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Abstract

Although they share certain biological properties with nucleic acid based infectious agents, prions, the causative agents of
invariably fatal, transmissible neurodegenerative disorders such as bovine spongiform encephalopathy, sheep scrapie, and
human Creutzfeldt Jakob disease, propagate by conformational templating of host encoded proteins. Once thought to be
unique to these diseases, this mechanism is now recognized as a ubiquitous means of information transfer in biological
systems, including other protein misfolding disorders such as those causing Alzheimer’s and Parkinson’s diseases. To
address the poorly understood mechanism by which host prion protein (PrP) primary structures interact with distinct prion
conformations to influence pathogenesis, we produced transgenic (Tg) mice expressing different sheep scrapie
susceptibility alleles, varying only at a single amino acid at PrP residue 136. Tg mice expressing ovine PrP with alanine
(A) at (OvPrP-A136) infected with SSBP/1 scrapie prions propagated a relatively stable (S) prion conformation, which
accumulated as punctate aggregates in the brain, and produced prolonged incubation times. In contrast, Tg mice
expressing OvPrP with valine (V) at 136 (OvPrP-V136) infected with the same prions developed disease rapidly, and the
converted prion was comprised of an unstable (U), diffusely distributed conformer. Infected Tg mice co-expressing both
alleles manifested properties consistent with the U conformer, suggesting a dominant effect resulting from exclusive
conversion of OvPrP-V136 but not OvPrP-A136. Surprisingly, however, studies with monoclonal antibody (mAb) PRC5, which
discriminates OvPrP-A136 from OvPrP-V136, revealed substantial conversion of OvPrP-A136. Moreover, the resulting OvPrP-
A136 prion acquired the characteristics of the U conformer. These results, substantiated by in vitro analyses, indicated that
co-expression of OvPrP-V136 altered the conversion potential of OvPrP-A136 from the S to the otherwise unfavorable U
conformer. This epigenetic mechanism thus expands the range of selectable conformations that can be adopted by PrP, and
therefore the variety of options for strain propagation.
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Introduction

Prion-mediated phenotypes and diseases result from the

conformationally protean characteristics of particular amyloido-

genic proteins. The prion state has the property of interacting with

proteins in their non-prion conformation, thus inducing further

prion conversion. The prion phenomenon has been described for

a variety of different proteins involved in diverse biological

processes ranging from translation termination in yeast, memory

in Aplysia, antiviral innate immune responses [1], and most

recently the action of the p53 tumor suppressor [2]. Since the

prion and non-prion conformations have differing biological

properties, the net result of this replicative process is protein-

mediated information transfer, the characteristics of which vary

from prion to prion. The ubiquity of prion replication indicates

that this is a wide-ranging of means of information transfer in

biological systems.

In the case of mammalian neurodegenerative diseases the prion

state is pathogenic as well as transmissible. A hallmark of such

conditions is the inexorable progression of pathology between

synaptically connected regions of the central nervous system

(CNS), consistent with advancing cell-to-cell prion spread.

Experimental transmission in several settings has been convinc-

ingly demonstrated in the case of the amyloid beta (Ab) peptide

which features prominently in Alzheimer’s disease (AD), the

intracytoplasmic protein tau, also involved in AD as well as various

neurodegenerative diseases referred to as taopathies, and a-

synuclein, the primary constituent of Lewy bodies found in

Parkinson’s disease (PD) [1,3].

The prototypic and best-characterized prion diseases are the

transmissible spongiform encephalopathies (TSEs) of animals and

humans, including sheep scrapie, bovine spongiform encephalop-

athy (BSE), chronic wasting disease (CWD) of cervids, and human

Creutzfeldt-Jakob disease (CJD). TSEs result from conformational
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conversion of the host-encoded cellular form of the prion protein,

PrPC, to the corresponding prion, or scrapie form, PrPSc. Since

TSEs share numerous properties with nucleic acid-based patho-

gens, including agent host-range, stable strain properties, and the

ability to mutate and respond to selective pressure, early

researchers assumed a viral etiology for these diseases. While this

is not the case, the unequivocal infectivity of TSEs set these prions

apart. Their singular capacity to cause fatal neurodegeneration in

genetically tractable animal models, and the ability to propagate

and quantify infectivity, in vivo, in cell culture or cell-free

conditions, provide unparalleled settings to elucidate general

mechanisms and devise integrated therapeutic approaches for all

diseases involving conformational templating [4].

TSEs have long incubation periods ranging from months to

years, are invariably fatal, and currently incurable. While a variant

of CJD (vCJD) is unequivocally linked to prions causing BSE [5],

the zoonotic potential of other TSE’s remains uncertain. Whereas

all TSEs, including human genetic and sporadic forms, are

experimentally transmissible, most are naturally infectious and

frequently occur as unanticipated epidemics. Scrapie is one such

example, and several iatrogenic epidemics have been reported.

More than 1,500 sheep developed scrapie following administration

of a scrapie-contaminated vaccine [6]. A similar recent event led to

an ,20-fold increase in the rate of scrapie in Italy [7].

Prion strain properties and the primary structure of PrP are the

two major elements controlling prion transmission. Optimal

disease progression appears to occur when the primary structures

of PrPSc constituting the infectious prion, and substrate PrPC

expressed in the host are closely related [8–10]. Underscoring the

importance of primary structure on transmission, susceptibility

and disease presentation are strongly influenced by several PRNP

polymorphisms in humans and animals. For example, a strong

association between susceptibility/resistance to natural scrapie is

associated with the valine (V)/alanine (A) dimorphism at PrP

residue 136 [11]. Prion strains are classically defined by differences

in incubation times, and the neuropathological profiles they induce

in the CNS. Seminal studies of mink prions [12], as well as studies

of human prions in Tg mice [13] indicated that strain information

is enciphered within the tertiary structure of PrPSc. While this

remains the favored explanation for prion strain diversity, the

mechanism by which primary and higher order PrPC and PrPSc

structures interact to influence pathogenesis are not understood.

Our previous studies demonstrated that A at ovine PrP residue

136 is a component of the monoclonal antibody (mAb) PRC5

epitope [14]. This property allowed us to use PRC5 in this study to

distinguish OvPrP-A136 from OvPrP-V136, affording the oppor-

tunity to monitor allele-specific OvPrP conversion during prion

infection. To accomplish this, we engineered Tg mice expressing

either OvPrP-A136 or OvPrP-V136, as well as Tg mice expressing

both alleles in the same neuronal populations. Here, using a

combination of in vivo and in vitro approaches, we address the

mechanism by which this important disease susceptibility dimor-

phism influences scrapie strain-specific pathogenesis.

Results

Transgenic mice to assess the effects of the OvPrP A/
V136 dimorphism on scrapie pathogenesis

We created Tg mice expressing OvPrP encoding either A or V

at residue 136. Using semi-quantitative Western and immuno dot

blotting we ascertained that levels of expression in the CNS of

Tg(OvPrP-A136)3533+/2 and Tg(OvPrP-V136)4166+/2 mice

were close to that of PrP expressed in the CNS of wild type mice

(Fig. 1A).

Both lines of Tg mice tolerated these levels of expression without

spontaneously developing recognizable signs of disease (Table 1).

In contrast, Tg mice of both genotypes intracerebrally (ic)

inoculated with brain homogenates from scrapie-affected sheep

succumbed to the neurological effects of prion disease following

variable incubation periods (Table 1). Rapid disease onset

occurred following inoculation of Tg(OvPrP-V136)4166+/2 mice

with SSBP/1 prions [15,16], which consistently produced an

,130 d mean incubation time. While SSBP/1 also caused disease

in Tg(OvPrP-A136)3533+/2 mice, mean incubation times were

,230 to 280 d longer (Fig. 1B and Table 1). In contrast, CH1641

prions [17] induced disease in all inoculated Tg(OvPrP-

A136)3533+/2 mice with a mean ,310 d onset of disease,

whereas no disease was registered in Tg(OvPrP-V136)4166+/2

mice after .560 d. These distinct transmission profiles are

consistent with previously recognized strain differences between

SSBP/1 and CH1641 scrapie prions [17]. Consistent with this

notion, western blot analysis of proteinase K-treated brain extracts

of diseased Tg(OvPrP-A136)3533+/2 mice confirmed that the

molecular profiles which distinguish PrPSc constituting SSBP/1 and

CH1641 prions [18] were maintained upon transmission (Fig. 1C).

These results demonstrate that Tg(OvPrP-A136)3533+/2 and

Tg(OvPrP-V136)4166+/2 mice are capable of distinguishing

scrapie strain-specific transmission patterns, and in turn that these

properties are influenced by the A/V136 dimorphism.

The influence of the OvPrP A/V136 dimorphism on PrPSc

conversion kinetics, conformation, and CNS deposition
Previous studies revealed a positive correlation between PrPSc

conformational stability and the incubation times of mouse and

cervid prions [19,20], but not of hamster prions [21,22]. We

performed guanidine denaturation treatments on PrPSc in brain

extracts of SSBP/1 infected Tg(OvPrP-V136)4166+/2 mice with

short incubation times and SSBP/1 infected Tg(OvPrP-

A136)3533+/2 mice with long incubation times. Analyses using

mAb 6H4 revealed distinct stability curves for OvPrPSc-V136 and

OvPrPSc-A136. The conformational stability of OvPrPSc-V136

was lower than OvPrPSc-A136 in the range of GdnHCl

concentrations between 1 and 2 M, (Fig. 2A) and GdnHCl1/2

values were 1.78 and 2.17 respectively. This confirmed that the

Author Summary

Prions are infectious proteins, originally discovered as the
cause of a group of transmissible, fatal mammalian
neurodegenerative diseases. Propagation results from
conversion of the host-encoded cellular form of the prion
protein to a self-propagating disease-associated confor-
mation. It is believed that the self-propagating pathogenic
form exists in a variety of subtly different conformations
that encipher prion strain information. Here we explored
the mechanism by which prion protein primary structural
variants, differing at only a single amino acid residue,
interact with prion strain conformations to control disease
phenotype. We show that under conditions of co-
expression, a susceptible prion protein variant influences
the ability of an otherwise resistant variant to propagate
an otherwise unfavorable prion strain. While this phenom-
enon is analogous to the expression of genetically-
determined phenotypes, our results support a mechanism
whereby dominant and recessive prion traits are epige-
netically controlled by means of protein-mediated confor-
mational templating.
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conformation of OvPrPSc-V136 produced in Tg(OvPrP-

V136)4166+/2 mice with rapid incubation times was less stable

than OvPrPSc-A136 produced in Tg(OvPrP-A136)3533+/2 mice

with longer incubation times. We refer to these conformations as

unstable (U) and stable (S), and to the rapidly and slowly

propagating prions composed of these conformers as SSBP/

1-V136(U), and SSBP/1-A136(S).

We then used histoblotting [23], a widely used method for

characterizing strain-specific differences in PrPSc distribution

[20,24], with mAb 6H4 to characterize OvPrPSc-A136(S) and

Figure 1. Characterization of transgenic mice expressing OvPrP-A136 and OvPrP-V136. A. Levels of transgene-expressed OvPrP in the
CNS were estimated by semi-quantitative western blotting using mAb 6H4. Amounts of total protein loaded (mg) in each sample are shown. Prnp0/0,
mice in which the PrP gene is disrupted; FVB, wild type mice. Estimates of expression levels, shown as a percentage (%) of that in FVB mice, are based
on densitometric analysis of signals from diluted samples. B. Survival curves of mice following inoculation with sheep SSBP/1 scrapie prions. Percent
(%) affected mice refers to numbers of mice within an inoculated cohort manifesting progressive clinical signs associated with prion disease. C.
Western blot analysis of PK-treated brain extracts of diseased Tg(OvPrP-A136)3533+/2 mice. SSBP/1 and CH1641 refer to mice inoculated with the
respective prions. I and R refer to sheep SSBP/1 or CH1641 inocula, and brain extracts from recipient mice respectively.
doi:10.1371/journal.ppat.1003692.g001

Table 1. Prion disease in transgenic mice expressing different ovine PrP scrapie susceptibility alleles.

Isolate Genotype Mean time to disease onset ± standard error of the mean (SEM), days1

Tg(OvPrP-V136)4166+/2 Tg(OvPrP-A136)3533+/2 Tg(OvPrP-A/V)

2 None .552 (0/4) .429 (0/5)

2 SSBP/1 A136/V136 13262 (8/8) 412649 (6/6) 10565 (7/7)

3 SSBP/1 A136/V136 13361 (15/15) 367610 (15/15)

2 CH1641 A136/V136 .564 (0/6) 310621 (6/6)

1The number of mice developing clinical signs of prion disease divided by the original number of inoculated mice is shown in parentheses.
2Inoculations performed in Telling lab.
3Inoculations performed in Hunter lab.
doi:10.1371/journal.ppat.1003692.t001
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OvPrPSc-V136(U) deposition in the CNS. While OvPrPSc-A136(S)

had a punctate pattern of accumulation throughout the midbrain,

pons, and oblongata of slow incubation time Tg(OvPrP-

A136)3533+/2 mice (Fig. 3A), the neuroanatomical distribution of

OvPrPSc-V136(U) in the same sections of rapid incubation time

Tg(OvPrP-V136)4166+/2 mice was distinctly different, being more

intense and diffusely deposited than OvPrPSc-A136(S) (Fig. 3B).

Since Tg(OvPrP-A136)3533+/2 and Tg(OvPrP-V136)4166+/2 mice

were both engineered using the same cosSHa.Tet cosmid vector

which drives expression from the PrP gene promoter, we conclude

that these differences are not the result of expression OvPrPC-A136

and OvPrPC-V136 in different neuronal populations.

The OvPrP A/V136 dimorphism influences strain-specific
PrP conversion in vitro

We used brain extracts of Tg(OvPrP-A136)3533+/2 or

Tg(OvPrP-V136)4166+/2 mice as sources of OvPrPC-A136 and

OvPrPC-V136 substrates for protein misfolding amplification

(PMCA) [25] using SSBP/1. While neither template spontane-

ously converted to PrPSc in the absence of seeded prions (Fig. 4A

and E), SSBP/1 reproducibly converted OvPrPC-V136 to

OvPrPSc-V136 during a single round of PMCA (Fig. 4C). In

contrast, conversion was not observed after a single round of

PMCA when OvPrPC-A136 was used as template (Fig. 4B and

Fig. 5A). We therefore used serial PMCA (sPMCA) [26] over 10

rounds to address whether conversion of OvPrPC-A136 to

OvPrPSc-A136 might be detected after prolonged replication.

Serial PMCA was performed in triplicate using equal amounts of

PrP from three different Tg(OvPrP-A136)3533+/2 or Tg(OvPrP-

V136)4166+/2 mouse brains using sheep SSBP/1 as seed. Apart

from a slight but consistent decrease between rounds two and five,

OvPrPSc-V136 production, detected using mAb 6H4, was

sustained throughout rounds one to 10 (Fig. 4C). As expected,

mAb PRC5 failed to detect OvPrPSc-V136 (Fig. 4G). In contrast,

Figure 2. Analyses of PrPSc in the brains of SSBP/1 infected mice. In A and C, densitometric analysis of immunoblots was used to measure
the amounts of protease-resistant OvPrPSc as a function of GdnHCl concentration. The dose-response curve was plotted using a Gaussian non-linear
least-square fit. Each point is the mean value derived from densitometric quantification of PK-resistant PrP in three diseased mouse brains. Error bars
correspond to standard errors of the mean. A. Conformational stability analysis using mAb 6H4 of OvPrPSc-A136(S) in Tg(OvPrP-A136)3533+/2 mice
(red line), OvPrPSc-V136(U) in Tg(OvPrP-V136)4166+/2 mice (blue line), and total OvPrPSc in Tg(OvPrP-A/V136) mice (black line). Black asterisks
compare differences between OvPrPSc-A136(S) and total PrPSc in Tg(OvPrP-A136)3533+/2 and Tg(OvPrP-A/V) mice; blue asterisks compare differences
between OvPrPSc-A136(S) in Tg(OvPrP-A136)3533+/2 mice and OvPrPSc-V136(U) in Tg(OvPrP-V136)4166+/2 mice. C. Conformational stability analysis
using mAb PRC5 of OvPrPSc-A136(S) in Tg(OvPrP-A136)3533+/2 mice (solid line) and OvPrPSc-A136(U) in Tg(OvPrP-A/V136) mice (dashed line).
*P,0.05, **P,0.005, ***P,0.001. In B and D, representative immunoblots of PK-resistant PrP in the brains of three mice from each infected cohort of
Tg(OvPrP-A136)3533+/2, Tg(OvPrP-V136)4166+/2, and Tg(OvPrP-A/V136) mice using mAb 6H4 (B) and mAb PRC5 (C). Times of onset of disease for
analyzed mice are also provided. OvPrP-V136 is indicated by blue symbols and text; OvPrP-A136 is indicated by red symbols and text.
doi:10.1371/journal.ppat.1003692.g002
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OvPrPSc-A136 was undetectable with mAbs 6H4 or PRC5 until

round eight, after which levels decreased during rounds nine and

10 (Fig. 4B and F).

Forced templating of a dominant PrPSc conformation in
mice expressing both susceptibility alleles

Having established that Tg mice expressing OvPrPC-V136 and

OvPrPC-A136 propagate SSBP/1-V136(U) and SSBP/1-A136(S)

prions with relatively rapid and slow incubation times respectively,

we produced Tg(OvPrP-A/V136) mice expressing both OvPrPC-

A136 and OvPrPC-V136 and inoculated them with SSBP/1 to

examine whether disease developed with fast, slow or intermediate

kinetics. Although more rapid than the ,130 d onset of disease in

Tg(OvPrP-V136)4166+/2 mice (P = 0.0094), the mean 10565 d

onset of disease contrasted with the .400 d SSBP/1 incubation

times observed in Tg(OvPrP-A136)3533+/2 mice (Fig. 1B and

Table 1).

Stability assessments using mAb 6H4 showed that the denatur-

ation curves of OvPrPSc produced in the brains of diseased

Tg(OvPrP-V136)4166+/2 and Tg(OvPrP-A/V136) mice were

superimposable over most of the range of GdnHCl concentrations

(Fig. 2A), indicating that OvPrPSc produced in Tg(OvPrP-A/V)

mice shared the conformation of OvPrPSc-V136(U) produced in

SSBP/1 infected Tg(OvPrP-V136)4166+/2 mice. In accordance

with this notion, histoblotting using mAb 6H4 showed that the

neuroanatomical distribution of OvPrPSc(U) in the brains of

diseased Tg(OvPrP-A/V) mice mirrored the diffuse deposition of

the OvPrPSc-V136(U) conformer located in similar sections of

rapid incubation time Tg(OvPrP-V136)4166+/2 mice (Fig. 3C).

While the rapid SSBP/1 incubation times, and properties of the

converted PrPSc in diseased Tg(OvPrP-A/V) were consistent with

propagation of SSBP/1-V136(U) prions, remarkably, western

blotting of diseased Tg(OvPrP-A/V136) brain extracts with mAb

PRC5 revealed substantial conversion of OvPrC-A136 to OvPrPSc-

A136 (Fig. 2D). Densitometric comparisons of OvPrPSc levels using

mAbs 6H4 (Fig. 2B) and PRC5 (Fig. 2D) allowed us to estimate

relative conversion efficiencies of each allele product in the brains of

SSBP/1 infected Tg(OvPrP-A/V136) mice. Using samples from

diseased Tg(OvPrP-A136)3533+/2 mice probed with mAbs 6H4

and PRC5 as normalizing controls for differences in the affinities of

the two mAbs for OvPrP-A136, we estimated by Western or dot

blotting that OvPrPSc-A136 comprised ,45% of total PK-resistant

PrP in the brains of diseased Tg(OvPrP-A/V136) mice.

Figure 3. Representative OvPrPSc distribution in the CNS of diseased transgenic mice. OvPrP-V136 and OvPrP-A136 are indicated by blue
and red text respectively. Times of onset of disease (d) for individual mice analyzed in histoblots are provided. Sections through the midbrain, pons
and oblongata are shown for SSBP/1 infected Tg(OvPrP-A136)3533+/2 mice (A and D); Tg(OvPrP-V136)4166+/2 mice (B and E); and Tg(OvPrP-A/V)
mice (C and F). In panels G and H, sections were not treated with PK and show distribution of total PrP. Histoblots in panels A–G were probed with
mAb 6H4; histoblots in D–H were probed with mAb PRC5.
doi:10.1371/journal.ppat.1003692.g003
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We then used mAb PRC5 to determine the conformation of

OvPrPSc-A136 among total OvPrPSc produced in the brains of

diseased Tg(OvPrP-A/V136) mice. The 1.64 GdnHCl1/2 value

of OvPrPSc-A136 produced under these conditions was distinct

from that of OvPrPSc-A136(S) produced in long incubation time

Tg(OvPrP-A136)3533+/2 mice (GdnHCl1/2 = 2.11), and their

non-superimposable PRC5 denaturation curves were significant-

ly different in the range of 1.5–2.5 M GdnHCl (Fig. 2C). These

findings demonstrated that the conformation of OvPrPSc-A136

in rapid incubation time Tg(OvPrP-A/V) mice was distinct from

OvPrPSc-A136(S) produced in long incubation time Tg(OvPrP-

A136)3533+/2 mice. We refer to this novel conformation

as OvPrPSc-A136(U), and to the resulting prions as SSBP/

1-A136(U).

Histoblotting using mAb PRC5 confirmed the comparatively

limited and punctate distribution pattern of OvPrPSc-A136(S) in

the CNS of long incubation time Tg(OvPrP-A136)3533+/2 mice

(Fig. 3D) that we observed with mAb 6H4 (Fig. 3A). As expected,

OvPrPSc-V136(U) in the CNS of diseased Tg(OvPrP-

V136)4166+/2 mice was refractory to detection by mAb PRC5

(Fig. 3E). We probed histoblots of the CNS from diseased

Tg(OvPrP-A/V136) mice with mAb PRC5 to assess the

appearance and distribution of OvPrPSc-A136(U). In contrast to

the punctate deposits of OvPrPSc-A136(S) in long incubation time

Tg(OvPrP-A136)3533+/2 mice (Fig. 3A and D), OvPrPSc-

A136(U) in Tg(OvPrP-A/V136) mice (Fig. 3F) acquired a diffuse

deposition and a distribution pattern that was equivalent to

OvPrPSc-V136(U) in Tg(OvPrP-V136)4166+/2 mice (Fig. 3B).

Consistent with the co-expression of each allele in identical cell

populations of Tg(OvPrP-A/V) mice, spatial distributions of

6H4- and PRC5-reactive PrP coincided in all analyzed sections of

Tg(OvPrP-A/V) mice (Fig. 3G and H).

Figure 4. Detection of OvPrPSc by sPMCA. In A and E, the first two lanes of each panel correspond to brain extracts from Tg(OvPrP-A136)3533+/2

and Tg(OvPrP-V136)4166+/2 mice respectively without PK treatment. A136, V136, and A136/V136 refer to substrates from Tg(OvPrP-A136)3533+/2 mice,
Tg(OvPrP-V136)4166+/2 mice, and mixtures of the two respectively. In B and F, the first lanes of each panel correspond to brain extracts from Tg(OvPrP-
A136)3533+/2 mice without PK treatment; in C and G, the first lanes of each panel correspond to brain extracts from Tg(OvPrP-V136)4166+/2 mice
without PK treatment; in D and H, the first lanes of each panel correspond to mixtures of brain extracts from Tg(OvPrP-A136)3533+/2 and Tg(OvPrP-
V136)4166+/2 without PK treatment. In B–D and F–H, three different brains, indicated by #1–#3 were used as sources of substrates. In each case, the
second lane of the second panel contains PK treated SSBP/1. Panels A and E are sPMCA using the indicated templates in the absence of a prion seed.
Numbers in black above each lane refer to the round of sPMCA. C refers to a control in which no SSBP/1 seed was added. In each case C, and all
numbered lanes were treated with PK. Blots were probed with mAbs 6H4 or PRC5 as indicated.
doi:10.1371/journal.ppat.1003692.g004

Epigenetic Dominance of Prion Conformers
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PMCA reproduces strain specific effects of one allele
product on another

To simulate the combined effects of OvPrP-A136 and OvPrP-

V136 on PrP conversion in Tg(OvPrP-A/V136) mice in vitro, we

mixed equal quantities of OvPrPC-A136 and OvPrPC-V136 in

PMCA reactions seeded with SSBP/1. Under these conditions,

similar to when OvPrPC-V136 was present in isolation (Fig. 4C),

we observed early, reproducible conversion to OvPrPSc in round

one (Fig. 4D). Probing of western blots with mAb PRC5 showed

that OvPrPSc-A136 was a component of this converted material

(Fig. 4H). Thus, similar to our observations in Tg mice, the

presence of OvPrPC-V136 induced the relatively rapid conversion

of OvPrPC-A136 to OvPrPSc-A136 by SSBP/1. Interestingly,

subsequent conversion of both OvPrPC-A136 and OvPrPC-V136

diminished in rounds two to five, ultimately becoming undetect-

able through rounds six to 10 (Figs. 4D and H).

SSBP/1 was originally produced from a pool of diseased sheep

brains from the positive selection line in the Neuropathogenesis

Unit (NPU) Cheviot sheep flock, and has subsequently been

passaged as a pool. We next compared the seeding properties of

SSBP/1 with those of SSBP/1-A136(S) or SSBP/1-V136(U)

prions derived from SSBP/1-infected Tg(OvPrP-A136)3533+/2

or Tg(OvPrP-V136)4166+/2 mice. We monitored conversion of

OvPrPC-A136 or OvPrPC-V136 templates every two hours for a

total of 12 h of PMCA. SSBP/1-V136(U) had the same PMCA

properties as SSBP/1: both SSBP/1 and SSBP/1-V136(U) prions

efficiently converted OvPrPC-V136 in isolation, but not OvPrPC-

A136 in isolation; when both templates were present in the PMCA

reaction, the presence of OvPrPC-V136 facilitated conversion of

OvPrPC-A136 to OvPrPSc-A136 by SSBP/1 or SSBP/1-V136(U)

prions (Figs. 5A and B). In contrast, SSBP/1-A136(S) prions

converted either OvPrPC-V136 or OvPrPC-A136 templates to

PrPSc when they were present in isolation, the latter being

unequivocally confirmed to be OvPrPSc-A136 using mAb PRC5

(Fig. 5C); however, in the presence of both templates SSBP/1-

A136(S) prion propagation was inhibited (Fig. 5C). The properties

of prions derived from Tg(OvPrP-A/V) mice differed from SSBP/

1, SSBP/1-A136(S) or SSBP1/-V136(U) prions. Like SSBP/1 and

SSBP/1-V136(U), prions passaged through these mice efficiently

converted OvPrPC-V136, but not OvPrPC-A136. However, unlike

Figure 5. PMCA using defined seeds and substrates. PMCA was performed for various times indicated. At each time point samples were either
amplified by sonication (A), or matching control samples (C) received no sonication, and were therefore not amplified. Brain homogenates from
healthy Tg(OvPrP-A136)3533+/2 and Tg(OvPrP-V136)4166+/2 mice served as sources of OvPrP-A136, OvPrP-V136 or mixtures of the two. In A, samples
were seeded with sheep SSBP/1; in B, samples were seeded with brain extracts from diseased Tg(OvPrP-V136)4166+/2 mice [SSBP/1-V136(U) prions];
in C, samples were seeded with brain extracts from diseased Tg(OvPrP-A136)3533+/2 mice [SSBP/1-A136(S); in D, samples were seeded with extracts
from diseased Tg(OvPrP-A/V) mice. Samples labeled 12* received no seed. The first three lanes of each immunoblot were loaded with the substrate(s)
for each PMCA reaction, not treated with PK; the corresponding seed, not treated with PK; and, the same seed treated with PK. All other samples were
digested with PK. Western blots were probed with mAbs 6H4 and PRC5 as indicated.
doi:10.1371/journal.ppat.1003692.g005
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SSBP/1 and SSBP/1-V136(U), such prions failed to facilitate

conversion of OvPrPC-A136 in the presence of OvPrPC-V136

(Fig. 5D).

Discussion

Novel transgenic mouse models for analysis of the
OvPrP-A/V136 dimorphism

Previous studies described the production of Tg mice expressing

OvPrP, and reported their susceptibility to scrapie prions [27–32].

The most widely characterized models are tg338 mice expressing

OvPrP-V136 [31], and Tgov59 [33] or Tgov4 [29] lines

expressing OvPrP-A136. In the case of tg338 mice, the transgene

was comprised of a bacterial artificial chromosome insert of

125 kb of sheep DNA, while in the case of Tgov59 and Tgov4

mice the neuron specific enoloase promoter was used to drive

OvPrP expression. These lines are maintained on different

heterogeneous genetic backgrounds, and CNS expression levels

in tg338 mice are ,8- to 10-fold higher than wild type, while

Tgov59 and Tgov4 lines each over express OvPrP-ARQ at levels

,2- to 4-fold higher than those found in sheep brain. Spontaneous

neurological dysfunction has been reported in Tg lines over

expressing OvPrP [27,31].

Tg(OvPrP-A136)3533+/2 and Tg(OvPrP-V136)4166+/2 mice

express transgene-encoded PrP, either slightly lower, or slightly

higher than PrP levels normally expressed in the CNS of wild

type mice. Since Tg(OvPrP-A136)3533+/2 and Tg(OvPrP-

V136)4166+/2 lines were produced using the cosSHa.Tet cosmid

vector which drives expression from the PrP gene promoter [34],

we expected expression of OvPrPC-A136 and OvPrPC-V136 in

identical neuronal populations, and therefore that both alleles are

co-expressed in the same cells of Tg(OvPrP-A/V) mice. Finally,

other than variable transgene insertion loci, both lines are

otherwise sygeneic on an inbred Prnp0/0/FVB background.

Previous studies reported on Tg mice expressing OvPrP with V

at 136, referred to as Tg(OvPrP)14882+/2 mice, that were also

produced in a Prnp0/0/FVB background using the cosSHa.Tet

cosmid vector [32]. However, in that study, comparable Tg mice

expressing OvPrP-A136 were not reported. Median SSBP/1

scrapie incubation times in Tg(OvPrP)14882+/2mice were 75 d,

and this line expresses OvPrP at levels only slightly higher than

Tg(OvPrP-V136)4166+/2 mice. While we exercise caution when

comparing results from mice produced by different groups, the

otherwise similar properties of Tg(OvPrP)14882+/2 and

Tg(OvPrP-V136)4166+/2 mice suggest that even slight differences

in the levels of transgene expression can have significant effects on

prion incubation time.

A clear link to codon 136 genotype and susceptibility/resistance

to different sheep scrapie isolates has been described in multiple

previous studies. Importantly, the influence of residue 136 on the

transmission of SSBP/1 and CH1641 prions in Tg(OvPrP-

A136)3533+/2 and Tg(OvPrP-V136)4166+/2 mice is in accordance

with the properties of these isolates in sheep of various genotypes

[17]. Generally, increased susceptibility to scrapie is associated with

expression of OvPrP-V136, with A/A136 being the most resistant,

and V/V136 the most susceptible genotypes. In the case of SSBP/1

incubation periods are ,170 days in V/V136 sheep, while

transmission to A/A136 sheep is relatively inefficient, with no

disease recorded after .1000 days [35]. While SSBP/1 eventually

transmits to Tg(OvPrP-A136)3533+/2 mice with incubation times

exceeding 400 days, the general effects of the A/V136 dimorphism

on SSBP/1 transmission observed in sheep are recapitulated

in Tg(OvPrP-A136)3533+/2 and Tg(OvPrP-V136)4166+/2 mice

(Table 1). Similarly, CH1641, which propagates efficiently in

A/A136 sheep [35], preferentially propagates in Tg(OvPrP-

A136)3533+/2 mice (Table 1). In previous studies, CH1641

transmitted to TgOvPrP4 mice with an ,250 d mean incubation

time [36].

Although SSBP/1 incubation times are prolonged in A/V136

compared to V/V 136 sheep [35], in our studies incubation times

were shorter in Tg(OvPrP-A/V) than in Tg(OvPrP-V136)4166+/2

mice. While the condition of A/V136 heterozygosity has not been

previously modeled in Tg mice, this difference may result from

double the levels of transgene expression in Tg(OvPrP-A/V) mice

compared to Tg(OvPrP-A136)3533+/2 and Tg(OvPrP-

V136)4166+/2 mice. Tg(OvPrP-A/V136) mice were derived by

mating Tg(OvPrP-A136)3533+/+ with Tg(OvPrP-V136)4166+/+

mice, and therefore express greater total levels of OvPrP than

Tg(OvPrP-A136)3533+/2 and Tg(OvPrP-V136)4166+/2 mice

(Fig. 1A). Since the levels of OvPrP-V136 are equivalent in

Tg(OvPrP-V136)4166+/2 and Tg(OvPrP-A/V) mice, and we

show that OvPrP-A136 also becomes available for conversion, this

situation results in more available substrate for conversion. While

previous studies revealed an inverse correlation between transgene

expression levels and prion incubation times in Tg mice [8],

whether shorter incubation periods in Tg(OvPrP-A/V136) mice

than in Tg(OvPrP-V136)4166+/2 mice reflect overall differences

in PrPC expression levels remains uncertain. Differences in scrapie

pathogenesis between mice and sheep may also reflect the

influence of additional factors on disease in the natural host

including other PRNP polymorphisms [37,38], and different

involvements of the lymphoreticular system in sheep compared

to Tg mice.

Novel insights into the role of the A/V136 polymorphism
on strain selection and prion propagation

Our observations in Tg mice expressing individual allele

products suggested that rapid or prolonged SSBP/1 incubation

times in Tg(OvPrP-V136)4166+/2 and Tg(OvPrP-A136)3533+/2

mice respectively, reflected preferential conversion by SSBP/1

prions of OvPrPC-V136, rapidly producing a relatively unstable

OvPrPSc-V136(U) conformation that was diffusely deposited in the

CNS, compared to the slower conversion of OvPrPC-A136 to the

more stable OvPrPSc-A136(S) conformer which accumulated in

the CNS with a punctate pattern (Figs. 1–3). Our results are

consistent with the selection by the A/V136 dimorphism of SSBP/

1-A136(S) and SSBP/1-V136(U) prions in Tg(OvPrP-

A136)3533+/2 and Tg(OvPrP-V136)4166+/2 mice respectively.

We also show that PMCA recapitulates the influence of the A/

V136 polymorphism on the kinetics of SSBP/1 propagation

observed in Tg mice. The general conclusions from these studies

agree with previously published assessments of the mechanism of

conformational selection by distinct PrP primary structures

[39,40].

Based on the rapid SSBP/1 incubation times in Tg(OvPrP-A/

V136) mice, and shared conformational and distribution proper-

ties of OvPrPSc produced under these conditions with OvPrPSc-

V136(U) in Tg(OvPrP-V136)4166+/2 mice, we speculated that

OvPrP-A136 played no part during the propagation of SSBP/1

prions in Tg(OvPrP-A/V) mice. To address this we used mAb

PRC5 to exclusively monitor conversion of OvPrPC-A136.

Surprisingly, in contrast to its relatively slow conversion when

OvPrPC-A136 is expressed in isolation, co-expression with

OvPrPC-V136 in Tg(OvPrP-A/V136) mice facilitated rapid

conversion of OvPrPC-A136 to OvPrPSc-A136. The conformation

and diffuse CNS distribution of the resulting OvPrPSc-A136(U)

were equivalent to that of OvPrPSc-V136(U) and not OvPrPSc-

A136(S). Collectively, these results lead us to conclude that once
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OvPrPSc-V136(U) is formed by conversion of OvPrPC-V136 by

SSBP/1 prions, the resulting unstable conformation induces rapid

conversion of OvPrPC-A136 to OvPrPSc-A136(U). That this

outcome is dependent on allele co-expression within the host is

demonstrated by the inability of the OvPrPSc-V136(U) conformer

to template OvPrPC-A136 when it is expressed in isolation.

Effects of OvPrP genotype on the propagation of scrapie prions

were not controlled during the isolation and propagation of SSBP/

1. Passage of SSBP/1 through Tg mice therefore allowed us to

generate prions composed solely of OvPrPSc-A136, OvPrPSc-

V136, or mixtures of both, and to draw additional conclusions

about the effects of the A/V136 dimorphism of prion propagation

using PMCA. Similar to our observations in Tg mice, SSBP/1

failed to convert OvPrPC-A136 to OvPrPSc-A136 by PMCA,

except in the presence of OvPrPC-V136 (Figs. 4 and 5). These

conversion properties are shared with SSBP/1-V136(U) prions,

but are distinct from SSBP/1-A136(S) prions, which show facile

conversion of both OvPrPC-V136 and OvPrPC-A136. These

results suggest that the SSBP/1-V136(U) is the dominant strain in

the natural SSBP/1 isolate. Multiple parameters could account for

this, including, but not restricted to, the effects of OvPrP genotype,

for example as a result of exclusive propagation in sheep of the

V136/V136 genotype, route of transmission in the infected sheep,

and differential/selective prion replication in the lymphoreticular

or central nervous systems of sheep. While our analyses indicate

the presence of both OvPrP-V136 and OvPrP-A136 alleles in

SSBB/1 (Table 1), it is important to note that SSBP/1 was derived

from a pool of sheep brains of undefined genotypes. PCR

approach precludes assessment of the extent to which alleles are

present in a sample, raising the possibility that the one or other

allele exists as a minor component in SSBP/1.

Our findings also suggest that PrPSc conformers may cross-inhibit

PrP conversion. In case of SSBP/1-A136(S) prions, the presence of

OvPrPC-V136 inhibited PMCA of OvPrPC-A136 (Fig. 5C). Also,

while SSBP/1 seeding of PMCA reactions containing mixtures of

OvPrPC-A136 and OvPrPC-V136 resulted in robust, reproducible

conversion to OvPrPSc-A136 as early as round one (Fig. 4H), total

PrPSc production was ephemeral with subsequent PrPSc formation

diminishing during rounds two to five, and conversion ultimately

becoming undetectable after round six. Since early PrPSc conversion

was sustained out to round 10 when OvPrPSc-A136 was not

produced (Fig. 4C and G), these results are consistent with inhibited

conversion of OvPrPC-V136 to OvPrPSc-V136 by OvPrPSc-A136.

While early (round one) PMCA conversion of PrPSc by SSBP/1

with either OvPrPC-V136 or mixtures of OvPrPC-V136 and

OvPrPC-A136 correlates with early onset of disease following

SSBP/1 infection of both Tg(OvPrP-V136) and Tg(OvPrP-A/

V136) mice, the subsequent inhibitory effects of OvPrPSc-A136

observed in PMCA would be impossible to detect in vivo, since

Tg(OvPrP-A/V) mice succumb to the lethal effects of early PrPSc

accumulation. Consistent with an inhibitory effect of OvPrPSc-

A136(U), prions from Tg(OvPrP-A/V) mice, while they converted

OvPrPC-V136 in isolation, failed to convert OvPrPC-A136 to PrPSc

in the presence of OvPrPC-V136 (Fig. 5D). Thus, the properties of

prions from this defined genetic background differ from SSBP/1.

We emphasize that, despite PCR data supporting the presence of

OvPrP-A136 alleles in this isolate, SSBP/1 was derived from sheep

of undefined OvPrP genotypes, rather than sheep with a defined

heterozygous OvPrP-A/V136 genotype.

Wider implications for the mechanism of prion
propagation

The inter-related effects of PrP primary and higher order struc-

tures on prion transmission were addressed in the Conformational

Selection Model, which proposed that strains are composed of a

range of PrPSc conformers, or quasi-species, and that only a subset of

PrPSc conformations is compatible with each PrP primary structure

[41]. While this model also took into account the effects of

polymorphic variation on prion propagation, it did so only in the

context of Tg mice expressing individual PrP allele products.

Transgenetic studies of the human codon 129 methionine (M)/

valine (V) polymorphism, and the analogous codon 132 M/leucine

(L) polymorphism in elk, indicated that these dimorphisms acted to

restrict or promote the propagation of particular prion strains

[39,40]. While the responses of Tg(OvPrP-A136)3533+/2 and

Tg(OvPrP-V136)4166+/2 mice are consistent with this notion, that

is selection of the U conformer by OvPrP-V136, and the S conformer

by OvPrP-A136, our unprecedented ability to analyze allele specific

conversion in infected Tg(OvPrP-A/A136) mice reveals a more

complex mechanism where mixtures of PrP variants may assist or

inhibit the propagation of strains under various conditions. For

example, SSBP/1 or SSBP/1-V136(U) prions facilitate conversion of

OvPrPC-A136 to OvPrPSc-A136(U) only in the presence of OvPrPC-

V136. Expressed in isolation, conversion of OvPrPC-A136 is favored

by the OvPrPSc(S) conformer. Our results demonstrate that co-

expression of different polymorphic forms of PrP, which would be the

norm in humans and animals, have profound effects on conforma-

tional selection of prion strains.

The results reported here address the molecular mechanisms

associated with the phenomenon of prion strain over-dominance

first observed by Dickinson and Outram [42], and subsequently

reported in other settings involving co-expression of long and short

incubation time PrP alleles [43]. While this phenomenon was

reconciled at the time by the assumption that TSEs were caused

by unidentified viral agents, our results now indicate that the

suggestion raised by those studies, namely that over-dominance

most likely resulted from physical interaction of allele products of

the scrapie incubation time locus during infection, was prescient.

Our results support a molecular mechanism involving cross

templating of an otherwise resistant allele product by a dominant

prion conformer, in this case OvPrPSc(U), which, we speculate,

involves physical association of otherwise ‘‘susceptible’’ and

‘‘resistant’’ allele products. Consistent with the observations

reported here, prion strain interference may also utilize similar

mechanisms of conformational selection in a host expressing

different PrP allele products infected with long and short

incubation period strains with different PrPSc conformational

stabilities [44,45].

In conclusion, we have used a combination of transgenic,

immunologic, and in vitro approaches to explore the mechanism

by which PrP primary structure variations and the conforma-

tions enciphered by different prion strains interact to control

TSE propagation. While our results support previous studies

indicating that PrP susceptibility polymorphisms, expressed in

isolation, act to restrict or promote the propagation of particular

prion conformers, we now show that under conditions of allele

co-expression a dominant conformer may alter the conversion

potential of an otherwise resistant PrP polymorphic variant to an

unfavorable prion strain. While such responses are analogous to

the phenotypic expression of genetically determined heritable

traits, dominant prion conformers act epigenetically by means of

protein-mediated conformational templating. By expanding the

range of possible conformations adoptable by a particular prion

protein primary structure, such interactive effects provide a

mechanism for promoting strain fitness, and, we speculate, strain

diversification. While the precise number scrapie strains in sheep

and goats remains uncertain, the description of at least 24

additional major sheep PRNP polymorphisms, and combinations
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thereof, is likely to have a significant influence on strain

diversity.

Materials and Methods

Ethics statement
All animal work was conducted according to the National

Institutes of Health guidelines for housing and care of laboratory

animals, and performed under protocols approved by the

Colorado State University Institutional Animal Care and Use

Committee, with approval number 11-2996A.

Transgenic mice
Sequences upstream of codon 44 of the OvPrP-A136 and V136

coding sequences were replaced with the corresponding sequence

from mouse PrP. The resulting constructs contained the OvPrP

coding sequence, except for addition of an extra residue for glycine

at codon 31, and the mouse PrP N-terminal signal peptide instead

of OvPrP signal peptide. Tg mice were generated by cloning the

OvPrP-A136 and OvPrP-V136 expression constructs into the

cosSHa.Tet cosmid vector [34], and microinjection of embryos

from inbred Prnp0/0/FVB mice. Tg founders were identified by

PCR screening of genomic DNA isolated from tail snips. Founder

mice were mated with inbred Prnp0/0/FVB mice, and generally

maintained with the transgene in the hemizygous state, with Tg

mice identified by PCR screening of genomic DNA from

weanlings. It was also possible to generate homozygous counter-

parts of each line, and Tg(OvPrP-A/V136) mice were generated

by crossing homozygous Tg(OvPrP-V136)4166+/+ mice with

homozygous Tg(OvPrP-A136)3533+/+ mice. We used immuno-

dot blotting and Western blotting with mAb 6H4 (Prionics,

Schlieren, Switzerland) to estimate the levels of OvPrP expression.

Tg mice subsequently shipped to and maintained in Edinburgh

were crossed onto the Prnp0/0/129Ola background [46].

Inocula
SSBP/1 originated as a homogenate of three natural scrapie

brains that were subsequently passaged mostly through Cheviot

sheep at the Neuropathogenesis Unit (NPU), Edinburgh UK

[15,16]. CH1641 is a naturally infected cheviot sheep from the

NPU flock [17]. The presence of OvPrP-A136 or OvPrP-V136

alleles in these samples was ascertained by restriction fragment

length polymorphism analysis of the PCR amplified PRNP coding

sequences.

Ten % mouse brain homogenates (w/v) were prepared in

phosphate-buffered saline (PBS) lacking calcium and magnesium

ions by repeated extrusion through 18- and 21-gauge needles.

Sheep brain homogenates (10%) in PBS were prepared by

repeated extrusion through 14-gauge, followed by 18- to 28-gauge

needles in PBS. Total protein content was determined by

bicinchonic acid (BCA) assay (Pierce Biotechnology, Inc.).

Determination of incubation times
Anesthetized mice were inoculated intracerebrally with 30 ml of

1% (w/v) brain extracts prepared and diluted in PBS.

General health was monitored daily. Onset of prion disease was

determined by observation of the progressive development of at

least three of the following clinical signs: truncal ataxia, loss of

extensor reflex, difficulty righting from a supine position, plastic

tail, head bobbing or tilting, kyphotic posture, circling and

paresis/paralysis. Animals were diagnosed when at least two

investigators agreed with the manifestation of these signs.

Incubation time is defined as the period between the time of

inoculation to the day on which subsequently progressive clinical

signs were initially recorded.

Analyses of PCR amplified PRNP coding sequences
Brain homogenates containing 500 mg protein were digested

with 400 mg/ml proteinase K (PK) in 0.4 M NaCl, 10 mM Tris–

HCl, pH 8.0, 2 mM EDTA, pH 8.0, and 2% SDS at 55uC
overnight. Genomic DNA was precipitated with isopropanol. The

partial OvPrP coding sequence was amplified by PCR with the

forward and reverse primers: 59-GGACAGGGCAGTCCTGGA-

39, 59-GTGATGCACATTTGCTCCACCACT-39. PCR prod-

ucts were purified with QIAquick Gel Extraction kit (QIAGEN

Science, MA, USA), digested with BspH I that only recognizes the

OvPrP-V136 allele, and the products were resolved on a 1.2%

agarose gel.

Protein misfolding cyclic amplification
Tg mice were perfused with PBS/5 mM EDTA. Ten % brain

homogenates (w/v) were prepared in PBS containing 150 mM

NaCl, 1.0% Triton X-100, and the complete TM cocktail of

protease inhibitors (Roche, Mannheim, Germany). Samples were

clarified by brief, low-speed centrifugation. Protein concentrations

of brain homogenates used as substrates for PMCA were adjusted

to contain equivalent amounts of OvPrP-A136 or OvPrP-V136,

based on the estimated relative levels of transgene expression.

Substrates in which OvPrP-A136 and OvPrP-V136 were mixed

were adjusted based on the estimated relative levels of transgene

expression, so that approximately equal amounts of each allele

product were present in the PMCA reaction. PMCA reactions

were performed as described previously [20,47] at a seed to

substrate ratio of 1:180. One cycle corresponded to 20 seconds of

sonication followed by 30 minutes incubation at 37uC. Controls

samples were incubated for the same duration at 37uC without

sonication. Amplified and control samples were digested with PK

at a final concentration of 0.33 mg/ml and analyzed on western

blots using mAbs 6H4 or PRC5.

Western blotting
Brain homogenates and cell lysates were digested with 100 mg/

ml or 30 mg/ml of PK respectively (Roche, Mannheim,

Germany) in cold lysis buffer for 1 h at 37uC. Digestion was

terminated with phenylmethylsulfonyl fluoride at a final concen-

tration of 2 mM. Samples were boiled for 10 min in the absence

of b-meracaptoethanol [14] and proteins were resolved by SDS-

PAGE and transferred to polyvinylidenedifluoride Immobilon

(PVDF)-FL membranes (Millipore, Billerica, USA). Membranes

were probed with primary mAbs followed by horseradish

peroxidase–conjugated anti-mouse secondary antibody (GE

Healthcare, Little Chalfont, UK). Protein was visualized by

chemiluminescence using ECL Plus (GE Healthcare, Piscataway,

USA) and an FLA-5000 scanner (Fujifilm Life Science, Wood-

bridge, USA).

Conformational stability assay
Brain homogenates containing 5 mg protein were incubated

with various concentrations of guanidine hydrochloride (GdnHCl)

in 96-well plates for 1 h at room temperature. Samples were

adjusted with PBS to a final of concentration of GdnHCl of 0.5 M

and transferred onto nitrocellulose (Whatman GmbH, Dassel,

Germany) using a dot blot apparatus. After two PBS washes, the

membrane was air-dried for 1 h, then incubated with 5 mg/mL

PK in 50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.5% sodium

deoxycholate, 0.5% Igepal CA-630 for 1 h at 37uC. PK was
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inactivated with 2 mM PMSF. The membrane was incubated in

3 M guanidine thiocyanate in Tris-HCl, pH 7.8 for 10 min at

room temperature. After four washes with PBS, the membrane

was blocked with 5% nonfat milk in TBST for 1 h, and probed

with mAbs 6H4 (1:20,000) or PRC5 (1:5000) overnight at 4uC,

followed by HRP-conjugated goat anti-mouse IgG secondary

antibody. The membrane was developed with ECL Plus and

scanned with GE image quant 4000. The signal was analyzed with

ImageQuant TL 7.0 software.

Histoblotting
Histoblots were produced and analyzed according to previously

described protocols [23]. Images were captured with a Ni-

konDMX 1200F digital camera in conjunction with Metamorph

software (Molecular Devices).
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