the direct and indirect coefficients, where each indirect coeffi-

cients of M, E, S, T, or C in Table 3 was the integration of each coefficient of the clinical and

treatment variables in Table 2 according to the paths shown in Fig 2, which stood between his-

tological variables and SLOPE (Fig 2). T showed an total accelerative effect composed of the

direct accelerative coefficient and the indirect accelerative coefficients as via SReGFR0c and ST

and via MAPc01 and ST. E showed an attenuating indirect effect via ST. C showed an attenuat-

ing indirect effect composed of an attenuating indirect effect via ST and attenuating indirect

effect via UPE0c and ST. S showed an attenuating indirect effect via SReGFR0c and addition-

ally an accelerative indirect effect via SReGFR0c and ST, as well as via MAPc01 and ST. M

showed an accelerative effect composed of accelerative indirect effect via UPE0c and an attenu-

ating indirect effect via UPE0c and ST (Table 3). In summary, only T showed an accelerative

direct effect on RFD, whereas E and C were not independent variables for RFD, correlated sig-

nificantly with ST, and showed attenuating effects on RFD via ST. S showed attenuating effects

on RFD via SReGFR0c. Both C and M had additional accelerative effects via UPE0c, which can

Fig 2. SEM was performed to find an appropriate fitting model after removing non-significant paths (P> 0.05).

https://doi.org/10.1371/journal.pone.0268731.g002
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be controlled by ST, thus changing the accelerative effect to attenuating effect. On the other

hand, both T and S had additional indirect accelerative effects on RFD via SReGFR0c or via

MAPc01, which could not be controlled by ST, thus continuing to exhibit the accelerative

effect. The error terms ε1–ε6 of each MAPc01, SReGFR0c, UPEc0, ST, RASB, and SLOPE

were 0.93, 0.68, 0.89, 0.88, 0.83, and 0.95, respectively (Fig 2).

Discussion

In this prospective multicenter study involving 946 Japanese IgAN patients, we applied SEM

to evaluate structural correlations associated with the change in eGFR as RFD (SLOPE).

Table 2. Direct and indirect correlations between histological variables and change in estimated glomerular filtration rate (SLOPE) via clinical variables and treat-

ment variables.

SC SE z P>z [95% Confidence Interval]

SLOPE

UPE0c −0.073 0.033 −2.200 0.028 −0.138 −0.008

SReGFR0c −0.224 0.039 −5.800 <0.001 −0.299 −0.148

ST 0.127 0.032 3.99 <0.001 0.065 0.19

T −0.095 0.038 −2.500 0.013 −0.170 −0.020

_cons −0.318 0.056 −5.630 <0.001 −0.429 −0.207

UPE0c

SReGFR0c −0.205 0.031 −6.660 <0.001 −0.266 −0.145

M 0.194 0.031 6.26 <0.001 0.133 0.254

C 0.102 0.031 3.31 0.001 0.042 0.162

_cons −0.205 0.042 −4.870 <0.001 −0.287 −0.122

MAPc01

S 0.091 0.032 2.84 0.004 0.028 0.152

T 0.237 0.03 7.79 <0.001 0.177 0.297

_cons 0.637 0.066 9.61 <0.001 0.507 0.766

SReGFR0c

S −0.095 0.027 −3.52 <0.001 −0.148 −0.042

T −0.545 0.021 −25.740 <0.001 −0.587 −0.504

_cons 0.448 0.051 8.79 <0.001 0.349 0.548

ST

UPE0c 0.108 0.032 3.41 0.001 0.046 0.17

MAPc01 −0.069 0.033 −2.100 0.036 −0.133 −0.004

SReGFR0c 0.109 0.034 3.24 0.001 0.043 0.175

S 0.127 0.032 3.97 <0.001 0.064 0.19

E 0.114 0.033 3.41 0.001 0.048 0.18

C 0.180 0.034 5.24 <0.001 0.112 0.247

_cons 0.956 0.076 12.53 <0.001 0.807 1.106

RASB

UPE0c 0.088 0.03 2.88 0.004 0.028 0.147

MAPc01 0.207 0.031 6.61 0 0.146 0.269

SReGFR0c −0.300 0.031 −9.550 0 −0.361 −0.238

_cons 0.976 0.049 19.87 0 0.88 1.072

SC: standardized coefficient; SE: standard error; T: tubular atrophy/interstitial fibrosis; M: mesangial hypercellularity; C: active crescent; S: segmental

glomerulosclerosis; E: endocapillary hypercellularity; ST: steroid therapy including tonsillectomy; RASB: renin-angiotensin system blocker; UPE0c: centralized base line

urine protein excretion; SReGFR0c: centralized square root baseline eGFR; MAPc01: centralized dichotomized baseline mean arterial pressure; cons: constant.

https://doi.org/10.1371/journal.pone.0268731.t002
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Consequently, this analysis showed systemic path links between SLOPE and histological vari-

ables via clinical and/or treatment variables.

We identified the contributors to SLOPE as T (T1 or T2, independent accelerative histologi-

cal variable), SReGFR0c and UPE0c (independent accelerative clinical variables), and ST

(independent attenuating treatment variable). RASB was not an independent variable for

SLOPE. Further, the selected contributors as well as the independent variables for SLOPE were

connected via dependent histological, clinical, and/or treatment variables. Therefore, we inves-

tigated the statistically significant structural correlations among the histological, clinical, and

treatment variables and SLOPE.

Using the coefficients of the direct and indirect correlations, we calculated the total effect of

each histological variable on SLOPE (Table 3). T was the only histological variable with a direct

(accelerative) effect on SLOPE. It had additional indirect effects (accelerative) via SReGFR0c

or MAPc01, which could not be controlled by ST, thus maintaining the accelerative effect.

Both E and C attenuated SLOPE via ST. M showed an overall accelerative effect on SLOPE,

thereby incorporating an accelerative effect via UPE0c. Further, both M and C had additional

accelerative effects on SLOPE via UPE0c, which was controlled by ST, thereby transforming

the accelerative effect to attenuating effect. S had an attenuating indirect effect via eGFR.

Moreover, both T and S had indirect accelerative effects via eGFR0c or MAP, which could not

be controlled by ST, thus continuing with the accelerating effect. If S0 developed to S1,

SReGFR0c decreased (Table 2). This negative correlation meant that if eGFR at biopsy was

high, SLOPE declined strongly, while if it was low, there was a weaker decline. This is also true

in normal kidneys [21].

The above findings suggest that ST was chosen for patients with E1 and C1 or C2 but not

with T1 or T2 and that it effectively attenuated decline in eGFR. This is in partial agreement

with another Japanese study, which found that patients with E1, S1, or C1 treated with ST had

significantly better prognosis than the non-treatment group [22]. Similarly, in two other stud-

ies, the presence of E was strongly associated with subsequent ST, and there was a higher rate

of decline in renal function in patients who were not treated with immunosuppressants [1] or

corticosteroids [23]. Our study also showed that C and M had additional accelerating effects

Table 3. Direct and indirect effects of Oxford histological variables on change in estimated glomerular filtration rate (SLOPE).

Histological Direct Indirect Total

variable coefficient coefficient via coefficient

M −0.014 UPE0c −0.011

M 0.003 UPE0c, ST

E 0.014 ST 0.014

S 0.021 SReGFR0c 0.019

S −0.001 SReGFR0c, ST

S −0.001 MAPc01, ST

T −0.095 −0.105

T −0.008 SReGFR0c, ST

T −0.002 MAPc01, ST

C 0.023 ST 0.024

C 0.001 UPE0c, ST

M: mesangial hypercellularity; E: endocapillary hypercellularity; S: segmental glomerulosclerosis; T: tubular atrophy/interstitial fibrosis; C: active crescent; SReGFR0c:

centralized square root baseline eGFR; MAPc01: centralized dichotomized baseline mean arterial pressure; UPE0c: centralized baseline urine protein excretion; ST:

steroid therapy including tonsillectomy.

https://doi.org/10.1371/journal.pone.0268731.t003
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via UPE0c on SLOPE, which were controlled and thus led to the change from accelerative to

attenuating effect by ST. Therefore, ST can be considered to be effective for the patients with C

and M by diminishing the accelerative effect of UPE0c. Other studies have shown that patients

had an increased risk of disease progression with extremely increasing C, even with immuno-

suppression [5, 24, 25]. T and S had additional accelerative effects via SReGFR0 or MAPc01,

which could not be controlled by ST. This is consistent with the previous findings, which

reported that S (as well as M and T) had predictive prognostic value for RFD [1, 5, 23]. How-

ever, the prognostic role of S1 for RFD can be small, when early ST prevented a progression

from active crescent as C1/C2 to S. M appears to be a sensitive histological variable, as it can

also be a risk factor for RFD via acceleration of proteinuria, when proteinuria cannot be con-

trolled by ST [5, 26, 27]. However, the original Oxford study selected S1 and T1/T2 but not M1

for RFD in a multivariate linear regression model adjusted for initial eGFR, MAP, and UPE0

[1, 28]. The VALIGA study suggested also M1 was a steroid-responsive variable [26, 29, 30].

These conflicting results illustrate the benefit of analyzing both the direct and indirect effects.

We were able to stratify the Oxford histological classifications from the viewpoint of treat-

ment response in predicting future outcomes. Several validation studies of the Oxford classifi-

cation using Cox analysis showed merely different independent histological, clinical, and

treatment variables without suggesting their concrete clinical use, which may depend on dif-

ferences in the cohorts [4, 5, 31, 32]. SEM can clarify these differences by analyzing the correla-

tions between Oxford histological variables and RFD via clinical and treatment variables.

In conclusion, SEM identified a systemic path links between histological variables and RFD

via dependent clinical and/or treatment variables. We focused not only on direct effect but

also on indirect effect of histological variables on RFD, where direct effects of clinical variables

on RFD, such as SReGFR0c, UPE0c and ST, were influenced by histological variables. To the

best of our knowledge, there has been no such systematic research previously to propose the

correlation among histological, clinical, and treatment variables in depth. These findings lead

to clinically applicable novel methodologies that can contribute to predict treatment outcomes

using the Oxford classifications and improve care for IgAN patients using personalized

medicine.

As a limitation, this prospective study using SEM cannot predict the prognosis of renal

function by Cox regression analysis because goodness of fit could not be applied for the sur-

vival analysis model. Obtaining a more apparent eGFR slope needs longer period of follow-up.
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