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Abstract 15 

Visual landmarks provide powerful reference signals for efficient navigation by altering 16 

the activity of spatially tuned neurons, such as place cells, head direction cells, and grid 17 

cells. To understand the neural mechanism by which landmarks exert such strong 18 

influence, it is necessary to identify how these visual features gain spatial meaning. In 19 

this study, we characterized visual landmark representations in mouse retrosplenial 20 

cortex (RSC) using chronic two-photon imaging of the same neuronal ensembles over 21 

the course of spatial learning. We found a pronounced increase in landmark-referenced 22 

activity in RSC neurons that, once established, remained stable across days. Changing 23 

behavioral context by uncoupling treadmill motion from visual feedback systematically 24 

altered neuronal responses associated with the coherence between visual scene flow 25 

speed and self-motion. To explore potential underlying mechanisms, we modeled how 26 

burst firing, mediated by supralinear somatodendritic interactions, could efficiently 27 

mediate context- and coherence-dependent integration of landmark information. Our 28 

results show that visual encoding shifts to landmark-referenced and context-dependent 29 

codes as these cues take on spatial meaning during learning. 30 
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Introduction 32 

Precise and reliable spatial navigation is critical for the survival of most mammals 33 

and has an accordingly prominent representation in the brain, spread across multiple 34 

areas (Vann, Aggleton, and Maguire 2009; Fischer et al. 2020). Spatial navigation is 35 

guided by self-localization based on internal movement estimates combined with sensory 36 

inputs that allow animals to locate themselves in the environment. Landmarks are sensory 37 

cues that can be used to inform an agent about its location within a given spatial context 38 

(E Save and Poucet 2000; Etienne et al. 2000; Biro et al. 2007; Julian et al. 2018). For a 39 

sensory stimulus to act as a landmark, it must first be associated with spatial meaning 40 

(Epstein et al. 2017; Gothard and Skaggs 1996; Chan et al. 2012; Taube and Burton 41 

1995; Jeffery 1998). Once the spatial meaning of a landmark in a given environment has 42 

been learned, subsequent exposures to the landmark allow current self-localization 43 

estimates to be corrected (Etienne, Maurer, and Séguinot 1996; Campbell et al. 2018; 44 

Knierim, Kudrimoti, and McNaughton 1998; Gothard, Skaggs, and McNaughton 1996). 45 

How environmental cues are integrated into neural codes of space is an important but 46 

poorly understood process that remains a key unanswered question for the field of 47 

navigation, and which could shed light on the mechanisms underlying navigational deficits 48 

in Alzheimer’s disease and dementia.  49 

Converging evidence points to retrosplenial cortex (RSC) as an important locus for 50 

landmark processing (Vann, Aggleton, and Maguire 2009; Etienne, Maurer, and Séguinot 51 

1996; Gothard and Skaggs 1996; Jeffery 1998; Auger, Mullally, and Maguire 2012; Jacob 52 

et al. 2017; Fischer et al. 2020; Mao et al. 2020). Neurons in RSC have been shown to 53 

encode a range of egocentric and allocentric encoding properties, making it an ideal locus 54 

for landmark processing (Alexander and Nitz 2017; 2015; Vedder et al. 2016; Mao et al. 55 

2020; 2017). During spatial navigation, RSC neurons represent visual landmarks via 56 

nonlinear integration of self-motion and visual inputs (Fischer et al. 2020). Recordings in 57 

freely moving rats have shown that individual RSC neurons conjunctively encode space 58 

in egocentric and allocentric spatial reference frames (Alexander and Nitz 2015). 59 

Complementary evidence from freely rotating head-fixed mice indicate that top-down 60 

dendritic computations are engaged in this process (Voigts and Harnett 2020). These 61 
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properties suggest that RSC is a key node in processing sensory inputs for effective 62 

landmark-mediated self-localization.  63 

However, a physiologically plausible mechanistic understanding of how neurons 64 

learn the spatial meaning of landmarks over the course of exploring an environment is 65 

missing. Previous studies show an interplay between primary visual cortex and RSC 66 

during landmark-dependent navigation (Fischer et al. 2020; Campbell et al. 2018). Other 67 

experiments indicate that RSC encodes self-motion information (e.g. how many steps 68 

have I taken?), as well as world-referenced inputs (e.g. where in my field of vision is a 69 

wall?) (Mao et al. 2020; 2017; Julian et al. 2018). To effectively utilize landmarks, RSC 70 

must generate accurate self-localization estimates by combining these two sources of 71 

information. Neural networks in RSC are therefore subject to conflicting demands in order 72 

to reconcile self-localization estimates with sensory inputs. Internal location 73 

representations need to be continuous and resist sudden jumps to provide reliable 74 

estimates, even during times of scarce external information, such as low-light conditions 75 

(McNaughton et al. 1996; Moser, Kropff, and Moser 2008). Sensory processing, in 76 

contrast, must rapidly encode inputs to allow quick responses to novel or unexpected 77 

stimuli (D. A. Evans et al. 2018; Carandini and Churchland 2013). How these different 78 

coding regimes interact to provide continuous and accurate position estimates is currently 79 

poorly understood (T. Evans et al. 2016; Angelaki and Laurens 2020). We hypothesized 80 

that neurons in RSC alter the balance of self-refenced or world-reference codes 81 

depending on which source of information provides a more accurate self-localization 82 

signal in the current environment.  83 

To address this question, we recorded longitudinally from the same RSC neurons 84 

as mice learned a landmark-dependent navigation task using 2-photon imaging. We used 85 

a generalized linear model (GLM) to evaluate the contribution(s) of self-referenced versus 86 

world-referenced factors to the activity of individual neurons over the course of learning. 87 

We then assessed neuronal activity in different behavioral contexts to characterize the 88 

properties of landmark signals in RSC. Based on our experimental data we developed a 89 

proof-of-principle model that uses a putative cellular mechanism for landmark-mediated 90 

error correction during navigation. Our results show that individual neurons in RSC shift 91 

their activity patterns to allow efficient landmark-mediated self-localization. 92 
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Results 93 

RSC neurons transition from self-referenced to landmark-referenced spatial codes while 94 

learning a visual landmark navigation task.  95 

We trained mice to perform a virtual landmark navigation task (Fischer et al. 2020). Briefly, 96 

head-fixed mice learned to lick for water rewards at one of two different unmarked reward 97 

locations associated with two distinct visual landmarks along a virtual corridor (Fig. 1A, 98 

Fig. S1A-C). The virtual corridor consisted of a floor and two walls that contained non-99 

location-specific patterns that provided optic flow but no other spatial information. Each 100 

trial started at a randomized location between 50 to 150 cm before a landmark. By licking 101 

within the (unindicated) reward zone, mice could trigger water delivery. In-between trials, 102 

mice spent at least 3 seconds in a featureless ‘black box.’  103 

The mean distance between the first lick location on each track in a given session 104 

was used as a behavioral readout for task proficiency (Fig. 1B, C, Fig. S1B). Two-photon 105 

GCaMP6f imaging of layer 2/3 (L2/3) RSC neurons was carried out on 35/85 interspersed 106 

sessions (n=5 mice) sessions: the other 50/85 sessions were behavior only training 107 

sessions (Fig. 1D). A subset of individual neurons were tracked 22 of the 35 sessions 108 

(mean ± SEM: 35.14 ± 1.86 tracked cells/session). To do so, we matched the spatial 109 

footprints of neurons between a reference session and a second session using the 110 

CellReg algorithm (Sheintuch et al. 2017) in conjunction with manual curation (see 111 

Methods and Fig. S2A-C). 112 

 We applied a generalized linear model (GLM) to quantify which behavioral 113 

variables each neuron encoded in each session as animals learned the task. The GLM 114 

included two categories of predictors: landmark-referenced and self-referenced. Self-115 

referenced predictors captured behavioral variables relative to the animal, while 116 

landmark-referenced predictors related to locations relative to the landmark (Fig. 1E, Fig. 117 

S1F). The GLM was fit to the GCaMP fluorescence signals using elastic net regularization 118 

(Friedman, Hastie, and Tibshirani 2010) (α=0.5, see Methods for details, Fig. S3A). 119 

Coefficient weights showed an increase in the weight of landmark-referenced predictors 120 

over the course of learning (Fig. 1F-H, Fig. S1D, E; Pearson correlation ρ=0.504, 121 

p=0.017, n=22 sessions, 5 animals, mean ± SEM: 35.1 ± 1.9 tracked neurons/session). 122 

These results were in line with previously reported results (Fischer et al. 2020). Further 123 
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analysis showed that neither the number of non-zero coefficients, peak fluorescence 124 

signal, nor trial-by-trial robustness of responses changed over the course of learning. 125 

However, neuron activity increased overall (Fig. S3E-H). Predicting neural activity using 126 

only landmark-referenced or only self-referenced predictors showed small but significant 127 

increases in model fit (explained variance R2; Fig. 1I,J, Pearson correlation ρ=0.473, 128 

p=0.026), despite the overall explained variance not changing significantly (Fig. S3D) and 129 

running speeds remaining largely similar (Fig. S3L). The same relationships held true 130 

when all neurons in all recorded sessions, rather than just neurons that were tracked 131 

across sessions, were included in this analysis (Fig. S3B, C).  132 

We next evaluated how well RSC neurons encoded space by decoding the 133 

animal’s location relative to the landmark using population activity. For this analysis we 134 

used all recorded neurons in a given session (mean ± SEM: 75.51 ± 3 neurons/session). 135 

We found a significant decrease in reconstruction error as task proficiency increased, 136 

suggesting that landmark-anchored spatial codes increase with the animal’s ability to use 137 

landmarks for navigation (Fig. 1K, L, Fig. S2I-K; Pearson correlation ρ=-0.494, p=0.003). 138 

Together, our results show a significant correlation in RSC neurons between the 139 

representation of landmark-referenced activity and proficiency in using landmarks for 140 

navigation. This indicates that RSC neurons shift their encoding priorities as a function of 141 

task demands. 142 

  143 
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 144 

Figure 1: RSC neurons transition from self-referenced to landmark-referenced spatial 145 
codes while learning a visual landmark navigation task.  146 
(A) Experimental setup (left) and task schematic (right). Animals had to traverse a virtual linear 147 
corridor and locate an unmarked reward zone relative to one of two visual landmarks that were 148 
randomized on a trial-to-trial basis (‘Track 1’ and ‘Track 2’). Animals were then “teleported” to a 149 
black box for >3 seconds and subsequently to a randomized start location for the next trial. (B) 150 
Raster plot of licking behavior relative to the respective landmarks. (C) The performance metric 151 
(task score) was calculated as the median distance between licking onset on Track 1 and Track 152 
2. (D) GCaMP fluorescence of an example neuron over multiple trials before and after learning 153 
the task (task score > 20 cm). Purple vertical lines indicate when the animal passed the landmark. 154 
(E) Predictors used to fit a generalized linear model (GLM). Predictors were categorized into two 155 
groups: 1) landmark-referenced (anchored to spatial locations relative to the landmark) and 2) 156 
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self-referenced to the animal. (F) Coefficient weights of the example neuron shown in (D) before 157 
and after learning. (G) Mean landmark-referenced coefficient weights over the course of learning. 158 
(H) Same as (G) but for self-referenced coefficients. (I) Average activity of an example neuron as 159 
a function of location relative to the landmark (black trace) as well as activity predicted by GLM 160 
using either landmark (purple) or self-referenced (green) coefficients only. (J) Variance explained 161 
(R2) by prediction of neural activity using only landmark-referenced coefficients and self-162 
referenced coefficients as a function of task score. (K) Example trial using a Bayesian decoder to 163 
estimate animal position based on neural activity. Left: Probability density function of location 164 
estimate for each time bin. Right: Reconstructed location (grey) versus actual location (black). (L) 165 
Mean position reconstruction error as a function of task score across all animals and sessions. 166 

Visual inputs stabilize spatial codes in RSC. 167 

We next asked how stable landmark representations in RSC are over time. Persistent 168 

codes allow for stable output to downstream structures, while variable population activity 169 

indicates that organizational principles are embedded in higher-order network dynamics 170 

(Quian Quiroga and Panzeri 2009; Haider et al. 2016; Ujfalussy et al. 2015; Remington 171 

et al. 2018). Previous work has shown that spatial codes of individual RSC neurons vary 172 

day-by-day in the absence of location-specific visual inputs (Mao et al. 2018). We 173 

therefore asked whether learning visual landmark cues can stabilize neuronal 174 

representations across days. We tested the persistence of landmark-referenced codes in 175 

RSC by tracking the same neurons over three expert sessions (task score > 20 cm; Fig. 176 

2A & Fig. S2A-C). The task score threshold of 20 cm was empirically chosen to indicate 177 

when mice began reliably using landmarks to locate rewards. These sessions constitute 178 

a subset of the sessions shown in Fig. 1. Peak responses (calculated as the peak average 179 

ΔF/F across all trials along the track) and the area under the curve of all tracked neurons 180 

(n = 169 neurons from 5 animals) did not change significantly across days (Fig. 2B, C; 181 

One-way ANOVA, p=0.5 for ΔF/F peak, p = 0.8 for AUC/spatial bin).  182 

To test if neurons retained their spatial tuning, we quantified the cross correlation 183 

of each neuron’s activity as a function of location on the track. The cross-day cross-184 

correlation was calculated by concatenating the activity of a given neuron on all trials 185 

where a given landmark was shown and finding the highest peak in the cross-correlogram 186 

(Fig. 2D). Neural activity in the black box between trials and after reward delivery was 187 

removed from this analysis. Neurons with an R2 value smaller than 0.25 were not included 188 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.18.607457doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.18.607457
http://creativecommons.org/licenses/by-nc/4.0/


8 

in this analysis to remove neurons with little-to-no landmark- or self-referenced activity. 189 

In total, 156 neurons (out of 169 tracked neurons) from 5 mice were used in this analysis.  190 

To test whether individual neurons were significantly cross-correlated across days, 191 

a shuffled distribution of cross-correlation values was calculated for each neuron by 192 

rotating its neural activity by a random amount for each trial and re-calculating the cross-193 

correlation. We used this shuffled null distribution to compare trial-by-trial activity 194 

correlations of individual neurons to spatially-randomized activity. The z-score relative to 195 

the shuffled distribution was then calculated (Fig. 2E). We found that landmark-referenced 196 

codes across three consecutive sessions were stable (Fig. 2F; median z-score for 197 

correlation between sessions 1-2: 2.72, IQR: 3.67; session 1-3: 2.21, IQR: 3.29, unpaired 198 

two-tailed T-test: p<0.0001 for all comparisons, see Fig. S4A for non-z-scored cross 199 

correlation values). Finally, we analyzed the peak-shift in cross correlation (Fig. 2G). The 200 

peak-shift analysis revealed a median shift of 15 cm (IQR: 135 cm), suggesting that the 201 

vast majority of neurons retain their spatial tuning. These results indicate that 202 

behaviorally-relevant anchoring visual cues can stabilize spatial codes in the cortex. 203 

 204 
  205 
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 206 
Figure 2: RSC neuron spatial codes stabilize after learning in the presence of visual cues.  207 
(A) Trial-averaged activity of five example neurons as a function of location on the track. All 208 
vertical scale bars indicate 0.5 ΔF/F. (B) Mean peak ΔF/F for all tracked neurons across three 209 
sessions. (C) Same as (B) but for area under the curve (AUC) calculation. One-way ANOVA 210 
indicates no significant difference between days. (D) Schematic of cross-correlation calculation 211 
between sessions. For each neuron, the cross correlation between sessions was calculated 212 
from spatially binned activity with periods in-between trials removed. (E) Histogram of the z-213 
score of each neuron’s cross-correlation value relative to a shuffled distribution. (F) Z-score 214 
boxplot for first vs. second and first vs. third session. (G) Probability of cross-correlation peak 215 
location shift. 216 
  217 
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RSC neurons are most active when visual flow and self-motion signals are coherent. 218 

Context-dependent processing of sensory inputs is a cornerstone of cortical function 219 

(Mante et al. 2013; Smith, Barredo, and Mizumori 2012; Mao et al. 2017). A number of 220 

studies have reported a general decrease in activity and spatial specificity during visuo-221 

motor mismatch conditions in cortex (Harvey, Coen, and Tank 2012; Fischer et al. 2020; 222 

Diamanti et al. 2019; Mao et al. 2020). However, a more detailed understanding of the 223 

patterns of activity changes can provide clues as to how visual and motor information is 224 

integrated. We hypothesized that RSC neurons implement context-sensitive codes by 225 

associating self-motion with visual motion cues in a given environment. This allows 226 

sensory cues to be differentially encoded depending on the behavioral context in which 227 

they are encountered. To test this hypothesis, we introduced visuo-motor mismatch trials 228 

in which virtual movement was uncoupled from animal running (Fig. 3A). During these 229 

mismatch trials, the virtual corridor moved at a constant speed of 30 cm/sec, independent 230 

of running behavior. The reward zone was in the same virtual location and, though licking 231 

behavior was still recorded, no rewards were dispensed. A brief trial break (approx. 30 232 

sec.) between VR and visuo-motor mismatch sessions signaled the behavioral context 233 

switch. Mice ceased to lick in the rewarded zone soon after the switch to the visuo-motor 234 

mismatch session (Fig. 3B), behavioral confirmation that they recognized the change. 235 

Congruent with previous data (Fischer et al. 2020), neural activity overall was lower during 236 

the visuo-motor mismatch session compared to when the animal was actively executing 237 

the task (Fig. 3C; mean ± SEM VR: 0.31 ± 0.03, visuo-motor mismatch: 0.19 ± 0.02, 238 

paired, two-tailed T-test: p=0.001, n=13 sessions, 5 naïve and 8 expert with a task score 239 

>20 cm, n=5 mice).  240 

We analyzed neural activity in visuo-motor mismatch sessions as a function of the 241 

difference between the visual flow speed and the animal’s running speed on the treadmill 242 

in expert animals (Fig. 3D). To account for linear speed modulation of neural activity, we 243 

fit a linear regression to the activity of each neuron as a function of speed and subtracted 244 

the corresponding linear factor (see Methods). We found a tendency for neurons to be 245 

most strongly activated when the movement speed of the displayed corridor matched the 246 

animal’s own running speed (Fig. 3E,F, Fig. S5A). To quantify the relationship between 247 

visuo-motor mismatch and neural activity, we calculated the integrated calcium activity of 248 
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each neuron on each trial as a function of the absolute visuo-motor mismatch. This 249 

revealed a modest negative correlation, suggesting that neurons are most active when 250 

visuo-motor mismatch was smallest (Fig. 3G, Spearman rank correlation: ρ=-0.036, 251 

p=0.0017; the same relationship held true when we did not correct for linear speed, Fig. 252 

S5C). No relationship between running speed and neural activity was found while animals 253 

were in the black box in-between trials (Fig. S5B). We reasoned that the relationship 254 

between mismatch and neural activity should translate into improved spatial coding when 255 

running and visual flow speed match, and vice versa, if the mismatch is large, spatial 256 

coding should be disrupted. To test this, we trained a Bayesian decoder on neural data 257 

collected during virtual navigation in trained animals (task score > 20 cm) and used it to 258 

estimate the mouse’s location during visuo-motor mismatch trials. Reconstruction error 259 

was smallest when the difference in animal running speed and visual flow speed was 260 

around zero (Fig. 3H, Spearman rank correlation: ρ=-0.474, p<0.001). These results 261 

indicate that RSC neurons are functionally organized to most strongly represent visual 262 

feedback when coordinated with self-motion, thus providing evidence for behavioral-263 

context representation that is based on reconciling internal and external cues for self-264 

localization.  265 

  266 
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 267 
Figure 3: Behavioral context modulates RSC neuronal response strength and spatial 268 
coding. 269 
(A) Visuo-motor mismatch experiment schematic: virtual corridor flow speed (30 cm/sec) versus 270 
animal running speed was measured in relation to neuronal responses. (B) Fraction of trials with 271 
at least one lick in the reward zone. (C) Mean GCaMP6f ΔF/F signal area under the curve 272 
(AUC) per 5 cm spatial bin during VR and visuo-motor mismatch periods. (D) ΔF/F of an 273 
example neuron as a function of mismatch. Each dot represents the  signal of one recorded 274 
frame. Color code indicates speed mismatch. (E) Example GCaMP6f ΔF/F traces of one neuron 275 
(top) and the difference in animal running and virtual corridor flow speed (ΔSpeed; below) 276 
during two sets of trials (left: 5 trials where the animal was locomoting, right: 7 trials where the 277 
animal was quiescent). (F) GCaMP6f activity of two example neurons during visuo-motor 278 
mismatch session. Each trace represents one trial with the color code indicating the difference 279 
in average running and virtual corridor flow speed for that trial. (G) Integrated ΔF/F of each trial 280 
as a function of speed mismatch for all neurons and all trials of n=8 expert sessions. Each trial 281 
of a given neuron is represented by one dot. Red line: linear fit. (H) Location reconstruction error 282 
using a Bayesian decoder that was trained on virtual navigation data and applied to visuo-motor 283 
mismatch trials (n=8 expert sessions). Red line: linear fit. 284 
  285 
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Bursting firing mediated by dendrites can accurately correct self-localization estimates. 286 

Our experimental results show that RSC neurons develop stable, landmark-referenced 287 

codes over learning that are modulated by behavioral context. We hypothesized that 288 

individual neurons could generate these landmark codes by integrating visual bottom-up 289 

inputs with contextual top-down signals. Recent work has shown that RSC receives 290 

spatially segregated inputs from thalamic, primary visual, and associative cortices 291 

(Lafourcade et al. 2022). We reasoned that the generation of bursts of action potentials 292 

generated by coincident bottom-up somatic and top-down dendritic inputs (Naud and 293 

Sprekeler 2018; Payeur et al. 2021; Xu et al. 2012; Ranganathan et al. 2018; Bicknell and 294 

Häusser 2021; Takahashi et al. 2016; Francioni and Harnett 2021; London and Häusser 295 

2005; Larkum, Kaiser, and Sakmann 1999; Larkum 2013; Greedy et al. 2022; Fişek et al. 296 

2023) could underlie the amplification of sensory inputs by behavioral context we have 297 

observed in our data. We therefore created a model to explore how somatodendritic 298 

interactions in pyramidal neurons could potentially be utilized to provide context-299 

dependent self-localization.  300 

 Our model combined multi-compartment spiking neurons developed by Naud and 301 

Sprekeler (2018) with an attractor model representing an agent’s self-localization 302 

estimate (Ocko et al. 2018). We adjusted the parameters of neurons compared to (Naud 303 

and Sprekeler 2018), which consisted of a somatic and a dendritic compartment (Fig. 304 

4A,B). The biophysical properties of each compartment endowed these neurons with the 305 

ability to generate bursts of action potentials, but only when somatic and dendritic inputs 306 

coincided (Fig. 4B,C) (Naud and Sprekeler 2018). The multi-compartment neurons sent 307 

output to a linear attractor (Fig. 4A, Fig. S6A), which represented the agent’s self-308 

localization estimate by a Gaussian activity bump centered at the best current location 309 

estimate (Zhang 1996; Campbell et al. 2018; Ocko et al. 2018). Each neuron received 310 

visual inputs at a location relative to the landmark. The location relative to the landmark 311 

was drawn from a Gaussian distribution (Fig. S8A). Even though visual landmark inputs 312 

cease after the animal has passed the landmark, in this model some visual inputs indeed 313 

have their receptive field center after the landmark. This is consistent with previous 314 

findings (Fischer et al. 2020)  and is further supported by the rich responses primary visual 315 

cortex is known to generate (Saleem et al. 2018; Niell and Stryker 2010; Musall et al. 316 
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2019; Pakan et al. 2018). Visual landmark inputs were modeled as somatic input currents 317 

that scaled as a function of distance to its respective receptive field center.  318 

Each neuron also received input into its dendritic compartment as a function of 319 

coherence between self-motion and visual flow feedback (visuo-motor coherence; Fig. 320 

4A). Both compartments received constant noise inputs (see Methods) that resulted in 321 

stochastic background spiking. The combination of bottom-up feedforward and top-down 322 

feedback inputs resulted in an increased propensity for neurons to burst. In contrast, 323 

neurons receiving an equivalent total amount of current injected into the somatic 324 

compartment alone emitted significantly fewer bursts (Fig. S6B). Each spike emitted by a 325 

landmark neuron exerted a rapidly decaying force on the attractor via a sigmoidal 326 

activation function that incorporated a gating threshold (Fig. 4A; Methods) that corrected 327 

the self-localization estimate towards its respective receptive field center. This rapid 328 

decay acted as a filter that prevented the self-localization estimate from erroneously 329 

changing due to background noise. To test this, we ran a series of simulations with 330 

increasing gating threshold values (Fig. 4D). While a low threshold value meant single 331 

spikes pull the attractor away from the agent’s actual location, higher thresholds 332 

prevented any error correction altogether. Our fit showed an optimal range between 1.4 333 

and 1.8. We used 1.75 for all subsequent simulations.  334 

We then used behavioral data from our experimental recording sessions to 335 

simulate 100 trials of the landmark navigation task (from Fig. 1) with 100 simulated 336 

neurons whose activity was anchored by the landmark (“landmark neurons”). Each trial 337 

started with a random initial offset between the self-localization estimate and the agent’s 338 

actual location. As the agent traversed the linear corridor, the combined force generated 339 

by neurons corrected the self-localization estimate (Fig. 4E-G, Fig. S8B; mean final error: 340 

1.7 ± 0.11 cm. Paired t-test: p < 0.001; mean corrective force AUC ± SEM: 225.11 ± 2.62). 341 

In contrast, running the same simulation without coincident somatodendritic inputs 342 

resulted in significantly worse error correction (Fig. S6C-E, Fig. S8C). These simulations 343 

show that bursts of actional potentials generated by somatodendritic interactions are a 344 

robust way to generate corrective inputs for self-localization estimates. 345 

 346 
  347 
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 348 
Figure 4: Somatodendritic bursting in a hybrid simulated neural network enables 349 
accurate location error correction.  350 
(A) Simulation components. Each landmark neuron is connected onto the attractor at its 351 
respective spatial receptive field center. (B) Schematic of spikes and bursts generated as a 352 
function of somatic and dendritic inputs. Bursts are defined as 2 or more spikes with an 353 
interspike interval <10 ms. (C) Spike and burst rates in response to increasing current inputs. 354 
(D) Agent self-localization error correction during simulated trials as a function of threshold 355 
between neurons and attractor. Each red dot represents a set of simulated trials at a given 356 
threshold value, black line is a 2nd order polynomial fit. (E) Example simulated trial. Top: 357 
example neuron activity. The landmark is indicated by the dashed lines. Middle: running speed 358 
in simulated trial. Bottom: force applied to attractor by example neuron. (F) Left: Actual location 359 
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(solid line) and self-localization estimate of attractor (dashed line). Right: Self-localization error 360 
(calculated as actual location minus attractor activity bump location) and corrective force applied 361 
to the attractor by 100 landmark neurons.  (G) Left: Error at the beginning and at the end of 100 362 
simulated trials. Right: Total force applied to the attractor by all landmark neurons combined. (H) 363 
Activity traces of an example neuron during visuo-motor mismatch. Neural activity is shown 364 
above the respective speed mismatch (color coded) and the force exerted by that neuron on the 365 
attractor (pink). (I) Mean spike rate per trial as a function of visuo-motor mismatch speed. Each 366 
dot represents one trial of one neuron. (J) Force exerted on attractor. (K) Total force exerted by 367 
landmark neurons on the attractor during mismatch trial simulation. (L) Force exerted onto 368 
attractor during simulated virtual navigation (“VR”) and visuo-motor mismatch trials 369 
(“Mismatch”). 370 

Somatodendritic interactions can support context-dependent computations. 371 

Our experimental data indicate that mouse RSC exhibits different sensory cue integration 372 

regimes during virtual navigation and visuo-motor mismatch sessions. We tested if our 373 

model could recapitulate these findings by simulating 100 visuo-motor mismatch trials. 374 

Consistent with our virtual navigation simulation, we used behavioral data from our mouse 375 

experiments. We reasoned that visual landmark inputs do not influence downstream 376 

neural representations during visuo-motor mismatch, as they are not relevant to ongoing 377 

behavior, and they should therefore exert minimal force. We modeled dendritic inputs as 378 

a visuo-motor coherence signal which was dependent on the difference in agent running 379 

and VR flow speed. The virtual environment was shown at a constant flow speed of 30 380 

cm/sec while mice were free to sit or run on the treadmill. Similar to observations made 381 

in biological neurons during this task (Fig. 3), the activity of model neurons was highest 382 

when animal running speed approximately matched visual flow speed leading to 383 

increased force exerted on the attractor (Fig. 4H-J, Spearman rank correlation for spike 384 

rate: ρ=-0.263, p<0.001, for force exerted: p=-0.799, p<0.001). Overall, the total force 385 

exerted on the attractor was significantly lower compared to virtual navigation during 386 

visuo-motor mismatch trials (Fig. 4K,L; mean ± SEM VR: 225.11 ± 2.62, Mismatch: 42.25 387 

± 3.43, Two-tailed T-Test for related samples: p < 0.001). By modeling dendritic inputs as 388 

visuo-motor coherence, we were thus able to implement a biophysically-plausible 389 

mechanism for context-dependent sensory cue integration switching.  390 

Finally, we tested if supralinear somatodendritic interactions in our model were 391 

necessary for context-dependent landmark computations. We ran two simulations using 392 

linearly or supralinearly integrating single-compartment variants of the previously 393 
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described artificial neurons (Fig. S6A,B). Both models had an otherwise identical 394 

architecture. Supralinear single-compartment neurons transformed current input into 395 

spiking in such a way that it mirrored that of 2-compartment neurons with coincident 396 

somatodendritic inputs (Fig. S6C, top). This is achieved by multiplying input currents by 397 

a factor that is dependent on the membrane potential (see Methods). Vice-versa, linear 398 

single-compartment neurons matched the firing properties of 2-compartment neurons 399 

without coincident inputs (Fig. S6C, bottom). The supralinear model reliably corrected the 400 

agent’s self-localization estimate (Fig. S6D). In contrast, the linear model did not (Fig. 401 

S6E). The lack of correction in the linearly integrating model is the result of the landmark 402 

neuron’s inability to exert any meaningful force on the attractor (Fig. S6F; mean corrective 403 

force AUC ± SEM supralinear model: 711.05 ± 11.63; linear model: 0.001 ± 0.0008). This 404 

is reflected in the overall correction performance over 100 trials (Fig. S6G). Importantly, 405 

neither model was able to respond appropriately to the behavioral context switch. The 406 

supralinear single-compartment model fired bursts consistently, regardless of behavioral 407 

context (Fig. S6H; Fig. S9A,B; mean corrective force AUC ± SEM during VR: 711.05 ± 408 

11.63; during visuo-motor mismatch: 225.11 ± 2.62). In contrast, the linear model was 409 

never able to correct the agent’s self-localization estimate (Fig. S6I; Fig. S9C,D; mean 410 

corrective force AUC ± SEM during VR: 0.001 ± 0.0008; during visuo-motor mismatch: 411 

2.59 ± 4.3x10-6). Together, these results provide evidence that supralinear dendritic 412 

integration in 2-compartment cortical neurons can facilitate cortical computations across 413 

behavioral contexts (Tran-Van-Minh et al. 2015; Francioni and Harnett 2021; Poirazi and 414 

Papoutsi 2020; Greedy et al. 2022; B. A. Richards and Lillicrap 2019; Payeur et al. 2021). 415 

  416 
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Discussion 417 

We provide evidence for a learned, persistent, and context-dependent landmark code in 418 

RSC. This code is evident in a significant increase in the encoding of landmark-referenced 419 

variables over the course of task acquisition (Fig. 1) that remains stable over days (Fig. 420 

2). The landmark codes are significantly attenuated when landmarks are irrelevant to 421 

behavior, but appear to increase activity if external visual cues and animal behavior are 422 

similar to the context in which landmark signals are important (Fig. 3). Based on our data, 423 

we combined a multi-compartmental neuron model with an attractor network to evaluate 424 

the plausibility of a somatodendritic mechanism in which burst firing of cortical neurons 425 

mediates a corrective signal.  426 

 While numerous studies have shown that RSC is involved in landmark processing 427 

(Fischer et al. 2020; Epstein 2008; Maguire 2001), how individual neurons adapt their 428 

encoding properties while learning the spatial meaning of a landmark is unknown. We 429 

show that individual RSC neurons significantly increase their encoding self-referenced 430 

variables over the course of learning. Interestingly, our GLM results further indicate that 431 

neurons retain some encoding of self-referenced information. This result is consistent 432 

with the demands of our task, which requires animals to use landmark-referenced 433 

information during self-localization as well as self-referenced information during the 434 

localization of the reward after they have passed the landmark. Our results are congruent 435 

with previous studies that point to conjunctive encoding of ego- and allocentric variables 436 

in RSC (Alexander and Nitz 2015; Mao et al. 2020; Jacob et al. 2017). It is worth noting 437 

that residual encoding of self-referenced variables may account for path-integration 438 

deficits found in lesion studies of RSC (Cooper and Mizumori 2001; 1999; Elduayen and 439 

Save 2014). An exciting direction for future inquiries is to gain a deeper understanding of 440 

how task structure affects encoding priorities in RSC.  441 

 Landmark codes were stable across days in our paradigm. This contrasts with 442 

previous observations of variation across days in the spatial tuning of RSC cells (Mao et 443 

al. 2018). We posit that the presence of visual landmarks in our experimental design 444 

underlies the cross-day stability that we have observed. This result could be related to 445 

instability of other cell types that are tuned either to the environment or oneself, such as 446 

place cells (Etienne Save, Nerad, and Poucet 2000; Muller and Kubie 1987), head-447 
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direction cells (Taube, Muller, and Ranck 1990; Knight et al. 2014)  and even grid cells 448 

(Campbell et al. 2018). This speaks to the importance of visual landmarks in spatial 449 

navigation. However, the exact topological organization of spatially tuned brain structures, 450 

and how visual inputs are integrated during navigation, remains unknown. Our work 451 

suggests that RSC is a key node in receiving and parsing behaviorally relevant visual 452 

stimuli during navigation. 453 

 Context-dependent modulation of neural activity is a critical aspect of cortical 454 

computation and has been found in nearly every region where it has been investigated 455 

(Harris and Mrsic-Flogel 2013; Pakan et al. 2016; Zipser, Lamme, and Schiller 1996; 456 

Ferguson and Cardin 2020). In line with previous reports in RSC (Fischer et al. 2020; Mao 457 

et al. 2017; 2020; Harvey, Coen, and Tank 2012), we found a decrease in overall neural 458 

activity when animals are not actively navigating. Such an overall decrease could be 459 

attributed to a number of factors including overall decreased engagement or lack of 460 

reward. While we cannot entirely rule out other contributing factors, our previous work 461 

(Fischer et al. 2020) and our analyses here suggest that general attenuation of neural 462 

activity is not the most likely explanation. Our data further showed that neuronal activity 463 

increases as the mismatch between visual flow and self-motion feedback decreases. One 464 

possible mechanism underlying such a context-dependent modulation could be predictive 465 

coding, which may be dendrite-mediated (Rao and Ballard 1999; Leinweber et al. 2017; 466 

Keller and Mrsic-flogel 2018). While previous studies investigating dendritic mechanisms 467 

of nonlinear integration have mostly focused on primary sensory areas (Xu et al. 2012; 468 

Ranganathan et al. 2018; Francioni, Padamsey, and Rochefort 2019; Beaulieu-Laroche 469 

et al. 2019; Palmer et al. 2014; Manita et al. 2015; Ayaz et al. 2019), associative areas 470 

may implement similar computations (Lafourcade et al. 2022).  471 

We have posited that visuo-motor coherence could provide a top-down signal for 472 

when a cue is encountered in a familiar location. This enables correct encoding of 473 

landmarks in two ways: 1) A visual cue passes through the visual field at different rates, 474 

depending on its distance from the observer. Visuo-motor coherence thus allows correct 475 

encoding of visual cue distance; 2) When a cue is encountered but the animal is not 476 

actively navigating, as is the case in mismatch sessions, the same cue does not generate 477 

bursts and thus does not affect downstream change in positional codes. Our simulations 478 
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predict a dendrite-localized signal that varies as a function of the learned association 479 

between a given, familiar environment and self-motion. Future studies may address this 480 

mechanistic hypothesis resulting from our work. 481 

We simulated a population of multi-compartment neurons (Naud and Sprekeler 482 

2018) to explore how the computational capabilities of cortical neurons add flexibility to 483 

the way visual landmark inputs update self-localization estimates. Previous studies have 484 

investigated how corrective inputs to attractor networks can offset errors that either 485 

accumulate over time or are introduced through environmental manipulations (Campbell 486 

et al. 2018; Hardcastle, Ganguli, and Giocomo 2015; Bicanski and Burgess 2016; Burak 487 

and Fiete 2009; Page and Jeffery 2018). Most of these models are designed to work in a 488 

single behavioral context and are therefore unable to account for more complex demands 489 

in real world scenarios. We explicitly modeled the source of landmark and context signals 490 

to show how neuronal output can be efficiently modulated by a simple somatodendritic 491 

mechanism. We note that our experimental paradigm does not capture the complexities 492 

of freely moving mice in their natural habitats. However, we contend that our proposed 493 

mechanism can generalize to natural environments in which a given landmark, 494 

encountered from the same viewing angle under similar self-motion aspects, should still 495 

elicit a stronger response compared to the same landmark being seen from completely 496 

different vantage point, as self-localization errors can be most efficiently corrected if a 497 

landmark is seen from a familiar location.  498 

An important future avenue of inquiry will be to investigate how individual neurons 499 

bind their code to a certain location relative to the landmark. A number of studies have 500 

looked into this dynamic (Widloski and Fiete 2014; Ocko et al. 2018; Campbell et al. 501 

2018). Our previous work (Fischer et al. 2020) has shown that primary visual cortex sends 502 

spatially tuned inputs to RSC which could act as an initially context-free 503 

feedforward/bottom-up signal. Over the course of learning, top-down context signals, 504 

such as we suggest in this study, could trigger AP bursts which in turn strengthen synaptic 505 

connections between RSC neurons and downstream brain structures. Future work is 506 

needed to illuminate how burst-dependent synaptic plasticity can play the dual role of 507 

controlling synaptic plasticity (Payeur et al. 2021; Greedy et al. 2022; N. A. Richards et 508 

al. 2019) while also acting as a form of efficient, context-depending communication 509 
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between brain structures as we show here (Krahe and Gabbiani 2004; Bialek et al. 1991; 510 

Bair et al. 1994). 511 

Investigating dendritic computation in awake behaving animals is currently limited 512 

by a number of serious technical and experimental challenges (Francioni and Harnett 513 

2021). The modeling approach we used here has successfully demonstrated complex 514 

encoding schemes in the past (Kaifosh and Losonczy 2016; Williams et al. 2021; Payeur 515 

et al. 2021; Bicknell and Häusser 2021) and may prove an advantageous complementary 516 

avenue to investigate the contribution of dendritic computations during behavior.   517 

Overall, we demonstrate how individual neurons shift their encoding priorities from 518 

self-centered to world-centered in our landmark navigation task. These codes remain 519 

stable while animals repeatedly execute the same task over multiple days but significantly 520 

change their activity patterns in a different behavioral context. However, when behavioral 521 

and sensory inputs matched in this alternative context, we observed activity reminiscent 522 

of that recorded during active navigation. We formulated a mechanistic hypothesis of how 523 

sensory information could be integrated by multi-compartment cortical neurons to update 524 

downstream internal state representations through bursting. These bursts were critical for 525 

output to downstream neurons while being robust to background noise. Our proposed 526 

mechanism therefore combines the advantages afforded by rapid and flexible integration 527 

sensory stimuli with the robustness of attractor dynamics for the internal representation 528 

of behavioral state. 529 

 530 

 531 

  532 
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Methods 533 

 534 

Animals and surgeries 535 

All animal procedures were carried out in accordance with NIH and Massachusetts 536 

Institute of Technology Committee on Animal care guidelines. Male and female mice were 537 

singly housed on a 12/12 hr (lights on at 7 am) cycle. Surgical procedures where identical 538 

to those in Fischer et.al. 2020. Briefly, C57BL/6 mice aged 7-10 weeks were 539 

anaesthetized. A 3.0 mm diameter craniotomy was drilled on the dorsal surface of the 540 

skull. AAV1.Syn.GCaMP6f.WPRE.SV40 was injected into the exposed retrosplenial 541 

cortex at 4-6 injection sites 1800 - 3400 µm caudal of bregma and 350-600 µm lateral to 542 

the midline. Recordings were taken directly over the injection sites adjacent to the central 543 

sinus. 50-100 nl were injected at each site. After successful injection, a cranial window 544 

was placed over RSC and a headplate implanted on the skull. 545 

 546 

Virtual reality setup and behavioral training 547 

The same virtual reality setup as described in Fischer et.al. 2020 was used for this study. 548 

Mice were head fixed atop a 20 cm polystyrene disc. Two 23.8” computer screens 549 

covered the majority of the mouse’s field of view. During virtual navigation, animal 550 

movement was translated into visual flow through the virtual environment that was shown 551 

on the screens. A lick spout was placed close to the mouse’s mouth such that it could 552 

easily touch it by extending its tongue. Recordings were obtained from mouse from day 553 

0 of exposure to the landmark navigation task. Prior to behavioral training/recording mice 554 

were habituated to head-restraint on the treadmill and with a linear corridor without 555 

landmarks. 556 

 557 

Image Registration, ROI detection and ROI matching across days 558 

Two-photon imaging was carried as described in Fischer et.al. 2020. In brief, a 559 

Neurolabware 2-photon microscope with a 16x objective was used to collect all imaging 560 

data. Images were acquired either at 15.5 or 31.0 Hz using am excitation wavelength 561 

between 920 and 980 nm. Frames of the raw video data were registered, and putative 562 

neurons (regions of interest or ROIs) were detected using the CaImAn software package 563 
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(Giovannucci et al. 2019). ROIs were subsequently manually curated to remove dendrites 564 

or other, non-soma ROIs. Individual neurons from a subset of recorded fields of view 565 

(FOV) were tracked across sessions to analyze their activity patterns over the course of 566 

learning. In order to do so, one FOV from each animal after it had robustly learned the 567 

task (Task score > 20 cm) was used as a reference session. The mask of detected ROIs 568 

for any two sessions was then overlaid and coarsely aligned if necessary. This was 569 

followed by applying the CellReg algorithm to determine if two ROIs are the same neuron 570 

base on centroid distance and spatial footprint (Sheintuch et al. 2017). Supplementary 571 

figure 2 shows this process for three FOVs. This process was repeated until each session 572 

of a given animal was matched to the reference session. Neurons considered ‘tracked 573 

neurons’ are those that have been matched between any given session and the reference 574 

session. For the analyses shown in figure 2, the same neurons were tracked over three 575 

sessions. This was done by overlaying the ROI masks and selecting ROIs that could be 576 

matched across all three sessions. 577 

 578 

GLM 579 

We used a generalized linear model to identify which variables each neuron was encoding 580 

throughout training. We created two broad categories of predictors: self-centered and 581 

landmark-centered. Self-centered predictors consisted of: Running speed (linear) and 582 

categorical (running/not running) with a threshold of 1 cm/sec. Trials starts were captured 583 

by 3 Gaussians (standard deviation of 0.25 sec.) offset from the trial start to capture neural 584 

activity that is related to the trial start but delayed in terms of fluorescence increase. 585 

Landmark-referenced predictors consisted of a series of Gaussians covering the entire 586 

virtual corridor. Each landmark had its own set of landmark-referenced predictors. We fit 587 

the model on calcium fluorescent data using elastic net regression using the glmnet 588 

package (Friedman, Hastie, and Tibshirani 2010) with α=0.5. Only neurons that our model 589 

fit reasonably well (explained variance > 25%) were included for GLM analyses in Fig. 1. 590 

For cross-validation we held out 1 trial and fit to the others. We repeated this until each 591 

trial was held out once. We calculated an R2 value (explained variance) to evaluate the 592 

fit quality of our GLM model by calculating the difference between the predicted and true 593 

calcium signal on held out data:  594 
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 595 

𝐷𝑚𝑜𝑑𝑒𝑙 = 2 ∗ ∑ 𝑑𝑓 ∗ log (
𝑑𝑓

𝑑𝑓𝑝𝑟𝑒𝑑
) − (𝑑𝑓 − 𝑑𝑓𝑝𝑟𝑒𝑑) 596 

𝐷𝑛𝑢𝑙𝑙 = 2 ∗ ∑ 𝑑𝑓 ∗ log (
𝑑𝑓

𝑑𝑓𝑛𝑢𝑙𝑙
) − (𝑑𝑓 − 𝑑𝑓𝑛𝑢𝑙𝑙) 597 

𝑟2 = 1 −  
𝐷𝑚𝑜𝑑𝑒𝑙

𝐷𝑛𝑢𝑙𝑙
 598 

 599 

Where df is the average activity of the neuron on the held out trial, dfpred is the predicted 600 

activity and dfnull is the average activity of that neuron on that trial. R2 was calculated only 601 

on activity in-between trial start and reward delivery. We determined the fraction of 602 

landmark-referenced vs. self-referenced encoding by calculating the sum of all absolute 603 

landmark-referenced coefficient weights divided by the sum of absolute landmark-604 

referenced and self-referenced coefficient weights. 605 

We quantified the explained variance of landmark-referenced of self-referenced 606 

coefficients by first fitting the full model but predict activity with either one or the other set 607 

of predictors set to 0. This way, only activity captured by the respective coefficients was 608 

used for the prediction. Explained variance was calculated as described above. 609 

 610 

Bayesian location decoding 611 

We used a Bayesian decoder to estimate the animal’s position on the track based on 612 

neural data alone (Davidson, Kloosterman, and Wilson 2009; Mao et al. 2018). Briefly, 613 

spatial tuning curves for each neuron were constructed using one of two methods: 1) In 614 

experiments where we analyzed precision of the spatial code during virtual navigation 615 

(Fig. 1) every other trial in a session was used to construct the tuning curves. Activity on 616 

the other half of trials was used to decode animal position. 2) In experiments that analyzed 617 

how well we could reconstruct animal position during visuo-motor mismatch trials, all trials 618 

during virtual navigation were used to construct tuning curves while trials during visuo-619 

motor mismatch were used for location estimation.  620 

Location and activity data were binned into 2.5 cm and 0.25 sec. bins, respectively. For 621 

each time bin, the probability density function across all location bins on the track was 622 

calculated. The reconstructed position was defined as the location with the highest 623 

(1) 

(2) 

(3) 
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probability in a given time bin. The overall decoding error for a trial was calculated as the 624 

median difference between the decoded location and the animal’s actual location. The 625 

probability density functions were calculated as described in (Mao et al. 2018): 626 

𝑃 (𝑙𝑜𝑐| (
𝛥𝐹

𝐹
)

𝑝𝑜𝑝
) = C(∏ 𝑓𝑖(𝑙𝑜𝑐)𝑛𝑖𝑁

𝑖=1 )𝑒−𝜏 ∑ 𝑓𝑖(𝑙𝑜𝑐)𝑁
𝑖=1  627 

Where fi is the spatial tuning for neuron i, N is the total number of neurons, ni is the 628 

activity of neuron i at the respective time bin (calculated as the average value of all 629 

datapoints within that time bin) and 𝜏 is the time bin size. 630 

 631 

Cross-day cross-correlation analysis 632 

To evaluate the stability of landmark-referenced codes we cross correlated activity over 633 

subsequent recording sessions. To do so, we excised neural activity in the black-box 634 

between trials and concatenated the remaining calcium fluorescence trace. The resulting 635 

traces, one from each recording session, where then shifted relative to each other with a 636 

maximum lag of 800 seconds. The maximum cross correlation value was used for further 637 

analysis. To create null-distributions for each neuron, we randomly rotated neural activity 638 

in one of the sessions for each trial independently. The cross correlation for the null 639 

distribution was thus calculated from a non-rotated first session, and a rotated second 640 

session.  641 

 642 

Visuo-motor mismatch analysis 643 

We calculated visuo-motor mismatch by subtracting the visual flow speed of 30 cm/sec 644 

from the animal running speed. Each visuo-motor mismatch session consisted of 10 645 

cm/sec and 30 cm/sec flow speed sessions. However, here we only used 30 cm/sec trials 646 

as these were closer to the animals average running speed and thus gave us better 647 

sampling of a range above and below that speed. Before relating flow speed to neural 648 

activity, we removed the linear speed component. We did this by fitting a robust linear 649 

regression (scipy.stats.siegelslopes) to fluorescence data as a function of running speed. 650 

We then subtracted the corresponding amount from each datapoint. For the following 651 

analysis we calculated the average running speed on a trial and subtracted the visual flow 652 

speed to determine ΔSpeed. To determine the maximum response across all neurons 653 
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and trials, we evaluated dF/F for each trial as a function of ΔSpeed and fit a 2nd order 654 

polynomial (numpy.polyfit). 655 

 656 

2-compartment model 657 

Variables and parameters are defined in the tables below. 658 

 659 

Landmark cells are simulated with a two-compartment model developed by Naud and 660 

Sprekeler 2018). The dynamics of the somatic compartment are 661 

 662 

𝑑𝑉𝑖
(𝑠)

𝑑𝑡
= −

𝑉𝑖
(𝑠)

− 𝐸𝐿

𝜏𝑠
+

𝑔𝑠𝑓(𝑉𝑖
(𝑑)

) + 𝐼𝑖
(𝑠)

+ 𝑤𝑖
(𝑠)

𝐶𝑠
 663 

𝑑𝑤𝑖
(𝑠)

𝑑𝑡
= −

𝑤𝑖
(𝑠)

𝜏𝑤
(𝑠)

+ 𝑏𝑤
(𝑠)

𝑆𝑖
(𝑠)

 664 

 665 

whereas the dynamics of the dendritic compartment are 666 

 667 

𝑑𝑉𝑖
(𝑑)

𝑑𝑡
= −

𝑉𝑖
(𝑑)

− 𝐸𝐿

τ𝑑
+

𝑔𝑑𝑓(𝑉𝑖
(𝑑)

) + 𝑐𝑑𝐾 (𝑡 − 𝑡𝑖
(𝑠)̂

) + 𝐼𝑖
(𝑑)

+ 𝑤𝑖
(𝑑)

𝐶𝑑
 668 

𝑑𝑤𝑖
(𝑑)

𝑑𝑡
=

−𝑤𝑖
(𝑑)

+ 𝑎𝑤
(𝑑)

(𝑉𝑖
(𝑑)

− 𝐸𝐿)

τ𝑤
(𝑑)

 669 

 670 

The voltages 𝑉𝑖
(𝑠)

 and 𝑉𝑖
(𝑑)

 are initialized to -70mV, whereas 𝑤𝑖
(𝑠)

 and 𝑤𝑖
(𝑑)

 are initialized 671 

to 0. The function 𝑓 is defined as 𝑓(𝑥) =
1

1+𝑒
−

𝑥−𝐸𝑑
𝐷𝑑

 and 𝐾 is a rectangular kernel with an 672 

amplitude of 1 between 0.5 ms and 2.5 ms. The neuron spikes when 𝑉𝑖
(𝑠)

 reaches 𝑉𝑇 =673 

−50mV, after which 𝑉𝑖
(𝑠)

 is reset to -70mV. 674 

 675 

The input current to the somatic compartment of a landmark neuron is given by 𝐼𝑖
(𝑠)

=676 

𝐼𝑏𝑎𝑠𝑒 + 𝐼𝑚𝑎𝑥𝑒
−

1

2
(

𝑥𝑚−𝜇𝑖

𝜎(𝐼) )
2

+ 𝐼𝑖
(𝑠,𝑏𝑔)

. The locations 𝜇𝑖 where 𝐼𝑖
(𝑠)

−  𝐼𝑖
(𝑠,𝑏𝑔)

 is maximized are 677 

(5) 

(6) 

(7) 

(8) 
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selected from a Gaussian distribution centered at 220 cm with a standard deviation of 30 678 

cm. The input current to the dendritic compartment of a landmark neuron is 𝐼𝑖
(𝑑)

=679 

𝐼 
(𝑑,𝑐𝑜ℎ) + 𝐼𝑖

(𝑑,𝑏𝑔)
. The current 𝐼(𝑑,𝑐𝑜ℎ) is calculated as 𝐼(𝑑,𝑐𝑜ℎ) = max(1 − |(𝑣𝑚𝑜𝑢𝑠𝑒 −680 

𝑣𝑉𝑅)/𝑣𝑉𝑅|, 0) ∗ 𝐼𝑚𝑎𝑥
𝑑 . Both background currents 𝐼𝑖

(𝑠,𝑏𝑔)
 and 𝐼𝑖

(𝑑,𝑏𝑔)
 are modelled with an 681 

Ornstein-Uhlenbeck process with a mean of 0: 
𝑑𝐼𝑖

(𝑏𝑔)

𝑑𝑡
= −

𝐼𝑖
(𝑏𝑔)

τ𝑏𝑔
+ σ(𝑏𝑔)η, where η is white 682 

noise. 683 

 684 

In the somatic inputs only condition (no inputs to dendrites), the somatic compartment 685 

receives an input of 𝐼𝑖
(𝑠)

= 𝐼𝑏𝑎𝑠𝑒 + 𝐼𝑚𝑎𝑥𝑒
−

1

2
(

𝑥𝑚−𝜇𝑖

𝜎(𝐼) )
2

+ 𝐼i
(𝑠,𝑏𝑔)

+ 𝐼𝑖
(𝑑,𝑐𝑜ℎ)

 and the dendritic 686 

compartment has an input of 𝐼𝑖
(𝑑)

= 𝐼𝑖
(𝑑,𝑏𝑔)

.   687 

 688 

The continuous attractor is modeled as a reduced, low-dimensional model of a line 689 

attractor (Ocko et al. 2018). Velocity inputs move the peak of the activity bump 𝑥𝑎𝑡𝑡 in 690 

proportion to the mouse’s velocity 𝑣(𝑡): 691 

 692 

𝑑𝑥𝑎𝑡𝑡

𝑑𝑡
= 𝑣(𝑡) 693 

 694 

Spiking from landmark neurons can also move 𝑥𝑎𝑡𝑡. Spikes from landmark neurons are 695 

convoluted with an exponential filter: 696 

𝑠𝑖 = ∑ 𝑒−
𝑡−𝑡𝑖

(𝑠)̂

10

𝑡𝑖
(𝑠)̂

 697 

 698 

The resulting aggregated value generated by spiking multiplied by a sigmoidal function 699 

as follows: 700 

𝑠𝑖
𝑓

= 𝑠𝑖 ∗  
2.5

1 +  𝑒−(30∗ 𝑠𝑖−𝑠𝑇)
 701 

 702 

(9) 

(10) 

(11) 
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The resulting force  𝑠𝑖
𝑓
 moves the activity bump moves towards the landmark cell’s 703 

receptive field center: 704 

𝑑𝑥𝑎𝑡𝑡

𝑑𝑡
= 𝜔𝑠𝑖

𝑓(𝜇𝑖 − 𝑥𝑎𝑡𝑡) 705 

The initial location of 𝑥𝑎𝑡𝑡 is determined by averaging the mouse’s starting location over 706 

the trials. ω is a normalization factor calculated as 1/number of simulated neurons.  For 707 

each trial, the mouse’s velocity 𝑣(𝑡) is determined by cutting out timesteps where the 708 

mouse’s recorded velocity exceeds 1 m/s and fitting a function to the data with linear 709 

interpolation. Unless otherwise stated, each simulation consists of 100 trials using 100 710 

neurons. 711 

  712 

(12) 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.18.607457doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.18.607457
http://creativecommons.org/licenses/by-nc/4.0/


29 

 713 
Variable Description 

𝑉𝑖
(𝑠)

 Voltage of somatic compartment for the ith landmark cell 

𝑤𝑖
(𝑠)

 Adaptive current for somatic compartment of the ith landmark cell 

𝑆𝑖
(𝑠)

 Spike train of the ith landmark cell 

𝑉𝑖
(𝑑)

 Voltage of dendritic compartment for the ith landmark cell 

𝑡𝑖
(𝑠)̂

 Spike times of the ith landmark cell 

𝑤𝑖
(𝑑)

 Adaptive current for dendritic compartment of the ith landmark cell 

𝐼𝑖
(𝑠)

 Input current to somatic compartment of the ith landmark cell 

𝐼𝑖
(𝑑)

 Input current to dendritic compartment of the ith landmark cell 

𝑥𝑚 Mouse location 

μ𝑖 Location of peak current of ith landmark cell 

Ii
(s,𝑏𝑔)

 Background input to somatic compartment of ith landmark cell 

𝐼𝑖
(𝑑,𝑐𝑜ℎ)

 Input to the dendritic compartment of ith landmark cell from the 

coherence signal 

𝐼𝑖
(𝑑,𝑏𝑔)

 Background input to dendritic compartment of ith landmark cell 

𝜎(𝑏𝑔) Parameter for Ornstein-Uhlenbeck process for background noise 

𝑥𝑎𝑡𝑡 Location of the peak of the steady state activity bump on the attractor 

𝑣(𝑡) Mouse velocity 

𝑠𝑖 Activity of ith landmark cell 

𝑠𝑇 Threshold value for gating force from landmark neurons to attractor 

fi Force applied to attractor 

Table 1: Variable descriptions for model and simulations. 714 

  715 
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Parameter Value 

𝐸𝐿 -70 mV 

𝑔𝑠 1300 pA 

𝜏𝑠 16 ms 

𝐶𝑠 370 pF 

𝜏𝑤
(𝑠)

 100 ms 

𝑏𝑤
(𝑠)

 -200 pA 

𝑔𝑑 1200 pA 

𝑐𝑑 2600 pA 

τ𝑑 7 ms 

𝐶𝑑 170 pF 

𝑎𝑤
(𝑑)

 -13 nS 

τ𝑤
(𝑑)

 30 ms 

𝐸𝑑 -38 mV 

𝐷𝑑 6 mV 

𝑉𝑇 -50 mV 

𝐼𝑏𝑎𝑠𝑒 250 pA 

𝐼𝑚𝑎𝑥 800 pA 

σ(𝑙) 5 

𝐼𝑚𝑎𝑥
𝑑

 150 pA 

𝑠𝑇  1.75 a.u. 

Table 2: Model parameters and set values. 716 

 717 

  718 
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Single compartment model 719 

The single compartment model was based on the 2-compartment model but without the 720 

dendritic compartment. The dynamics of the compartment are: 721 

 722 

𝑑𝑉𝑖
(𝑠)

𝑑𝑡
= −

𝑉𝑖
(𝑠)

− 𝐸𝐿

𝜏𝑠
+

𝐹(𝐼𝑖
(𝑠)

) + 𝑤𝑖
(𝑠)

𝐶𝑠
 723 

𝑑𝑤𝑖
(𝑠)

𝑑𝑡
= −

𝑤𝑖
(𝑠)

𝜏𝑤
(𝑠)

+ 𝑏𝑤
(𝑠)

𝑆𝑖
(𝑠)

 724 

where the function 𝐹 is defined to be 725 

 726 

𝐹(𝑥) =  𝑥 +
𝑆𝐶

1 + 𝑒−(𝑥−𝑆𝑇)/𝑆0
 727 

 728 

in the supralinear case, and 𝐹(𝑥) = 𝑥 otherwise. The somatic compartment receives an 729 

input of 𝐼𝑖
(𝑠)

= 𝐼𝑏𝑎𝑠𝑒 + 𝐼𝑚𝑎𝑥𝑒
−

1

2
(

𝑥𝑚−𝜇𝑖

𝜎(𝐼) )
2

+ 𝐼𝑖
(𝑠,𝑏𝑔)

+ 𝐼𝑖
(𝑑,𝑏𝑔)

+ 𝐼𝑖
(𝑑,𝑐𝑜ℎ)

. 730 

 731 

The variables are as described in Table 1, with the addition of parameters 𝑆𝐶 , 𝑆𝑇 and 𝑆0 732 

describing the supralinear integration. For the simulations in supplementary figure 7, the 733 

following parameter values were used: 734 

𝑆𝐶 2000 pA 

𝑆𝑇 1000 pA 

𝑆𝑂 10 

Table 3: Model parameters and set values for single compartment models. 735 

 736 

  737 

(13) 

(14) 

(15) 
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