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Abstract

One of the renewable energy resources, wind energy is widely used due to its wide distribu-

tion, large reserves, green and clean energy, and it is also an important part of large-scale

grid integration. However, wind power has strong randomness, volatility, anti-peaking char-

acteristics, and the problem of low wind power prediction accuracy, which brings serious

challenges to the power system. Based on the difference of power prediction error and confi-

dence interval between different new energy power stations, an optimal control strategy for

active power of wind farms was proposed. Therefore, we focus on solving the problem of

wind power forecasting and improving the accuracy of wind power prediction. Due to the

prediction error of wind power generation, the power control cannot meet the control target.

An optimal control strategy for active power of wind farms is proposed based on the differ-

ence in power prediction error and confidence interval between different new energy power

stations. The strategy used historical data to evaluate the prediction error distribution and

confidence interval of wind power. We use confidence interval constraints to create a wind

power active optimization model that realize active power distribution and complementary

prediction errors among wind farms with asymmetric error distribution. Combined with the

actual data of a domestic (Cox’s Bazar, Bangladesh) wind power base, a simulation exam-

ple is designed to verify the rationality and effectiveness of the proposed strategy.

1 Introduction

After years of rapid development in Bangladesh, wind power has entered the platform period,

and the problem of wind power adaptability in the power grid is becoming more and more

prominent. Large scale wind power grid connection increases the pressure on the secure and

steady operation of the power system. Therefore, improving the active support performance of

wind power generation to the power grid and reducing the impact of its forecast deviation on

the active power balance control has become the core problem of wind power generation sys-

tem [1].
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In order to realize the active support of wind power generation system to the power grid,

wind power station needs to have good measurement accuracy, control performance and

regulation ability like traditional power supply. Firstly, the power forecast level of wind power

station needs to be greatly improved to meet the accuracy requirements of power grid dis-

patching operation; secondly, under the premise of steady operation of the power grid, it can

automatically adjust the power output of the wind power station to meet the demand of the

power grid; finally, it is necessary to make rapid adjustments in response to the changes in the

operational state of the power system [2, 3].

Wind farm active power control has a connecting role in the active power dispatching sys-

tem including large-scale wind power farms [4]: it not only tracks the output plan of wind

farms, but also distributes the cluster dispatching instructions to the units in the wind farm to

coordinate and control the active power output of each unit in the field. Most of the research on

the active power control strategy of the existing wind farm takes the minimum sum of the inter-

nal power loss of the wind farm as the optimization objective [5], and also considers the active

power control of wind power prediction technology. The control objective is mainly to reduce

the deviation of active power distribution and realize the stable output of wind farm power [6].

Therefore, the active power control of wind farm should not only take the power loss as the

optimization object, but also fully tap the active power regulation ability of wind farm. Wind

speed and wind power forecasting’s main purpose is to provide information on predicted wind

speed and power over the next several minutes, hours, or days. The prediction can be separated

into four timeframes based on power system operation needs [7]: ultra-short-term (a few sec-

onds to 4 h), short-term (4 h to 24 h), medium-term (1 to 7 days), and long-term (more than 7

days). Turbine control and load tracking are done with ultra-short-term predictions, whereas

power system management and energy trading are done with short-term forecasts, and wind

turbine maintenance is done with medium-term and long-term forecasts [8].

At present, there have been many research results in the power control of wind power

plants, which can be unevenly divided into two classes: proportional distribution method and

optimal distribution method [9, 10]. In order to improve overall performance, a feature extrac-

tion-based data pre-process strategy is proposed in [11] to reduce wind power generation

fluctuations and select suitable input forms of wind speed datasets, as well as an uncertain set

model selection procedure to fix the best cooperation solutions from the Pareto front set

derived from the optimization stage. Based on the operating characteristics of doubly-fed wind

turbines, literature [12] proposed a wind farm power distribution method according to the

maximum available power of the generating units. Literature [13] approved the optimal alloca-

tion method, sets different optimization objectives, constructs the objective function, and

realized the decomposition of power control objectives. A unit commitment optimization

model for wind farms, and the power allocation optimization model of wind turbine in wind

farm proposed in [14] to introduce the model predictive control and frequency constraints to

improve the optimization model. Author in [15] proposes a state classification model based

on wind turbine based on the changes of wind turbine operation state in adjacent regulation

periods to realize the smooth output of wind farm power. Authors in [16] introduce the

research and development of wind power control system and its application in practical engi-

neering. Author in [17] developed a new energy power control system suitable for large-scale

wind power generation base, which decomposes the power generated by the wind farm in

the base with section and line stability constraints according to the wind power forecast and

power generation instructions issued by the power grid. However, the proposed model’s pre-

diction accuracy depends on regression ability and decrease with large sample. By combining

several optimization methods, the boosting method can improve the fundamental model’s

ability.
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Author in [18] implements a novel hybrid deep learning-based evolutionary technique to

improve wind speed forecast accuracy. Literature [19] used a re-analysis of the Modern-Era

Retrospective Analysis for Research and Applications version 2 (MERRA-2) to recognize long-

term Mediterranean Sea Offshore Wind (OW) arrangement probable settings, as well as

machine learning tactics based novel combined intelligent to forecast OW speed. To decom-

pose signals and pre-processing data, evaluate the upcoming total of wind turbines energy pro-

duction, and optimize the fuzzy GMDH neural network parameters, literature [20] proposed

a mutual prediction model based on empirical mode decomposition, fuzzy group method of

data handling neural network, and grey wolf optimization algorithm. Author in [21] provides

an innovative adaptive neuro-fuzzy inference method to estimate the yield power of a wind

turbine based on wind power inputs such as wind speed, turbine rotational swiftness, and

mechanical-to-electrical power converter temperature.

The interval prediction is calculated using the point prediction result and the confidence

interval for the mistakes. The upper and lower bounds of the errors’ confidence interval are

added to the point prediction results, and the interval estimate result is derived at a specific

confidence level. Interval predicting, as opposed to point prediction, can provide more quanti-

tative data about the wind power generation uncertainty [22, 23]. As determent by the error

among the point prediction result and the actual wind power, a confidence interval optimiza-

tion method-based wind power interval forecasting is used in [24] to analyze the lowest confi-

dence interval length of the random shape distribution. Moreover, the current confidence

interval calculation method is only valid for a given distribution.

The above research considers the forecast power of wind power as relatively certain.

However, the wind resource itself has random fluctuation, and there are inherent errors in

the forecast power, which poses a challenge to the accurate control of the active power of the

wind power station. Therefore, when formulating the optimal control of wind power genera-

tion, it is compulsory to practically consider the forecast error [25]. In the actual operation

process, due to the relative 3D dispersion and different technical differences of wind power

plants, the operating characteristics of wind power stations, and the error distribution char-

acteristics are significantly different [26]. Accurately grasping the operation characteristics

and power forecast error distribution characteristics of new energy is of great significance

for improve the power control level of new energy sources. Wind power forecast methods

can be sorted into four basic methods: time series model, machine learning model, deep

learning, and combined forecast model. Table 1 summarizes the advantages, disadvantages

and applicability of four categories and thirteen common wind power forecast methods, as

well as Fig 1 shows the wind power farms of Cox’s Bazar under Bangladesh power develop-

ment board [27]. The gaps are as follows to highlight the main issues in developing active

power control forecasting models:

• The random parameter tuning optimization method has an important influence on the per-

formance of the active power control model. In general, the metaheuristics used to change

the random parameters are inefficient, while initializing the control limits is complicated

and time-consuming. Also, the majority of them were constructed using numerical bench-

marks rather than random constraint tuning on the target problem.

• In order to minimize the economic loss caused by the control error through the wind power

forecast error, the confidence interval as an optimization model plays a significant role. This

collection procedure might be difficult since improper setting selections can have a negative

impact on the forecasting models’ performance.
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Based on these gaps, we focus on solving the problem of wind power forecasting and

improving the accuracy of wind power prediction and will strive to achieve the following inno-

vative objectives:

• In this paper we consider the difference in power forecast error of different new energy

power stations, and optimize the active power control of wind power.

Fig 1. Wind power farm of Cox’s Bazar Bangladesh.

https://doi.org/10.1371/journal.pone.0273257.g001

Table 1. Forecasting methods and characteristics of wind power.

Category Method Advantages, disadvantages, and applicability Literature

Time series Continuous

method

When the calculation is simple, it is only suitable for ultra-short-term prediction, and the fluctuation of wind power

is not drastic, the error is the smallest.

[28–30]

ARMA The calculation is relatively simple, suitable for stationary time series. [31]

ARMIA When smoothing nonlinear data, it is hard to determine the optimal structural constraints for strong nonlinear

data.

[32]

Machine

learning

SVM Higher order (1–11 orders) can improve the forecast effect, but the kernel parameters and penalty factors of SVM

are difficult to choose, so optimization algorithm is generally used to determine them.

[17, 33,

34]

RF It has strong robustness to non-important influencing factors and noise data, and has satisfactory results without

optimizing structural parameters.

[35, 36]

GP It has strong generalization ability for nonlinear and small sample data. [37]

Deep learning BP The neural network based on error back propagation is generally used as the benchmark model. [38, 39]

ELM The number of hidden units only needs to be set faster. [40]

CNN It has a strong capability to extract the implicit connection features of the data, and adopts the weight parameter

sharing technology to reduce the difficulty of model training.

[41]

RNN It can process complex time series and can mine the feature relationship of data in the time dimension well, but

RNN is easy to train in the model

[42, 43]

LSTM, GRU LSTM and GRU solve the phenomenon of long-term dependence to a certain extent. [44]

Combined

forecast

Data

decomposition

The nonlinear and non-stationary wind speed or wind power data is processed to reduce the difficulty of training; it

has strong generalization ability and forecasting accuracy.

[45]

Weight

coefficients

According to the characteristics of different algorithms, it recovers the robustness of the prediction model to a

certain range; The combination model based on variable weight coefficient has stronger adaptability than that

based on fixed weight coefficient.

[46, 47]

https://doi.org/10.1371/journal.pone.0273257.t001
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• Firstly, the wind power prediction data and actual operation data are collected.

• On this basis, the distribution features of wind farm power prediction errors in different

locations and their influence on active power control are analyzed.

• The active power control of wind farms is integrated and optimized based on different error

distribution characteristics.

• At the same time, combined with the actual scenarios, we establish a case for method verifi-

cation in order to prove the method’s effectiveness.

2 Analysis of wind power prediction error

2.1 Power prediction error distribution

According to the predicted power Pp and the actual power Pa of the wind power station, the

absolute error of the predicted power can be calculated. Considering that when the output of

the wind farm is small, the small absolute error may cause a large relative error, which is incon-

venient for statistical analysis. Therefore, the rated power Pwp of the wind farm is taken as the

reference value to calculate the relative error e of the wind farm, that is,

e ¼
Pp � Pa
Pwp

ð1Þ

Two types of hypothesis test methods such as null and alternative hypothesis are conducted

in [48] to distinguish the errors for the proposed sachem and the compared model, where the

null theory means that there is no change among the prediction errors of compared models

and the alternative hypothesis means that the prediction error of the proposed model is lower

than compared one. After verification by the hypothesis test method and χ2 test method in

mathematical statistics (more precisely, mean and quantiles), it is found that the test value of

the statistic falls in the receptive domain, so the predicted power error of the wind farm obeys

the normal distribution.

2.2 Power prediction error confidence evaluation model

The evaluation index of power forecast model can quantify the error characteristics of predic-

tion model. The mathematical expressions and application scope of forecast and evaluation

indexes are shown in Table 2. In recent years, more scholars and experts have applied the com-

bination of quantile regression and risk assessment to the field of wind power forecasting [49,

50]. The distribution function F(y) = P(Y� y) can be used to describe the properties of the

random variable Y, and the τ quantile function of F(y) is defined as:

QðtÞ ¼ inf y : F yð Þ � tf g; 0 < t < 1 ð2Þ

It can be known from Eq (2) that the proportion of variables smaller than the quantile func-

tion Q(τ) is τ, and the proportion of variables larger than the quantile function Q(τ) is (1 − τ).
Define the inspection function as:

r uð Þ ¼ tuf uð Þ þ ðt � 1Þuf ðuÞ ð3Þ

where, f(u) = 0 when u� 0, and f(u) = 1 when u< 0. Let u = y − δ, take the expectation on the
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both sides of the above equation, and then take the derivative of δ:

F dð Þ ¼ 1 � tð Þ

Z d

� 1

dF xð Þ � t
Z þ1

d

dF xð Þ ¼ 0 ð4Þ

Since F is monotonically increasing, an element in the set {y: F(δ) = π} can be found to min-

imize E(ρ(y − δ)) in any interval. Defined by the quantile Q(τ|x) = x’ β(τ), when any random

parameter satisfies minβ2R ∑i ρτ(yi − x’β(δ)), solve arg minβ2R ∑i ρτ(yi − x’β(δ)), b̂ðdÞ can be

obtained.

Table 2. Power forecast evaluation indicators and their features.

Category Evaluation models Mathematical expression Features

Basic indicators Absolute Error jyia � y
i
pj Describes the difference between a single estimate and the actual value

[51].

Relative Error (RE) jðyia � y
i
pÞ=y

i
aj Describes the reliability of a single forecast [52].

Bias 1

N

PN
i¼1

yia � y
i
p

ynom

� �
An infinite description of bias, suitable for evaluation between different

forecast models [53].

Mean-Based

Evaluation

Mean Absolute Error (MAE) 1

N

PN
i¼1
ðjyia � y

i
pjÞ Describes the deviation of forecast and actual values, reflecting the

overall level of error, suitable for large-scale data evaluation [54, 55].
Mean Absolute Percentage

Error (MAPE)
1

N

PN
i¼1

yia � y
i
p

yia

� �
� 100%

Normalized Mean Absolute

Error (NMAE)
1

N

PN
i¼1

yia � y
i
p

ynom

� �
� 100%

Mean square

evaluation index

Root Mean Square Error

(RMSE)
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1
ðyia � yipÞ

2
q

Suitable for multi-objective evaluation with less variance by evaluating

forecast bias [56].

Normalized Root Mean

Square Error (NRMSE)
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1
½ðyia � yipÞ=ynom�

2
q

Suitable for multi-objective evaluation with small variance [57].

Root Mean Square Relative

Error (RMSRE)
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1
½ðyia � yipÞ=yia�

2
q

Evaluate the deviation of forecast and actual values [58].

Root Mean Squared

Logarithmic Error (RMSLE)
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðlog yia þ 1

� �
� log yip þ 1

� �
Þ

2

r
It is suitable for the situation where the forecast value and the actual

value are too different at a certain moment [59].

Other evaluation

indicators

Improve Mean Absolute

Error (IMAE)

|(EMAE1 − EMAE2)/EMAE1| It is suitable for evaluating the forecast effect between different models

[60].

Improve Root Mean Square

Error (IRMSE)

|(ERMSE1 − ERMSE2)/ERMSE1|

Mean Trend Deviation

(MTD)

1

ynomðN� 1Þ

PN
i¼2
ðDyia � DyipÞ It is suitable for power forecast to evaluate the stability of power grid

[61, 62].

Friendship (F) PN
i¼1

eia � e
i
p

� �
� k yia � y

i
p

� �
=N

Uncertain forecast Average Coverage Error

(ACE)

PICP − PINC Describes the reliability of prediction intervals, suitable for small-scale

data [63].

Prediction Interval Reliability
PN

i¼1
Ci=N Reflecting the reliability and quality level of the predictive model is a

necessary condition for the uncertain forecasting of wind power [64].
Prediction Interval Average

Width

PN
i¼1
ðUi � LiÞ=N

Normalized Prediction

Interval Average Width

PN
i¼1
ðUi � LiÞ=ðN � ynomÞ Reflects the overall width of the forecast interval, suitable for large-scale

data [65].

Note: ya, yp, and ynom are divided into actual power, forecast power, and rated power value of wind power, respectively. ya is the actual average power of the test data set;

N is the length of the test data set, ea and ep are divided into the actual load value and the forecast load value of wind power, if ya 2 [Li, Ui] then Ci = 1, otherwise Ci = 0,

Li and Ui are the upper and lower boundaries of the forecast power interval, Ii = [Li, Ui]. CDFi is the given cumulative distribution function; if y < yi, thenH(y − yi) = 0;

otherwiseH(y − yi) = 1.

https://doi.org/10.1371/journal.pone.0273257.t002
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2.3 Confidence assessment of power forecast

Given quantile (τ1, τ2, � � �, τn), a quantile regression module of wind power forecast is estab-

lished, and then combined with the likelihood distribution and confidence level of wind power

error, the confidence interval of wind power forecast error can be found [66], and then the

confidence interval of wind power forecast can be gained. Due to the dissimilar power forecast

models and linked manipulating features, the forecast error distribution of different wind

farms shows obvious asymmetry over a period of time [67, 68]. Among them, some wind

farms’ forecast power is very close to the lower boundary of the confidence interval, indicating

that the possibility that the wind farm’s actual available power is larger than the predicted

power is high, and wind farms with similar confidence intervals are noted as O+. Some wind

farms’ predicted power is very close to the upper boundary of the confidence interval, indicat-

ing a high possibility that the wind farm’s actual available power is less than the predicted

power, and wind farms with similar confidence intervals are reported as O−.

3 Framework

Usually, the active power of the wind farm is controlled only when the forecast power of the

wind farm is greater than the power generation plan. The active power control demand ΔPi of

wind farm i is determined by the forecast power and generation plan:

DPi ¼ Pd;i � Pp;i ð5Þ

where, Pd,i and Pp,i are the power generation plan and predicted power of wind farm i,
respectively.

When implementing the active power control of the wind farm, the active power adjust-

ment amount undertaken by the O+ type wind farm is ΔP+, and the active power adjustment

amount undertaken by the O− type wind farm is ΔP−.

The output power ΔP+ of the O+ type wind farm i should be;

Piþ ¼ Pp;iþ þ
PN;iþP
i2Oþ

PN;iþ
DPþ ð6Þ

where, Pp,i+ and PN,i+ are the predicted power and installed capacity of the O+ type wind farm

i, respectively.

The output power ΔP− of the O− type wind farm i should be;

Pi� ¼ Pp;i� þ
PN;i�P
i2O�

PN;i�
DP� ð7Þ

where, Pf,i− and PN,i− are the predicted power and installed capacity of the O− type wind farm i,
respectively.

In actual operation, the high probability of output power of the O+ type wind farms are

likely to meet the control target, while the high probability of output power of the O− type

wind farms is likely to be lower than the control target, which will source the active power con-

trol of wind farm set to fail to meet the dispatching instruction.

4 Methodology

4.1 Optimization algorithm

According to the principle, optimization algorithms can be divided into four categories, such

as optimization algorithms based on evolutionary assumed, group based social intelligence,
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physical supposed and geographical assumed [69], and their typical algorithms and character-

istics are shown in Table 3.

In this paper, according to the historical power forecast error data, we are statistically ana-

lyzed the error distribution characteristics, and the method of section 2.2 is used to establish

the confidence evaluation model of the forecast power. On this basis, combined with the ultra-

short-term power forecast data, if the forecast power curve is corrected to the predicted power

band, then the output of the wind farm should be in the predicted power band. In order to

minimize the economic loss caused by the control error through the wind power forecast

error, the confidence interval as an optimization model is used as a constraint to give the active

power control model. It takes the ultra-short-term power forecast data and dispatching direc-

tions as input and optimizes the active power control commands of each wind farm. The spe-

cific process is shown in Fig 2.

4.2 Active power control model

Gu et al., [79] according to the distribution features of wind power forecast error, the expecta-

tion of different wind farms can be analyzed and calculated, and then the power forecast

Table 3. Types and characteristics of optimization algorithms.

Classification Algorithm Features

Evolutionary

assumed

Genetic Algorithms [53], and Differential Evolution

Algorithms [70],

By simulating the principle of biological evolution, individuals not only have a

strong ability to meet the environment, but also pass this ability to offspring, but

sometimes it is easy to fall into a local optimal solution.

Social

intelligence

Particle Swarm Algorithm [71], and Fruit Fly Optimization

Algorithm [72]

Although the individuals in the group are relatively simple, they can provide

concise, fast and effective solutions to complex problems through cooperative

collective behavior.

Physical

supposed

Gravity Search Algorithm [73], Water Cycle Algorithm [74],

and Atomic Search Algorithm [75]

It follows the laws of physics in the physical world, and its ideas are concise and

easy to understand. It is generally used in combination with other algorithms to

achieve global optimization.

Geographical

assumed

Avoidance Search Algorithm [76], Imperialist Competition

Algorithm [77], and Biogeographic Optimization Algorithm

[78]

It is simple and easy to implement, but it is informal to fall into an extreme point,

and global optimization cannot be guaranteed.

https://doi.org/10.1371/journal.pone.0273257.t003

Fig 2. Wind power active power control process.

https://doi.org/10.1371/journal.pone.0273257.g002
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expectation PE,i is;

PE;i ¼ Pp;i þ
Z et

0

e � FiðeÞde ð8Þ

where, Pp,i is the predicted power of wind farm i; Fi(e) is the power forecast error probability

distribution function of wind farm i.
The objective function is to minimize the change among the active power and the predicted

power of the wind farm as [4];

minf ¼ j
X
ðPi � PE;iÞj ð9Þ

Constraints are;

P
Pi ¼ Pd

Pmin � Pi � Pmax

(

ð10Þ

where, Pi is the output power command of wind farm i.
The first constraint specifies that all wind farms’ active power must be consistent with the

power generation plan and the aggregate of all wind farm power outputs must fulfill the sched-

uling directions. The second is the wind farm operation constraint, that is the limit constraint

of wind farm i. The confidence interval lower limit of the power calculation and the higher

value of the minimum operating power of the wind farm must be the minimum power yield of

the wind farm. The wind farm’s maximum power output should be equal to the power predic-

tion’s upper confidence interval and the lower value of the wind farm’s minimum operating

power.

Fig 3. Data of wind power and generating schedule. (a) 1st wind farm, (b) 2nd wind farm, (c) 4th wind farm.

https://doi.org/10.1371/journal.pone.0273257.g003
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Fig 4. Farecasting and measured power output of wind farms. (a) Actual control effect, (b) Control deviation

comparison.

https://doi.org/10.1371/journal.pone.0273257.g004
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Fig 5. Comparison of the control effects of the two methods. (a) 1st wind farm, (b) 2nd wind farm, (c) 4th wind farm.

https://doi.org/10.1371/journal.pone.0273257.g005
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5 Overview results analysis

5.1 Example overview

Based on the predicted power of four wind farms (with a total installed capacity of 903MW) in

a domestic (Cox’s Bazar, Bangladesh) wind power base from January to July 2021 and mea-

sured the regional power data after theoretical reduction, in this paper, we compare and verify

the control effect of this method. Part of the data is used to examine the wind farm’s predicted

power distribution characteristics, while the rest is utilized to compare and validate the pro-

posed strategy’s effect. Fig 3 shows the forecast power, measured power and power generation

commands of the wind farm.

The installed capacity of the four wind farms is as: the 1st wind farm 201MW; the 2nd wind

farm 201MW; the 3rd wind farm 300MW; and the 4th wind farm 201MW. Fig 4 shows the pre-

dicted power of certain wind farms such as 1st, 2nd, and 4th in the corresponding period of the

day, as well as the measured power after theoretical reduction.

It can be seen from Fig 4, the1st wind farm’s measured power is near to the forecast power,

the 2nd wind farm’s actual power generation capacity is better than the forecast power, and 4th

wind farm’s actual power generation capacity is lower than the forecast power. Set the confi-

dence level to 0.95. Calculate the confidence interval for each wind farm’s predicted power,

That is evidently irregular. It can be realized that the positive and negative error intervals of

the 1st wind farm are essentially symmetrical, the 2nd wind farm has positive error characteris-

tics, and the 4th wind farm has negative error characteristics. This example compares the sug-

gested optimization algorithm to the capacity proportional allocation method to examine its

control effect within this border.

5.2 Results analysis

For the wind power prediction error distribution, Fig 5 shows a comparison of the proposed

approach’s control effect with that of the traditional capacity proportional distribution

method.

As can be seen from Fig 5 that the control objective obtained by the method in this paper is

more accurate, and the overall control deviation is significantly better than the traditional

capacity proportional distribution method. Table 4 shows the probability of the power predic-

tion errors distribution for the three wind farms with normal distribution type.

In Table 4, the distribution parameters such as F and N value is 22.29 and 24.31 for 1st wind

farm, and 34.43 and 26.52 for 2nd wind farm, respectively. The wind power distribution is opti-

mized based on the error distribution and running risk factors. Distribution parameter value

of 4th wind farm is -28.23 (F) and 9.33 (N). Furthermore, in comparison to existing control

methods that consider errors, in this article we use statistical (more precisely, mean and quan-

tiles) analysis of regional data to classify wind farms based on positive and negative error char-

acteristics, and analyze the confidence in wind farm forecast power. With the predicted power

of the wind farm as the input, the confidence interval and expected power of the forecast

power are evaluated, and the wind farm’s power control command is optimized. Fig 6 shows

Table 4. The power prediction errors distribution’s probability.

Wind farm Parameter Error range (MW)

1st F~N 17.01~26.57

2nd F~N 29.20~39.63

4th F~N -30.09~-26.06

https://doi.org/10.1371/journal.pone.0273257.t004
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Fig 6. Target and actual value of active power control of each wind farm using proposed method.

https://doi.org/10.1371/journal.pone.0273257.g006
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the active power control target as well as the theoretically reduced power of certain wind

farms.

It can be seen from Fig 6 that due to the negative error characteristic of the 4th wind farm,

the probability of failing to meet the control objective is high, and the possible power shortage

is transferred to wind farms 1st and 2nd. Optimization methods-based control target is near to

the actual gain when compared to the capacity ratio method. As started by the proposed

method, after 3 hours, the predicted wind power exceeds the transmit guidance. Fig 6a–6c

show the control target values for the 1st, 2nd and 4th wind farms, respectively. Wind farm 4th

produces less electricity than the control goal, which has a higher probability. To maintain a

power balance according to the scheduling info, possible power shortages must be transferred

to wind farms 1st, and 2nd, whose probabilities for real power output are higher than the con-

trol target. An optimization method is used to distribute the power from three wind farms.

The control objectives of the three wind farms are clearly better than those of the capacity pro-

portion technique. Through comparison, it is found that the control deviation can be reduced

by 10%, and the capacity proportion method cannot meet the power generation plan.

6 Conclusion

Various wind power stations have different distribution characteristics of power forecast

errors, which should be taken into account while optimizing and improving active power con-

trol of wind farms. The forecast error distribution features of the wind farm are extracted by

statistical (more precisely, mean and quantiles) analysis of regional data, and the active power

regulation of the wind farm is suitably optimized. The results demonstrate that the proposed

method can significantly improve the performance of wind power active power control, and

the control deviation in the simulation example can be reduced by about 10%. The model is

helpful to reduce the risk of wind power active power control deficiency, which drives from

the actual yield being unable to be fulfilled. So as a result of a part of the wind farm’s actual out-

put being lower than the control objective. Our proposed method can effectively reduce the

influence of new energy power forecast error on power control, as well as improves the coher-

ence and accuracy of active wind power management.
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