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Complex systems theory is concerned with identifying and characterizing

common design elements that are observed across diverse natural, techno-

logical and social complex systems. Systems biology, a more holistic

approach to study molecules and cells in biology, has advanced rapidly in

the past two decades. However, not much appreciation has been granted

to the realization that the human cell is an exemplary complex system.

Here, I outline general design principles identified in many complex sys-

tems, and then describe the human cell as a prototypical complex system.

Considering concepts of complex systems theory in systems biology can

illuminate our overall understanding of normal cell physiology and the

alterations that lead to human disease.
1. The science of complex systems theory
Science and technology allow us to understand our environment as well as

manipulate it and create new environments and new systems. This led

humans to emerge out of nature, and recently to create new complex worlds

that highly resemble natural systems [1]. Human-made systems often follow

the same design principles governing natural systems. The most important of

these design principles is evolution by natural selection [2]. However,

human-made systems are not exactly the same as those created by nature. We

are gaining an increasing ability to create new complex environments and

new machines that perform as well as, or even better than, natural organisms

[3]. Man-made complex systems, such as stock markets, or multi-user social

online networks, and technologies that can be used to collect and process

increasing amounts of data offer us an opportunity to better observe and under-

stand complex systems, natural or man-made. We can increasingly measure the

activity of the variables that constitute these systems. This provides a better

glimpse at the quantity and connectivity of most variables that control a com-

plex system. When all these variables work together, they make up a system

that appears to us as one unit that is alive.

We are beginning to realize that, in general, complex systems, man-made or

natural, share many universal design patterns; concepts and principles of

design that reappear in diverse, seemingly unrelated systems [4,5]. These

design patterns are the essential elements for building successful complex sys-

tems that can function, compete, survive, reproduce and evolve for long periods

through multiple generations towards increased fitness and overall growth. The

science of complex systems theory attempts to gain an understanding about

these emerging repeating design principles that reappear in different natural

and man-made complex systems and environments [6]. The goal of complex

systems science is to define more precisely these properties towards a greater

understanding of complex systems as a whole, beyond the understanding of

one specific system, or one specific design concept. Better understanding

these universal principles will enable us to better digest the rapid changes

that occur around us due to technological and social evolution [3]. To study

and understand complex systems, when possible, researchers conduct
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multivariate experiments, recording measurements of the

system’s variables under a relatively controlled condition to

track the system’s dynamics under different perturbations

over time. These measurements and recordings are used for

building models. These models are needed for generating

hypotheses consistent with the data. Models attempt to rep-

resent the system at a coarse-grained abstraction level, a

skeleton of the real complex system under investigation. The

process of modelling aims to capture the essence of the com-

plexity, abstracting the real system into a manageable size

that is cognitively, mathematically and theoretically explain-

able. Models that simulate real-world complex systems are

built to capture the dynamics and architecture of a system to

predict the system’s future behaviour and to explain its past be-

haviour. Such models help us to better understand and

potentially fix system failures, such as those happening in dis-

ease processes inside human cells. The famous saying about

models is that they are all wrong, but some are useful [7],

and as such, models play an important role in understanding

and taming complex systems. From these models, insightful

theoretical rules can be extracted.

However, while we desire to have dynamical models that

would explain the behaviour of complex systems, in reality,

these models are often too difficult to construct, and when

constructed, these models suffer from many shortcomings

mainly because of missing information. The problem is

both lack of data and data deluge. For dynamical models to

be realistic, they need to have accurate initial conditions,

exact causality between systems variables [8] and defined

kinetics. Such data are often not easily observable. Hence,

dynamical models of complex systems suffer from the free-

parameter problem where many models can fit the same

observed data [9]. The other issue with dynamical models

of complex systems is the nonlinearity characteristic of com-

plex systems [10]. Because of the complex relationships

between the variables in complex systems, the dynamics of

the system quickly become nonlinear and complex, most of

which current mathematics cannot explain well. Statistical

methods such as correlation analysis, on the other hand, are

simpler approaches that today are much more practical [11].

Although correlation-based approaches do not provide full

explanation of the system behaviour over time, which is

because there are so much data, and because data are missing

and inaccurate, finding correlations between system variables

provides immediate new knowledge.

In biology, emerging technologies such as deep sequen-

cing of DNA and RNA [12], or mass spectrometry

proteomics [13] and metabolomics [14], allow a glimpse

into the dynamical state of many components making up

the complex systems within human cells. These emerging

multivariate biotechnologies, although inaccurate and noisy,

help accelerate the discovery of the inner workings of cells

in their entirety because they can measure the level of thou-

sands of molecular species all at once, in one experiment.

As more knowledge is accumulated about complex systems,

such as the human cell, this knowledge can be fed back

into the mathematical or computational models to refine

them, making them more accurate. This additional infor-

mation adds more power and value to the models’ ability

to capture the systems’ functionality in greater detail, and

this enables making better predictions about how com-

ponents and processes of the system come together to

enable cellular behaviours such as responses to stimuli that
induce cell proliferation, cell growth, cell differentiation/

specialization or programmed cell death. The goal is to fill

in the missing pieces of the model’s puzzle towards better

understanding of specific complex systems such as the natu-

ral cell. With the accumulation of more data, the scientific

method is transforming to rely increasingly on the organiz-

ation, integration, visualization and utilization of background

prior knowledge extracted from large datasets that are com-

posed of measurements recorded from real complex systems

variables. This computationally organized background knowl-

edge is used to analyse newly acquired data [15]. As technology

advances, recorded data about a complex system’s history are

accumulating more rapidly than our current ability to store

and analyse such data for useful understanding; or in other

words, for optimal knowledge extraction. As storage devices

are rapidly decreasing in cost, and devices to record almost

everything around us are emerging rapidly, we find ourselves

surrounded by a sea of data [11]. Such data provide great

opportunity to conquer the secrets of complexity but also over-

whelm us with bits and bytes of data with no clear meaning.

We often find ourselves only using a small fraction of the

measured data, only scratching the surface of a mine full of

treasures.
2. Emerging patterns in complex systems
Different areas of scientific research such as computer science,

sociology, mathematics, physics, economics and biology are

increasingly realizing the importance of complex systems

theory, because the same design patterns and concepts are

emerging in these different fields of science. Models that cap-

ture complex systems’ structure and dynamics are commonly

explained by a few governing principles such as survival of

the fittest [2], rich-get-richer [16] and duplication–divergence

[17]; whereas in fact, there are more forces all acting in con-

cert to shape the structure and behaviour of many different

types of complex systems. In combination, these forces can

work in parallel, and sometimes counteract one another, to

produce the final outcome behaviour of the system that is

manifested as continual dynamical and functional structural

changes. Different complex systems have slightly different

sets of forces, different ingredients that compose their

wholes. The proper combination of design concepts and

forces, if understood correctly, can lead to an ability to

better create, control, predict and fix the complex systems

around us, including ourselves and our society, and our natu-

ral, economic and technological environments. The human

cell, multicellular organisms, economic systems, intricate

engineered systems and the Web are all evolving complex

systems existing in complex and ever dynamically changing

environments. These systems share similar emerging design

patterns, the blueprint for generating a complex system.

Some of those patterns can be unravelled using modelling.
3. Complex environments versus complex agents
When using the generalized term complex systems and

discussing concepts of complex system design, we can dis-

tinguish between two main types: complex environments

and complex agents. Complex agents are those systems

that have clearly defined boundaries, a physical border

that encases the system. Complex agents typically have
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complex environments gradually congeal into complex agents

Figure 1. Examples of complex environments: flock of birds, beehive, social networks, cities and states. Examples of complex agents: plane, worm, car, fish, cell,
bird, tree, robot. Complex environments gradually tend to evolve into a complex agent. Once many copies of a complex agent exist, these copies can populate a new
complex environment. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170391

3

one or a few central processing units, a clock, as well as

mechanisms to efficiently obtain and use energy. The

agents commonly include sensors and actuators. These

types of complex systems interact with their environments

through sensors and their actuators, and can typically

move, grow, self-repair and self-reproduce. Often, these

agents are aware of their existence. Some examples of complex

agents are us, our cells, trees, birds, fish, worms, cars, airplanes

and some robots (figure 1). The complex agents exist in com-

plex environments, or within other larger encompassing

complex agents. On the other hand, complex environments

have less defined boundaries. Their governance is also com-

monly not well defined. These complex systems typically do

not have a central processing unit; they do not have a single

central brain. Agents in such complex environments are some-

times all similar, or of the same type, or at least have some basic

properties in common. Agents in complex environments act as

individuals but give rise to the entire dynamics of the system.

Examples of complex environments are natural and man-made

ecosystems such as flocks of birds, cities, traffic systems,

beehives, countries or social networks (figure 1).

The distinction between complex agents and complex

environments is blurry because some typical properties of

complex environments are present in some complex agents

and vice versa. Complex environments are typically popu-

lated by complex agents. Intuitively, complex environments

grow faster as they become more complex and diverse. On

the other hand, complex agents become less flexible as they

grow in complexity, so, in principle, evolution slows down

as complexity increases for complex agents. As there is a

blurry line that separates complex agents from complex

environments, it is plausible that these complex systems are

just at different stages of their evolution. The complex

environments are at the young, newly created stage of a com-

plex system. Over time, these complex environments will

begin to congeal, accumulating properties of complex

agents one by one as they evolve towards becoming an

agent. However, once the system is completely an agent,

and there are many almost exact copies of those agents in

the environment, these many interacting agents will populate

complex environments (figure 1, arrows). This abstract view

can be supported by our basic understanding of how biologi-

cal natural cells came into being, or how multicellular

organisms evolved from unicellular organisms. At first, the

system was a complex environment where cellular com-

ponents such as RNA were mixing in the primordial soup

[18]. Once more organization had evolved, cells were

formed, surrounded by their membranes. Then membranous
cells evolved to have sensors and other components that

made them become prototypical agents. Once cellular

agents existed and proliferated, they started forming multi-

cellular organisms. The first multicellular organisms were

created by the same type of cells, but then cell types emerged

where different cells assumed different specialized roles. As

cells became increasingly specialized, they also became more

dependent on one another, ultimately producing a new type

of a complex agent, that is, a multicellular organism. Hence,

complex environments may be just at an early stage within

the complex system evolutionary process, on their way to

gradually moving towards becoming a complex agent;

once many complex agents of the same type exist in the

environment, they can form a new layer of complexity

which can serve as a foundation for the next layer.
4. Natural versus technological evolution
Complex systems have emerged through natural or man-

made evolution. This has produced parallels between natural

and technological systems despite their differences. While

natural evolution has been evolving for billions of years,

man-made technological and economical evolution has

made a significant impact on the Earth only in the past few

thousands of years [1]. Hence, evolutionary rates are much

different when comparing the two types of complex systems:

man-made versus natural [3]. Natural evolution needs to wait

for random favourable mutations in the DNA of an organism

to occur over many generations, whereas in technological

evolution new ideas can become new products overnight. It

seems that technological evolution is constantly accelerating;

it is moving at various rates across the planet, but overall,

since the industrial revolution, the rate of complexity of

man-made systems seems to be generally accelerating. Differ-

ent evolutionary rates across the planet are also true for

natural evolution. In the rainforest, many species can rapidly

emerge because the conditions in that environment are plen-

tiful and favourable for life. There is fresh water, sun and

rain, and the temperatures are just right for natural biological

life to evolve and thrive. Other areas on the planet such as

arid hot or cold deserts do not promote rapid natural evol-

ution, and the emergence of complexity there is slower.

Permissive conditions for growth are obvious for natural

systems, but less defined for technological evolution. Techno-

logical evolution is moving at much faster rates in major cities

or on the Web, where interactions between people and the

demand for new products are greater than in less habitable
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regions on the globe. However, there are forces that balance

these trends. Geographical diffusion of innovations [19] and

the spread of complexity make technological and natural

complexity spread to remote places on Earth. Technological

complexity is increasingly populating the air, sea and outer

space. The sea is full of natural life, but it is not favourable

for human life and technological evolution. Space, on the

other hand, might be found to be the best place for robots

and computers because it is isolated from damaging heat,

dust and bacterial agents [20].
J.R.Soc.Interface
14:20170391
5. Types of systems versus their instances
A snapshot of a complex system at one particular moment of

time captures the systems variables’ state as they are at that

time. Such a frozen-in-time state of a system is the manifes-

tation of the instantiation of variables of different types.

The distinction between variable types and instantiation of

variables, or complex systems types versus actual complex

systems, is critical for introducing more clarity. An instance

of a variable that is a part of a complex system, or the state

of an entire complex system, typically follows the born-live-

and-die cycle. On the other hand, the variable, or the complex

system type, is an abstract representation of the kind of vari-

able or complex system it is. It is not an actual physical entity

but a template. Both complex system and variable instances,

as well as their types, can evolve. However, actual instances

of variables, or entire complex systems, evolve only during

the time that they are present, or alive, whereas templates

can evolve indefinitely. You are an instance of the complex

system that is a human template. The template of a variable,

or the type of a complex system, the abstract generalization of

the kinds of the real thing, can evolve without a need to be

bounded to real existence. The template does not have tem-

poral boundaries. In computer programming languages, the

distinction between variables and variable types is clear.

Variables can be of different types. Variables are first declared

to become instantiated. The variables are then assigned the

values that fit their type during program execution. Such

values can change while the program is running, and the

variables containing the values live within the program for

a short period of time when the program runs. Similarly,

cells have DNA that serves as a template to produce instances

of RNA and protein molecules. Such analogies can help with

considering the distinction between an instance and a type,

or a template, of a complex system or a variable within a

complex system.
6. Summary of design principles with initial
relations

Complexity theory often focuses on only a few of the design

principles of complex systems, most of the time applied

to only one real-world complex system: ironically, still

reductionism. The reductionist view proposes that complex

systems are made of parts, and understanding these parts

can lead to the understanding of the entire system [21].

This view dominated science in the past, but it is now

accepted that new methods are required to better understand

complexity, how the parts come together to give rise to

something greater than the parts [22,23]. To achieve such
understanding, it may be insightful to examine how design

patterns of complex systems are related. To develop intuition

about this idea, an initial collection of design principles of

complex systems is mentioned below with a brief description

of each principle. The next step is to try to identify how these

principles are related. The hope is that the relationships

between these design principles will become immediately

and intuitively obvious. One thing to keep in mind is that

definitions of many of these abstract concepts may not be pre-

cise; this is a problem because one definition may mean

different things to different people. These definitions can

surely improve, but making them perfect is challenging,

and may require formal mathematical representation. The

descriptions of the design principles presented below are

abstract but real. So try to not worry for a moment about

the specific phrasings of the definitions but the essence of

their meaning. Some of these design principles are observed

in complex systems in general, covering both natural and

technological systems, with some hinted relationships

between concepts.

Survival of the fittest is a central design pattern shaping

complex systems [2]. This concept is an outcome of compe-

tition. Competition is often not fair, where the rich and fit

usually become richer or fitter faster than the others [16].

Rich get richer is a growth process where the rich, the ones

having many relationships, central, essential and fit, grow

faster than the poor, lonely, unfit, weak and less-connected.

Complex agents in complex environments commonly also

grow by duplication–divergence [17]. Duplication–divergence

is a known biological design principle of natural evolution

that is also common in technological evolution, economics or

on the Web. For example, successful car models, websites

and software in general evolve through duplication–

divergence. Hence, the successful novel and fit complex

agent, organism or product can become an attractor, drawing

more connections and copies from it than to it [10]. Sometimes

successful novel and fit complex agents emerge from the

merger of two existing agents, to form a new innovative and

more competitive agent, or product, or organism. Once suc-

cessful, innovative agents replicate and diversify fast. So

innovation plays an important role in the continual evolution

of a complex system. Innovations can only become realized

on the foundation of already existing, solidified and successful

previous innovations [19]. Hence, as mentioned above, com-

plex systems are organized in layers where each layer

establishes a solid foundation for the next-order layer to be

able to evolve.

Another essential and related principle is information

transfer. Information is constantly flowing, commonly

compressed, decompressed and translated. Transmitters

broadcast information, and then sensors intercept it. Agents

in complex systems not only have the ability to passively

listen and adapt to their environment, but can also communi-

cate with the environment and change the environment to

match their need. Sensors pass information about the state

of the environment into the internal central processing

centres. Before information is passed to such centres, the

signal can be amplified and filtered. In the processing centres,

classifiers use the information intelligently, learning from

experiences to make optimal decisions about responding

and adapting to the state of the environment the next time

they are exposed to a previously experienced state. Hence,

these classifiers use memory to determine the appropriate
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future response of the agent. Often this response is simply

turning on or off a switch. Sensors, and other components

that pass information, implement such switches as well as

filters and amplifiers to convert noisy information from

the environment to valuable and useful messages, often

through the process of discretization or digitization. Tagging,

symbolizing, grouping and classifying signals are ways to

abstract many similar objects and observations related to

forms from the environment into abstract simplified repre-

sentations. Groups and classes are labelled, converted from

their physical reality to symbols encoded into messages.

These symbols make it easier for the central processing unit

to process information from the environment, and to com-

pute the appropriate response, which involves transmitting

information to other complex agents. To compute the right

response, internal processing centres use learning, memory

and adaptation. The ability to adapt to new environments

is critical for the survival of the complex agent living in

the complex environment. Robustness to fluctuations and

changes in the environment is required for overall fitness

and viability [24]. However, a balance between rigidity,

robustness and tolerance to change versus flexibility to

change is required for providing the necessary level of

plasticity for proper adaptation [25]. When learning is suc-

cessful, responses are commonly automated. Automation is

also needed for efficient production. Efficient and sophisti-

cated mechanisms are in place to manufacture many

(almost exact) replicas of complex agents and their parts.

This allows the cycle of birth–life–death to continue, and

for the complex system type to continually proliferate. The

birth–life–death concept is related to the observation that

complex systems and their parts are dynamically replaced

by new parts, while global patterns of the entire complex

system and ecosystem remain. For example, proteins in a

cell continually turn over, water molecules in a river are not

the same but the river stays in constant flow, cars on a high-

way keep passing, blood cells travel through blood vessels,

and people commute back and forth to and from work in

and out of a big city; these are only some examples. In

some of those cases, these complex agents, or their parts, cir-

culate. This is the case for blood cells, or the people that

commute to work, while in other cases the flowing complex

agents, or their parts, are completely replaced every time.

Hence, complex systems have elaborate and efficient trans-

portation systems that permit the transfer of resources and

agents to remote locations quickly and efficiently. Such trans-

portation systems are commonly organized in a tree-like

hierarchical structure, where the leaves of the tree, the term-

inal locations on the tree-like system, often have a unique

address encoded in a string of symbols. The hierarchical

structure of transportation systems is common in complex

systems. To move around, locomotion is necessary. Loco-

motion is the ability of complex agents to move about in their

complex environment. Economic systems rely on planes,

ships and trucks to transfer goods and workers from one

unique terminal address to another address. Botanic plants

lack the ability to move, and this handicap is compensated

with an amazing ability to use solar energy, capacity to extract

nutrients from the ground, and capability to pollinate and

reproduce effectively without the need to travel. Plants and

other complex natural systems have seeds that contain com-

pressed information that can be used to create completely

new copies of the same complex agents. Such seeds often
have mechanisms to travel and diffuse to reach their target

for optimal fertilization. They are generated in many copies

where each copy is slightly different, and where only a few

will be selected to pollinate the next generation.

Notable barriers are present to protect complex agents

from other agents and the outside. These containers, or mod-

ules, hide internals from exposed externals. The externals

have an interface, facilitating the ability to communicate

with the environment and other systems, using standard pro-

tocols, symbols and flags. Related to this is the plug-and-play

design principle that allows reusability and generality. This

principle permits complex systems to work together to form

higher-order systems. This modularity creates hierarchies.

Interacting complex systems have the ability to switch

between individual behaviour and behaviour once in a

pack. When in a pack, complex systems often form distinct

geometrical shapes. Shapes in complex systems commonly

tessellate, forming elaborate mosaics [26]. Polymorphic com-

plex systems in a pack behave randomly in parallel but often

display amazing synchronicity. Synchronicity can be

achieved through governance, for example, by a conductor

who signals to an orchestra, but often synchronicity does

not require governance in complex systems. Randomness

and noise are required for such emergent behaviour. Noise

is also required for other aspects of dynamical behaviour

that supports complexity and evolution. Noise is a mechan-

ism needed for overcoming being stuck in an evolutionary

minimum state. Randomness and noise result in a constant

search for homeostasis, but complex systems never settle at

a steady state forever [27]. Complex systems continually

grow, improve in fitness and increase in complexity because

their environment is constantly changing in that direction

[28]. Phase transitions happen in short time periods where

a system, being in a rather stable state, goes through one

small change that induces many changes, turning the

system into another new quasi-stable state [10]. Finding an

improved fitness state is a design principle directly related

to efficiency and energy utilization.

While most processes in complex systems use energy, and

where complex agents compete for energy resources, the sys-

tems’ utilization of energy is more concerned with overall

fitness and less with energy conservation and energy effi-

ciency [29]. This is one of many concepts that makes

complex systems different from the typical systems that are

studied in physics. However, energy conservation and effi-

ciency can help complex systems to better compete. It is

interesting that often dead organisms become the energy

resource for other organisms, while the most decomposed

organic material, crude oil, serves as the major energy

source for the initial phase of the technological evolution

we see today. Most complex systems typically produce

waste; in balanced ecosystems, the waste from one complex

system is a resource for another. However, technological

man-made complex systems produce waste that is not well

recycled. Related to this are feedback loops which are impor-

tant dynamical structures that set the creation of complex

systems in motion. The primordial metabolic soup was

made of simple enzymes forming competing feedback

loops [18]. Competition involves taking action in markets,

where trade makes two or more complex systems winners.

Successful trade requires diversity of products and specializ-

ation of services. Winners in trade are often the innovators, or

the best listeners to innovation. Trade results in cooperation,
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which can develop into symbiosis: the codependency of two

separate complex systems on each other in order to coexist.

Unidirectional symbiosis is parasitism. Parasitic complex

agents use the success of their hosts for their own survival

needs. Successful complex agents must learn how to self-

repair and fight parasites, while parasites engage in a game

of creative evasion strategies. Parasites sometimes kill their

hosts, but not before they replicate and have their copies

jump to other hosts, so they can spread.

All the concepts listed above briefly introduce some of the

design principles of complex systems with some hinted

relationships between them. But more detailed explanations

are needed to describe all of these concepts with less ambigu-

ity. In addition, specific examples are required to illustrate

how these concepts take shape in real-world natural and tech-

nological systems. Such detailed descriptions are beyond the

scope of this review; here, however, we are concerned with

thinking about how some of those general observations

about complex systems apply to human cells and how such

a perspective can inform systems biology.
1

7. The human cell: an example of a complex
system

The human cell is a complicated living natural machine. Cells

that together compose our bodies are a prototypical example

of a natural complex system that was evolved and optimized

over billions of years. What partially makes human cells a

typical complex system is that they are made of many differ-

ent types of components with many copies of the same

components, all working together, interacting in concert

and in parallel to form a high-order functional entity that is

a part of an organism.

We are made of approximately 50 trillion cells. Almost all

these cells contain the same genetic code which is made of

long DNA molecules that are strings that hold the template

and symbolic instructions that are needed to make an entire

organism. Information about how to construct a complete

organism is well compressed in the nuclei of human cells.

Although the DNA in all our cells is the same, the approxi-

mately 400 different cell types constituting our body are

markedly different from one another. This is because within

each cell type, different sets of genes are expressed. This

differential expression of genes is the result of the different

extracellular signals that instruct cells how to behave. Cells

receive extracellular signals from other cells telling them

which genes to express, and in turn, what proteins to make

and ultimately how to behave; which cell type they should

become. Cells can form elaborate structures and become

specialized due to such cell–cell communication protocols

that result from either cell–matrix interactions, or from para-

crine or endocrine signals coming from other cells carried by

small molecules that can pass through the cell membrane, or

bind to receptors at the cell surface. These are the complex

system sensors. Intracellular cell-signalling pathways are trig-

gered by the complex combination of the extracellular factors

all acting in parallel to inform cells about the state of the

environment. This form of signalling controls the dynamics

of gene regulatory networks that determine the cell’s gene

expression programme. Cell surface receptors span through

the cell’s plasma membrane lipid bilayer. This is the barrier

of the cell’s complex system. These receptors listen to what
is happening outside the cell and communicate changes

from the environment to components inside cells. When the

biochemical concentration of a neurotransmitter in a brain

region, or a hormone in the blood, is altered, receptors on

the cell’s surface can become activated or inhibited. Infor-

mation of such change is communicated into the cell’s

central processing unit machinery, which is an intricate sig-

nalling network of proteins and metabolites that amplify,

filter, process, decode and transmit information. Extracellular

small molecules called ligands, such as hormones, neuro-

transmitters or drugs, bind directly to receptor proteins.

The binding of extracellular biomolecules to receptors

potentiates receptors to transduce signals by changing the

receptors’ three-dimensional structure. This change in struc-

tural conformation of a receptor results in other proteins

present inside the cell, such as enzymes, to change their

activity level, for example, by binding or unbinding to the

receptors. These intracellular interactions can lead to acti-

vation of other enzymes that catalyse biochemical reactions

inside the cell. These biomolecular dynamics result in the

transfer of information from the outside of the cell into the

cell’s internal regions. A cascade of biochemical reactions is

constantly acting inside cells in parallel where different sig-

nalling pathways are constantly becoming activated and

deactivated. Hence, information from thousands of receptors

of different types, present on the surface of each cell, is inte-

grated to determine the cell’s behaviour. This can be achieved

by regulating gene expression through activation or inhi-

bition of transcription factors. Transcription factors are

proteins that bind to the cell’s DNA to regulate gene

expression. Other effectors of cell-signalling events are pro-

teins that regulate protein translation, protein degradation,

electrical activity modulation through post-translational

modifications of channel proteins in the membrane, as well

as regulation of several other cellular machineries and

organelles inside cells [30].

One of the outcomes of such regulation is the ability of

some human cells to crawl [31–33]. The direction and

speed of the crawl are determined by the cell signalling net-

work [32], and can be considered one of the cell’s actuators.

Another organelle that is regulated by the cell signalling net-

work is the mitochondrion. The mitochondria in cells are

acting as engines and sensors [34]. They produce the

common currency energy sources ATP, GTP and NADþ.

These energy-charged molecules can be used by many pro-

teins to perform their work. Interestingly, the mitochondria

in cells sense energy levels, and if they receive certain signals,

the mitochondria can induce programmed cell death, also

called apoptosis [35]. Such altruistic behaviour is initiated

by the mitochondria by releasing proteins that trigger signals

that lead the cell to commit suicide for the betterment of the

entire organism. The mitochondrion’s evolutionary origins

also exemplify symbiosis. The similarity of the mitochondria

to some bacteria that exist today strongly suggests that cells

were initially infected with the bacteria, and gradually

the bacteria became part of the cell through an evolving

endosymbiotic relationship [36].

Programmed cell death is sometimes needed if the cell is

damaged or infected. However, before taking such a drastic

measure to deal with infection or damage, cells evolved to

have defence and self-repair mechanisms. One example of a

defence system in human cells is the interferon response to

viral infection [37]. Cells have specific receptor and
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intracellular proteins that can detect viral double-stranded

RNA, and signal to the cell signalling network to turn on

an immune response. Such an immune response signals to

neighbouring cells the news about the infection, as well as

triggering an internal reaction to deal with the foreign

object in various ways [38]. Similarly, an example of a self-

repair mechanism is the DNA damage response, a machinery

that can repair double-stranded DNA breaks [39]. The DNA

damage response machinery is also linked to the pro-

grammed cell death machinery. If the DNA damage is too

extensive, the machinery signals to the cell signalling network

to activate apoptosis. The DNA damage response machinery

is also linked to the cell cycle apparatus, the amazing ability

of cells to efficiently self-reproduce a copy of themselves. If

DNA damage is detected, the cell cycle programme is sig-

nalled to halt. Cell damage can be caused by reactive

oxygen species, a by-product of metabolism [40,41]. This

can be considered one of the cell’s waste products. Cells

have developed mechanisms to neutralize reactive oxygen

species as well as use them for cell signalling, but at elevated

levels these can cause damage and lead to disease. Another

example of a cell waste product disposal mechanism is the

recent observation that our brain shrinks while we sleep. A

recent study suggested that this is needed to remove meta-

bolic toxins accumulated during the day while we were

awake and using our brains fully [42]. In Alzheimer’s disease,

the amyloid plaques that form in the brain could be con-

sidered cellular waste that is improperly handled [43]. The

circadian cycle in cells is only one of several clocks that are

embedded within the cell signalling and gene regulatory net-

works. These clocks ensure the cyclic regulation of processes

that need to be active periodically [44,45]. The above connec-

tions between general design patterns observed in many

complex systems and those observed in human cells are visu-

ally summarized (figure 2). The connections listed are not all

inclusive and only made here to illustrate the general concept.

It is also expected that as we increase our understanding of
the internal components of human cells, many more

examples will emerge.
8. Conclusion
Cells and their internal constituents are too small for us to

observe with the naked eye, and the macromolecular com-

ponents within cells are only possible to observe with the

best microscopes. Until recently, we could only study a few

molecular components within a cell in a single experiment.

However, with the new biotechnological breakthroughs of

the past few decades, we can now understand the inner

workings of cells at a greater global scale with refined resol-

ution and detail. This is because these emerging new

biotechnologies, for example DNA, RNA and protein sequen-

cing, can measure the level of many molecular species in a

single experiment all at once. These technologies produce

snapshots of the state of the many variables composing the

cellular complex system. This revolution in cell and molecular

biology is called systems biology [22], a term that is now

interchangeable with big data bioinformatics [47]. It enables

the understanding of cell regulation more globally and

more holistically. However, to achieve such understanding,

new theories explaining how all these parts come together

to produce high-order functions are also required. But

before such theories can form, we need to be able to handle

the masses of data collected using these new technologies.

With the rapid reduction in cost for computing and storage,

and technologies that permit recording almost everything,

we can now track the state of the variables that make up

many types of complex systems, over time and under various

controlled or natural spontaneous perturbations, including

human cells. How many such data do we need to collect in

order to build an accurate coarse-grained representation of

an entire human cell system? How can we best extract the

knowledge nuggets from such data, and make predictions
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about behaviours and conditions of the system that are not

yet measured, or not yet seen? How can we visualize and

integrate these high-dimensional data? These are some of

the grand challenges facing data scientists today including

computational systems biologists.

The field of systems biology is both data-rich and data-

poor. It is data-rich because there are mounds of data already

collected but needed to be further analysed, and data-poor

because the system is so complex and so difficult to observe,

and thus currently, the data that we have already collected

are clearly insufficient to fully understand the intricate

molecular mechanisms that drive human cellular behaviour.

Currently, we do not fully understand all of the molecular

details about how cell signalling networks actually integrate

and process information to regulate cellular function. Open

questions include how the many different ligands, diffusing

in the extracellular media, and capable of binding to different

and multiple receptor types, initiate intracellular activity

changes that result in alternative cellular phenotypes. Until

recently, cell and molecular biologists had been using a

reductionist approach to study such a complex system.

Reductionism in biology has entailed that experimentalists

spent their entire scientific careers focusing on analysing

only one, or a few, genes and their protein products; where

in fact, each mammalian cell has thousands of different

types of genes and proteins expressed from these genes, to

function altogether simultaneously. All these different types

of proteins are working together in concert, influencing

each other’s activity and level of abundance. However,

because such biomolecules are so small, we cannot see

exactly how they work, and we have to resort to measuring

their activity using indirect methods. Studying only a few

genes or proteins by individual laboratories still dominates

biomedical research today. The information from the

labour-intensive low-throughput single-gene experiments

conducted by many different laboratories around the world
is continually accumulating. Information from such studies,

characterizing individual proteins and their interactions,

can be used to reconstruct, through data integration, a more

global picture of the cell regulatory puzzle [30]. However,

such data collection suffers from research focus biases [48]

and reproducibility concerns [49]. However, systems biology

approaches are gradually becoming the new standard. The

concept of studying systems in biology was introduced

before, but then not enough molecular details were available

to link molecular interactions to system behaviour [22].

In recent years, much excitement has been generated from

the opportunities presented by the promise of artificial intel-

ligence and machine learning, and in particular deep

learning. Deep-learning applications to systems biology can

indeed accelerate discovery by knowledge imputation [50].

Deep learning can provide answers without the need to

know all the details, but can also discover new knowledge

that researchers overlooked, similarly to the way a deep

neural network discovered new strategies for the game Go,

strategies never considered by humans for over 2000 years

of mastering the play of this complex game [51]. Technologi-

cal evolution is also seeing rapid progress due to advances in

making deep-learning algorithms more accessible through

specialized hardware and open-source easy-to-use software

libraries. While these developments enable progress, such

progress can sometimes be achieved without fully under-

standing the implications drawn from a complex systems

theory perspective. In this review, I have attempted to further

highlight the importance of obtaining a deeper understand-

ing of the human cell as a complex system, as well as other

complex systems around us and inside us.
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