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sequencing, Carlessi et al. identify a
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disease and display a high mutational

burden, suggesting they constitute a pre-

malignant compartment. Higher

frequencies of daHeps predicted an

elevated risk for hepatocellular

carcinoma development, highlighting

their potential as a new prognostic

biomarker.
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SUMMARY
Current approaches to staging chronic liver diseases have limited utility for predicting liver cancer risk. Here,
we employed single-nucleus RNA sequencing (snRNA-seq) to characterize the cellular microenvironment of
healthy and pre-malignant livers using two distinct mouse models. Downstream analyses unraveled a previ-
ously uncharacterized disease-associated hepatocyte (daHep) transcriptional state. These cells were absent
in healthy livers but increasingly prevalent as chronic liver disease progressed. Copy number variation (CNV)
analysis of microdissected tissue demonstrated that daHep-enriched regions are riddled with structural var-
iants, suggesting these cells represent a pre-malignant intermediary. Integrated analysis of three recent hu-
man snRNA-seq datasets confirmed the presence of a similar phenotype in human chronic liver disease and
further supported its enhanced mutational burden. Importantly, we show that high daHep levels precede
carcinogenesis and predict a higher risk of hepatocellular carcinoma development. These findings may
change the way chronic liver disease patients are staged, surveilled, and risk stratified.
INTRODUCTION

Liver cancer is the third leading cause of cancer death, repre-

senting 8.3% of all cancer-related deaths worldwide.1 Hepato-

cellular carcinoma (HCC), the most common histologic type of

liver cancer, develops secondary to chronic liver diseases,

such as viral hepatitis, alcoholic liver disease, and, increasingly,

nonalcoholic fatty liver disease (NAFLD) and its more severe pre-

sentation, nonalcoholic steatohepatitis (NASH). The prevalence

of these conditions combined in the human population has

reached approximately 1.5 billion people.2 However, only a

minority of patients will eventually develop HCC, approximately
This is an open access article under the CC BY-N
1 million per year globally.3 Identifying individuals at high-risk

of HCC conversion would greatly improve surveillance programs

for early detection, offer more treatment options, and result in

better patient survival. Yet, predictive biomarkers to assess

future HCC risk in liver disease patients remain elusive.

Single-cell genomics approaches have revolutionized the

understanding of the mammalian liver and its pathology.4 In

this context, single-cell RNA sequencing (scRNA-seq) revealed

previously unknown molecular determinants of spatial zonation

in hepatocytes,5–7 endothelial cells,8,9 and hepatic stellate

cells10,11 across the liver lobule. Subpopulations of mesen-

chymal, endothelial, myeloid, and biliary epithelial lineages that
Cell Genomics 3, 100301, May 10, 2023 ª 2023 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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specifically arise during liver disease or HCC have also recently

been characterized at the single-cell level, unraveling new bio-

markers and therapeutic targets for further investigation.9,12–15

To our knowledge, however, a disease-specific hepatocyte tran-

scriptional state has not yet been identified. Such a discovery

would have major implications for treatment and management

of liver disease, since hepatocytes accumulate damage during

pathological progression and are the primary source of malig-

nant transformation in HCC.16

Hepatocytes constitute approximately 60% of the liver by cell

number;17 however, due to their sensitivity to tissue dissociation,

they have not been well represented in current single-cell liver

disease datasets. Although tissue dissociation approaches bet-

ter suited to improving hepatocyte representation have been

reported, they have been applied to study only healthy

liver.7,11,18 Moreover, tissue dissociation for scRNA-seq intro-

duces cell representation biases and de novo transcriptional

stress responses, which may mask the underlying biological

state under study.19 Notably, single-nucleus RNA sequencing

(snRNA-seq) minimizes these issues.20

Here, we used snRNA-seq to profile the cellular microenviron-

ment of the healthy and pre-malignant liver using two distinct

and well-characterized mouse models. The data uncovered a

molecular signature that corresponds to a hepatocyte state

uniquely present in liver disease, which we termed ‘‘disease-

associated hepatocytes’’ (daHeps). These cells displayed a tran-

scriptional phenotype that highly correlates with human HCC as

early as the time point of 3 week post-injury induction. Expres-

sion deconvolution of human bulk transcriptomes from several

public datasets revealed a strong correlation between daHep

frequency and liver disease stage. Further analyses revealed

an enhanced mutational burden in daHeps compared with

normal hepatocytes, suggesting these cells may correspond to

a pre-malignant compartment. Using a partial-penetrance

mouse model of NASH-associated HCC,21 we showed that the

daHep signature was detectable in early disease liver biopsies

preceding hepatocarcinogenesis and that high daHep levels

clearly identified the group of mice that later developed HCC.

We confirmed this prognostic daHep utility in humans through

retrospective analysis of a hepatitis C virus (HCV)-driven HCC

cohort. Altogether, these findings suggest that the daHep signa-

ture has potential to translate into a prognostic tool for the reli-

able staging of chronic liver disease and identification of patients

at high-risk of future HCC development.

RESULTS

A single-nucleus atlas of the healthy and pre-malignant
mouse liver
To identify andcharacterize cell states associatedwith thechron-

ically injured pre-malignant liver, we employed a droplet-based

(103 Chromium) single-nucleus transcriptomics approach (Fig-

ure S1A and STAR Methods). Hepatic nuclei were isolated and

profiled from (1) healthymice fednormal chow; (2)mice subjected

to a choline-deficient, ethionine-supplemented (CDE) diet; and

(3) mice provided with thioacetamide (TAA) in the drinking water.

We previously demonstrated that CDE and TAA recapitulate

several hallmarks of human chronic liver disease, including stea-
2 Cell Genomics 3, 100301, May 10, 2023
tosis, lobular inflammation, and fibrosis22 (Figure S2A). Here, we

show that the two models also reliably progress to HCC, with

100% tumor incidence (12/12) in TAA-treated mice at 24 weeks

and 92% (11/12) in CDE-fed mice at 32 weeks (Figures S2B

and S2C). Importantly, TAA induces strictly pericentral injury

due to the centrally located TAA metabolism, while CDE gives

rise to a more homogeneous damage profile with periportal

origin.22 Thus, the two models are histopathologically comple-

mentary to each other. Furthermore, CDE leads to high levels of

early steatosis but only mild fibrotic changes, while TAA triggers

rapid induction of centrally located fibrosis but a small degree of

fatty changes (Figure S2A). The overall degree of hepatocyte

damage, however, is comparable at the 3-week time point in

the twomodels, as measured by analysis of serum alanine trans-

aminase (ALT) levels (Figure S2D). We chose to profile the under-

lying hepatic cellular microenvironment when injury is fully estab-

lished, but long before malignant transformation occurs

(Figure 1A).

We obtained 40,748 single-nucleus transcriptomes (16,222

healthy, 14,507 CDE, and 10,019 TAA) from three mice per

condition. Unsupervised clustering, followed by T-distributed

stochastic neighbor embedding (t-SNE) visualization of the com-

bined dataset, revealed nine major clusters (Figure S1D). Batch

correction by FastMNN23 resulted in clustering according to

cell type. Individual clusters were annotated based on cell-spe-

cific marker gene expression and corresponded to hepatocytes

(Hep), mesenchymal cells, endothelial cells (Endo), biliary epithe-

lial cells (BECs), myeloid cells, B cells, T and natural killer cells

(T/NK cells), plasmacytoid dendritic cells (pDCs), and mesothe-

lial cells (Meso) (Figure 1B). The identity of each cell type was

further confirmed by analysis of the top differentially expressed

genes (DEGs) (Figure 1C and Table S1). Library size of each clus-

ter reflected the expected cell size relationships between the

identified lineages (Figure S1E). The expression pattern of cell

type-specific markers was found to be conserved across treat-

ment groups (Figure S1F). Figures 1D and S1G show the expres-

sion distribution of cell type-specific markers across all clusters:

Hnf4aos (hepatocyte), Pdgfrb (mesenchymal), F8 (Endo), Hnf1b

(BECs), Adgre1 (myeloid), Pax5 (B cells), Skap1 (T/NK cells), Si-

glech (pDCs), and Bnc2 (Meso). Each of the nine clusters con-

tained cells derived from all experimental groups (Figure 1F).

Next, we calculated the abundances of identified cell types.

Cell type representation closely reflected known frequencies in

the mammalian liver tissue.24 Hepatocytes were the most com-

mon, followed by non-parenchymal lineages (mesenchymal,

endothelial, immune, and biliary). Mesothelial cells of the hepatic

capsule were the least common (Figure 1E). As expected,

numbers of myeloid cells and BECs were increased in CDE-

and TAA-treatedmice, while a relative reduction in the frequency

of hepatocytes was observed compared with healthy controls.

This is in line with known cellular dynamic changes during hepat-

ic injury and chronic liver disease.22,25,26

Previous single-cell studies have demonstrated that transcrip-

tomic signatures of mouse and human hepatic cells are highly

conserved and share common sets of marker genes.9 To deter-

mine the suitability of our snRNA-seq atlas to model human liver

disease, we next integrated our data with data from a recent

scRNA-seq study of healthy human liver.11 Data from Payen
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et al.11 were obtained from the GEO database under accession

no. GSE158723. Average gene expression of all clusters was

calculated from both datasets, followed by correlation analysis.

All cell types between mouse and human liver exhibited highly

conserved transcriptomic signatures, as demonstrated by high

average gene expression correlation (Figure 1G). Taken together,

these data suggest that our snRNA-seq atlas represents an

appropriate resource to explore the transcriptional landscape

of the pre-malignant liver. We have made the atlas publicly

available as a Cell Browser output27 at http://premalignantliver.

s3-website-ap-southeast-2.amazonaws.com to facilitate inter-

active gene expression visualization and exploration.

Identification of a pre-malignant hepatocyte signature
To identify further hepatocyte subsets and transitional cell

states, we separated this cluster from themain atlas and then re-

clustered using more stringent parameters. This approach re-

vealed four new subsets (Figure 2A and Table S2). Three of the

four clusters were driven by zonation-specific gene signatures.

Previous studies established the transcriptional heterogeneity

of hepatocyte zones in both mouse5,28 and human6,11 liver in

high detail. Consistent with previous findings,5,6,11,18 hepato-

cytes in our dataset were found in a gradient between two highly

distinctive states: one representing zone 1 (periportal) hepato-

cytes, which was characterized by high expression of genes

such as Sds, Hal, and Gls2, and a second representing zone 3

(pericentral) hepatocytes, which expressed Glul, Slac1a2, and

Lgr5. Zone 2 (midzonal) hepatocytes were characterized by pro-

gressively reduced levels of themarkers expressed in zone 3 and

particularly high expression of cytochrome P450 family genes

associated with metabolism of xenobiotics, Cyp2e1, Cyp2c67,

and Cyp2c29 (Figures 2B and 2C).

The fourth cluster was prominently found in CDE and TAA but

nearly absent in healthy mice (Figures 2D and S3A). These hepa-

tocytes differentially expressed 2,091 genes compared with the

other three zonation-based clusters (Table S3). They demon-

strated high expression of genes involved in stress response,

cell death, cell-cycle arrest, and cell senescence and downregu-

lation of normal hepatocyte function and identity genes (Fig-

ure 2E). Hence, we named this cluster ‘‘disease-associated

hepatocytes.’’ To systematically assess and functionally charac-

terize daHeps, we first used the web-based Gene Set Analysis

Toolkit (WebGestalt)29 to perform overrepresentation analysis

(ORA) employing KEGG terms. This revealed endocytosis,
Figure 1. A single-nucleus atlas of the healthy and pre-malignant mou

(A) Experimental design and workflow to discovery of disease staging and predic

(B) t-SNE visualization and unsupervised clustering of 40,748 single hepatic nuc

expression and are displayed in order of abundance. Hepatocytes (Hep), mesench

B cells, T and NK cells (T/NK cells), plasmacytoid dendritic cells (pDCs) and mes

(C) Heatmap showing average expression of the top 25 genes in each cluster. Five

are displayed in brackets.

(D) Expression of individual marker genes of each cluster in the t-SNE space.

(E) Absolute cell type counts in each sample. CDE and TAA mice showed an inc

repair and a relative reduction in hepatocyte numbers.

(F) t-SNE visualization split by experimental condition. Healthy (normal chow); cho

the drinking water (n = 3 per group) are shown, all at the 3-week time point.

(G) Correlation heatmap between mouse and human cells. Normalized gene ex

coefficient values.
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followed by several cancer-associated categories, including

HCC, as the most enriched annotations in daHep-overex-

pressed genes (Figures 2F and S3B). Underrepresented path-

ways corresponded to normal hepatocyte functions, such as

amino acid and fatty acid metabolism, complement and coagu-

lation cascades, steroid hormone biosynthesis, and glucagon

signaling (Figures 2G and S3C).

Next, we performed gene set enrichment analysis (GSEA) us-

ing co-expression modules generated from The Cancer Genome

Atlas (TCGA) HCC RNA-seq dataset (TCGA-LIHC).30 Several

HCC modules were significantly enriched in daHep (Figure 2H).

We further explored the mean expression levels of the top up-

and downregulated modules (LIHC_M246 and LIHC_M333,

respectively) in HCC samples compared with the combined

normal and tumor-adjacent tissue datasets from the

Genotype-Tissue Expression (GTEx) and TCGA cohorts using

the web server for large-scale expression analysis GEPIA2.31

The top upregulated module in daHep was found to be markedly

increased, and the top downregulated module decreased in

human tumor samples (Figure 2I). Furthermore, the expression

levels of the two modules were strong predictors of HCC sur-

vival, with the upregulated and downregulated modules found

to be positively and negatively associated, respectively, with

poorer outcomes (Figure 2J).

To our knowledge, the cell state we herein named daHep has

not been characterized before. Therefore, we endeavored to

confirm the presence of this phenotype in situ. Based on

snRNA-seq data, we chose Anxa2, highly expressed in daHeps

and not detected in the other zonation-driven clusters, and

G6pc, highly expressed in zonated clusters, but low in daHeps.

Then, we performed RNA in situ hybridization (RNAscope) as-

says to visualize the daHep phenotype in tissue sections.

Anxa2 was hardly expressed in healthy liver but readily detected

in CDE and TAAmice (Figure 3A). In addition, its levels increased

with liver disease progression. G6pc, in contrast, was highly ex-

pressed across the hepatic lobe of healthy mice but drastically

reduced in chronically injured animals. Of significance, Anxa2

and G6pc positivity presented mutually exclusive spatial pat-

terns. This was particularly noticeable in TAA mice, where injury

is restricted to pericentral regions, indicating that the daHep

phenotype is spatially located in areas of extensive tissue dam-

age. Notably, Anxa2 expression can also be detected inmyeloid,

BECs, and mesenchymal cells. However, in higher-magnifica-

tion RNAscope images, large hepatocyte-sized cells are seen
se liver

tive transcriptional signatures.

lei. Nine major liver cell types were annotated based on cell-specific marker

ymal cells, endothelial cells (Endo), biliary epithelial cells (BECs), myeloid cells,

othelial cells (Meso) are shown.

cell type-specific canonical markers found within the top 25 genes per cluster

rease in non-parenchymal cell types associated with inflammation and tissue

line-deficient, ethionine-supplemented (CDE) diet; and thioacetamide (TAA) in

pression values in each cell type were used to calculate Pearson correlation

http://premalignantliver.s3-website-ap-southeast-2.amazonaws.com
http://premalignantliver.s3-website-ap-southeast-2.amazonaws.com
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highly expressing Anxa2, with simultaneous depletion of G6pc,

indicating that these represent daHeps (Figure 3B). Finally, we

show that mouse tumors highly express Anxa2, while G6pc is

largely lost, suggesting phenotypic proximity of daHep with liver

tumors (Figure 3C). This hypothesis is supported by immunohis-

tochemistry data from the Human Protein Atlas, demonstrating

that ANXA2 expression increases and G6PC is largely lost in

HCC (Figure 3D). In addition, we performed immunoblots for

two other daHep markers, GSTA1 and ABCC4, in liver samples

from CDE- and TAA-treated mice at various time points, ranging

from 3 days up to 24 weeks. This evidenced that both markers

significantly increased over time, likely due to accumulation of

hepatocytes in the daHep state as chronic liver injury progressed

(Figure S3D).

The similarities of daHeps with HCC prompted us to further

investigate the association of individual daHep markers with hu-

man HCC in the TCGA-LIHC dataset.We usedGEPIA2 to assess

the levels of top daHep DEGs in HCC compared with normal liver

tissue. This demonstrated that human orthologs of top upregu-

lated genes in daHeps (Anxa2, Abcc4, Krt8, Pvt1, and Robo1)

were increased in HCC, and downregulated genes (Pck1, C6,

Aass, Acsl1, and Fbp1) were decreased in HCC compared with

normal and tumor-adjacent liver tissue (Figures S3E and S3F).

We then conducted overrepresentation analysis using transcrip-

tion factor target terms to unveil the transcription factor programs

likely involved in driving the daHep phenotype. Interestingly, the

programs found to be enriched were driven by proto-oncogenic

transcription factors (YY1, MYC, ETS2), whereas hepatocytic

lineage and identity programs (HNFs and DBP) were among the

most underrepresented (Figures 3E and S3G). Finally, survival

analysis in the TCGA-LIHC dataset showed that expression of

the same transcription factor programs is a strong predictor of

overall survival in human HCC. High levels of YY1 and MYC,

and low levels of HNF1 and HNF3 programs, were strongly asso-

ciated with reduced survival (Figure S3H).

We hypothesized that daHeps represent an intermediary pre-

malignant hepatocyte phenotype. We therefore performed

whole-genome amplification and ultra-low-pass whole-genome
Figure 2. Identification of a disease-associated hepatocyte (daHep) si

(A) UMAP visualization of hepatocyte subclustering. Four subsets were identified

Zone_3_Hep) and one cluster of hepatocytes with a disease-associated signatur

(B) Expression of zonation marker genes in the UMAP space (left). Immunohisto

depicting zone-specific expression (right).

(C) Dot plot of top differently expressed genes across hepatocyte subsets. Zona

Circle size denotes detection frequency and color denotes expression level.

(D) UMAP visualization split by experimental condition. Disease-associated hepa

Highlighted by red ellipses.

(E) Disease-associated signature is enriched with stress response, cell death, cel

identity genes are downregulated.

(F)Overrepresentationanalysis (ORA)ofupregulatedgenes indaHepwithKEGGter

(G) As in (F) with downregulated genes in daHep.

(H) Gene set enrichment analysis (GSEA) of ranked daHep differentially express

Genome Atlas (TCGA) hepatocellular carcinoma RNA-seq dataset (TCGA-LIHC) (t

M246 and M333, respectively (bottom).

(I) Boxplots depicting expression levels of indicated modules in tumor samples

involved tissue from TCGA and healthy human liver from the GTEx datasets (nor

(J) Kaplan-Meier survival analysis of TCGA-LIHC patients ranked high (top qua

indicated modules. Hazard ratio (HR) and p values were calculated by the log ra

Analyses in (F), (G), and (H) were performed at WebGestalt and in (I) and (J) usin
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sequencing (LP-WGS) of microdissected tissue corresponding

to sectors enriched for normal (G6pc) or daHep (Anxa2) cells

from TAA-treated mice at 3 and 24 weeks. We employed

ichorCNA32 to predict large-scale copy number variations

(CNVs) in DNA isolated from each region. Strikingly, DNA sam-

ples isolated from sectors highly enriched for Anxa2 harbored

several CNVs, whereas regions positive for G6pc did not display

detectable CNVs at either time point (Figure 3F). We also per-

formed the same analysis on DNA extracted from sectors within

tumors. As expected, tumor samples had the greatest muta-

tional burden, as demonstrated by the highest predicted ploidy.

These data suggest that daHeps not only have a unique gene

expression signature, but also display a heightened mutational

burden characterized by multiple structural variants, albeit to a

lesser extent than fully transformed tumors. Importantly, these

CNVs can be detected in TAA-treated mice as early as 3 weeks,

long before the first tumors develop in this model.

To rule out the possibility that daHeps may represent the

phenotype of proliferating hepatocytes, we assessed cell-cycle

marker expression across hepatocyte subsets in the snRNA-

seq data. Uniform manifold approximation and projection

(UMAP) visualizations split by experimental group were gener-

ated for Mki67, Pcna, and Top2a (Figure S4A). This showed

that cell-cycle gene activity was detected only in a small percent-

age of cells across all subsets. Importantly, however, these cells

did not specifically localize to daHep and instead appeared to

occur in all clusters at a low frequency. We then quantified the

percentage of cells with non-zero expression for each of the

three cell-cycle markers, which indicated that TAA mice had a

higher frequency of hepatocytes that were likely cycling (Fig-

ure S4B). Next, we assessed single-cell expression of 668

mouse cell-cycle-regulated genes from a previously published

dataset.33 This analysis confirmed that cell-cycle-associated

genes were not restricted to, nor enriched in, daHeps (Fig-

ure S4C). Average expression of the same list of cell-cycle-regu-

lated genes across all hepatocytes was increased in CDE- and

TAA-treated compared with healthy mice, corroborating the re-

sults obtained fromMki67, Pcna, and Top2a expression analysis
gnature

: three representing normal hepatocyte zonation (Zone_1_Hep, Zone_2_Hep,

e (daHep).

chemistry panels for HAL, CYP2E1, and GLUL from the Human Protein Atlas

ted hepatocyte clusters are defined by well-characterized zonation markers.

tocyte cluster is found in CDE and TAA and is nearly absent in healthy mice.

l-cycle arrest, and senescence markers, while normal hepatocyte function and

ms.Thedotted lineshows theadjusted falsediscovery rate (FDR)cutoff of%0.05.

ed genes (DEGs) using co-expression modules generated from The Cancer

op). Enrichment plots for top overrepresented and underrepresented modules,

from TCGA-LIHC patients (tumor, n = 369) in comparison with adjacent non-

mal, n = 160), *p < 0.0001 by one-way ANOVA.

rtile, n = 91) and low (bottom quartile, n = 91) in terms of their expression of

nk test; 95% confidence intervals are denoted by the dotted curves.

g the GEPIA2 web server.
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(Figure S4D). Finally, we quantified hepatocyte proliferation in

situ by immunofluorescence using HNF4a and Ki67 antibodies

(Figures S4E and S4F). This confirmed the previous findings,

with CDE and TAA mice presenting higher numbers of hepato-

cyte proliferation than healthy animals, in line with the constant

regeneration required in response to chronic hepatic injury.

Importantly, these data also revealed that most cycling hepato-

cytes are spatially located in portal and midzonal regions in TAA

mice and not in central areas, where injury is localized and,

notably, where daHeps were identified. Taken together, these

data indicate that the daHep signature does not represent the

transcriptional state of proliferating hepatocytes.

The daHep signature correlates with liver disease
severity in humans
To determine the prevalence of daHeps in liver disease, we used

CIBERSORTx34 to estimate their abundancy in publicly available

bulk RNA-seq datasets (Figure 4A). We first analyzed a small

mouse dataset from GSE119340.35 In this study, bulk RNA-seq

was performed on livers of healthy and diet-induced NASH

mice. We found that the daHep signature was highly prevalent

in NASH mice, representing 30%–40% of all hepatocytes, but

entirely absent from chow-fed controls (Figure 4B). Next, we

applied the same approach to several human datasets. Human

genes were first converted to mouse orthologs to allow for

compatibility with our mouse snRNA-seq reference matrix. Us-

ing this approach, we confirmed that the daHep signature was

detectable in humans, and importantly, it increased significantly

as liver disease progressed (Figure 4C, data analyzed from

GSE12684836). Receiver operating characteristic (ROC) analysis

further revealed that the daHep signature can be a diagnostic

biomarker for NASH in a mixed cohort of patients with varying

degrees of liver disease (area under the curve [AUC] > 90,

p < 0.0001). Next, we analyzed a large cohort of NAFLD/NASH

patients with varying degrees of fibrosis and full transcriptomic

data accompanied by histopathological scoring on 679 individ-

uals, the SteatoSITE.37 Remarkably, the estimated daHep fre-

quencies highly correlated with fibrosis stages by the Nonalco-

holic Steatohepatitis Clinical Research Network (NASH CRN)

and the Ishak fibrosis scoring systems. More severe stages

were significantly associated with higher daHep frequencies

(Figure 4D). We then categorized patients according to their da-

Hep frequency into high (90th percentile) and low (10th percen-

tile) and performed differential expression analysis. Largely,

high-frequency daHep patients presented with gene expression
Figure 3. Identification of daHeps in situ and characterization of their
(A) Expression distribution of Anxa2 and G6pc in the UMAP space of hepatocyt

bridization (RNAscope) images of healthy, CDE, and TAA mice at the indicated

hepatocytes and daHep areas, respectively. White scale bar, 500 mm; yellow sca

(B) Expression distribution of Anxa2 and G6pc in the UMAP space of all liver cells.

of daHeps (left). High-magnification RNAscope images of the fibrotic area of a TAA

Scale bars, 20 mm; white arrows, normal hepatocytes; yellow arrows, daHeps.

(C) RNAscope image of a tumor-bearing CDE-treated mouse at 32 weeks. Anxa

(D) Immunostaining of ANXA2 and G6PC from the Human Protein Atlas, showing

(E) ORA of transcription factor targets with daHep DEGs.

(F) Genome-wide copy number profiles determined by ichorCNA analysis of micro

of read counts from 1 Mb bins. Copy neutral, blue; deletion, green; gain, brown

indicated above each graph.
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changes commonly seen in liver disease, including fibrosis-,

inflammation-, and ductular reaction-associated gene expres-

sion (Figure 4E). Table S4 presents the full list of DEGs in high-

vs. low-frequency daHep patients. High and low daHep patients

also clustered separately in UMAP, suggesting that the daHep

percentiles represent two distinct groups of individuals (Fig-

ure 4F). Similarly, analysis of two other independent cohorts

confirmed the clinically relevant potential of the daHep signature

to stage NASH. Frequencies of the signature were significantly

higher as the Nonalcoholic Fatty Liver Disease Activity Score

(NAS) increased38,39 (Figures 4G and 4H). Next, we assessed

data from HCC vs. adjacent tissue samples from three indepen-

dent sources, 25 sample pairs from mixed etiology HCC,40 21

pairs from HBV-driven HCC,41 and 373 HCC vs. 50 adjacent tis-

sue samples from the TCGA-LIHC dataset. In all cases, HCC

samples showed significantly higher levels of the daHep signa-

ture compared with adjacent tissue (Figures 4I–4K). Finally, we

applied the approach to a dataset of acute acetaminophen

(APAP) intoxication.42 Interestingly, as early as 6 h post-APAP in-

jection, the signature was detected at high levels, peaking at 24

h, but it subdued by 72 and 96 h and returned to control levels a

week after the original exposure (Figure 4L). The biological pro-

cess that drives clearance of daHep following acute but not

chronic liver injury remains to be determined. We hypothesize

three potential mechanisms: daHeps may undergo cell death,

clearance by an immunological mechanism, or reversion to a

healthy phenotype.

Human daHeps identified in public snRNA-seq datasets
show an exacerbated mutational burden
Three recent studies reported the first large-scale human liver

snRNA-seq datasets.18,43,44 Together these datasets span the

spectrum of liver disease from healthy through to NAFLD,

cirrhosis, and HCC. We endeavored to pool data from the three

independent sources to identify and characterize human daHeps

in high detail. From the following GEO datasets, GSE185477,

GSE174748, GSE192742, and GSE212046, we obtained and in-

tegrated a total of n = 19 single nucleus transcriptomes (healthy,

n = 8; NAFLD, n = 7; cirrhosis, n = 2; and HCC, n = 2), yielding

117,123 hepatic nuclei. Unsupervised clustering led to clustering

according to cell type, with each of the six identified lineages

contributed by barcodes derived from the 19 individual samples

(Figures 5A and 5B). Top DEGs were well-known cell type-spe-

cific genes (Figure 5C and Table S5). Hepatocytes were sepa-

rated for a second round of unsupervised clustering using
genomic mutational landscape
e subsets. Red ellipses highlight the location of daHeps (left). RNA in situ hy-

time points (right). G6pc (green) and Anxa2 (purple) can distinguish healthy

le bar, 100 mm.

Black arrows indicate the hepatocyte cluster; red ellipses highlight the location

-treated mouse at 3 weeks (right). G6pc, green; Anxa2, purple; and DAPI, blue.

2, purple; G6pc green; scale bar, 1,000 mm; red dashed line, tumor area.

expression in healthy liver and HCC samples. Scale bar, 100 mm.

dissected TAA-treated mouse liver sectors as indicated. Plotted are log2 ratio

; and duplication, red. Predicted ploidy estimates from ichorCNA analysis are
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higher-resolution parameters, uncovering five distinct subsets.

Based on gene expression and underlying liver pathology meta-

data, we were able to annotate these five clusters as normal he-

patocytes, daHeps, and three transcriptionally distinct tumor

clusters, referred to as HCC_1, HCC_2, and HCC_3 (Figure 5D

and Table S6). Overwhelmingly, daHep were nearly absent in

healthy samples, but very frequent in liver disease samples

(NAFLD, cirrhosis, and HCC). HCC clusters were nearly exclu-

sively derived from the two HCC samples in the dataset

(Figures 5D–5F). Consensus k-means clustering revealed that

daHep gene expression was more closely related to HCC clus-

ters than to normal hepatocytes (Figure 5G). Top genes upregu-

lated in daHeps were found to be increased in HCC clusters

compared with normal hepatocytes, whereas genes highly ex-

pressed by normal hepatocytes were suppressed in both daHep

and HCC clusters. This was confirmed by differential expression

of the same top genes in HCC vs. normal liver from the TCGA-

LIHC and the GTEx datasets (Figure 5H). These findings are

remarkable when considering the high prevalence of daHeps

in NAFLD and cirrhotic patient samples, effectively uncovering

the existence of a transcriptionally defined hepatocyte state

with gene expression akin to liver tumors but present in the liver

of cancer-free subjects. Similar to mouse daHeps, human

daHeps displayed a reduction in pathways associated with he-

patocyte function, such as energy metabolism and insulin

signaling. Upregulated pathways included cytoplasmic ribo-

somal proteins, OXPHOS, and NRF2 (an oxidative stress-

response pathway) and also featured aWikiPathways annotation

of NAFLD-related genes (Figure 5I).

Next, we employed inferCNV45 to assess if daHeps presented

large-scale chromosomalCNVs that could indicate theyconstitute

a pre-malignant intermediate. In this analysis, we downsampled

the dataset to limit the computation to 10,000 hepatocyte nuclei.

Thisapproach revealed that severalCNVs, includinggainsand los-

ses, could be inferred in daHeps (Figure 5J). We plotted inferCNV

hiddenMarkovmodel (HMM)predictions for theproportions of ex-

pressed genes that localizewithinCNVs for several chromosomes

(1, 5, 7, 11, 17, and 19) on the UMAP of hepatocyte clusters (Fig-

ure 5K). This highlighted that nuclei from the daHep andHCCclus-
Figure 4. High frequency of daHeps is a hallmark of chronic liver disea

(A) Gene expression deconvolution by CIBERSORTx was used to estimate daHep

hepatocellular carcinoma.

(B) Bar plot of CIBERSORTx output showing frequencies of each hepatocyte su

et al.9 (left). Summarized data of daHep frequencies (right). Bars indicate mean ±

(C) As in (B), for individual human subjects grouped according to stage in the

Summarized data of daHep frequencies (center). Bars indicate mean ± SD; *p <

comparisons test vs. normal weight. Receiver operating characteristic (ROC) curv

patients in earlier stages of NAFLD and healthy normal-weight individuals (right).

(D) daHep frequencies in the SteatoSITE dataset (n = 679). Patients were categor

Ishak scores (center). Bars indicatemean ±SD. *p < 0.05, **p < 0.01, ***p < 0.001, *

for p vs. F2; and% for p vs. F3; and by one-way ANOVAwith Tukey’smultiple com

vs. 4. ROC curve assessing the power of daHep frequencies to discriminate pat

(E) Violin plots depicting log-normalized expression levels of indicated fibrosis-, i

grouped according to high (90th percentile) or low (10th percentile) daHep frequ

(F) Visualization of individuals with high and low daHep levels in the SteatoSITE d

components calculated using the 2,000 most variable genes in the dataset.

(G–L) Summarized data of daHep frequencies in the indicated datasets. Bars indic

Dunnett’s multiple comparisons test vs. NAS score 0 in (G) and vs. control in (L); by

test in (I) and (J).
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tersharborCNVs thatencompass large fractionsof thegivenchro-

mosomes. Chromosomic HMM predictions were combined to

calculate the fraction of the genome containing CNVs for all nuclei

in the downsampled dataset. Results were plotted in terms of the

liver pathology metadata as well as hepatocyte cluster annotation

(Figure 5L). CNV burden correlated with disease stage, progres-

sively increasing in line with liver pathology degree. Strikingly,

when the results were plotted according to hepatocyte subsets,

daHeps displayed a clearly intermediary CNV burden phenotype.

Altogether, these data support the notion that daHeps represent

a pre-malignant compartment and suggest they may have clonal

relationships with tumor-initiating cells.

High daHep levels precede HCC development
ToevaluatedaHepsasapredictivebiomarkerof futureHCCdevel-

opment, we used major urinary protein (MUP)-urokinase-type

plasminogen activator (uPA) mice fed a high-fat diet (MUP-uPA

HFD). Thismouse is a faithful pre-clinical NASHmodel with partial

HCC penetrance.46 AllMUP-uPAmice on an HFD develop NASH,

andapproximately 50%developHCCat the 40-week timepoint.21

We performed liver biopsies on n = 12 HFD-fedMUP-uPAmice at

24weeks, atwhich timeall animals haddevelopedNASHbutwere

phenotypically indistinguishable. All mice were then sacrificed at

40 weeks and grouped into tumor-bearing (TBl n = 5) and tumor-

free (TFl n = 7). Bulk RNA-seq was performed on the 24-week bi-

opsies and CIBERSORTx analysis conducted to estimate daHep

abundancies (Figure 6A). We found that daHep levels at 24 weeks

were significantly elevated in mice that developed HCC at

40weeks (Figure 6B). ROCcurve analysis confirmed the suitability

of the daHep signature as a predictive HCC prognostic biomarker

(Figure 6C). Importantly, ALT levels taken at the same time point

could not distinguish future TB from TF mice (Figure 6D). Next,

we assessed the correlation between the daHep signature and

the DEGs observed in TB vs. TF mice. We found that DEGs in da-

Heps positively correlatedwith differential expression observed in

TB vs. TF (Pearson r = 0.4, p < 0.0001) (Figure 6E). TopDEGs in TB

were then investigated as to how they were expressed across he-

patocyte clusters in the snRNA-seq dataset. A positive correlation

was observedwith the daHep cluster, where upregulated genes in
se and correlates with disease stage

frequencies in publicly available RNA-seq datasets of chronic liver disease and

btype in individual mice fed normal chow or a NASH-inducing diet from Xiong

SD; ****p < 0.0001 by unpaired t test.

non-alcoholic fatty liver disease (NAFLD) spectrum from Suppli et al.36 (left).

0.05, ***p < 0.001, ****p < 0.0001 by one-way ANOVA with Dunnett’s multiple

e assessing the power of daHep frequencies to discriminate NASH patients vs.

AUC, area under the curve.

ized according to the histological fibrosis scoring system NASH CRN (left) and

***p < 0.0001 by Kruskal-Wallis with Dunn’s post hoc test vs. fibrosis stage F1; #

parisons test vs. Ishak score 0, # for p vs. 1;% for p vs. 2; & for p vs. 3, and ! for p

ients between fibrosis stages 1 and 4 (right).

nflammation-, and ductular reaction-associated genes in SteatoSITE subjects

encies.

ataset in the UMAP space. UMAP was implemented using the top 25 principal

ate mean ± SD. **p < 0.01, ***p < 0.001, ****p < 0.0001 by one-way ANOVAwith

Mann-Whitney test in (H) and (K); and byWilcoxonmatched-pairs signed-rank
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TB were enriched in daHeps, and downregulated genes in TB

decreased in daHeps (Figure 6F). For instance, Tinag and

Cyp2a4, which increased in TB but were barely detected in TF,

were nearly exclusively expressed in daHeps, whereas C6 and

Cyp7b1, greatly reduced in TB, were excluded from daHeps in

the snRNA-seq data (Figure 6G).

As a proof of principle that these findings may have implica-

tions for HCC prediction in humans, we performed immunostain-

ing for p21 (CDKN1A), a daHep marker, in an archival cohort of

HCV patient biopsies (n = 34), in which seven individuals were

later confirmed to have progressed to HCC. Biopsies were ob-

tained between 1998 and 2009 and were matched for fibrosis;

all cases presented with advanced fibrosis (METAVIR scores

F3 and F4). This approach revealed that patients who eventually

progressed to HCC presented with significantly higher numbers

of p21-positive nuclei 3–12 years prior to HCC diagnosis (Fig-

ure 6H). These data suggest that quantification of this hepatocyte

phenotype inpatientswith anunderlying chronic liver diseasehas

the clinically important potential to predict future HCC develop-

ment prior to any other signs of malignant transformation.

Trem2 macrophages are spatially located in the daHep
niche
Myeloid cells had the largest relative increase in numbers inCDE-

and TAA-treated compared with healthy mice (Figure 1E). Re-

clustering of the myeloid population revealed six distinct cell

types. Resident macrophages (Kupffer cells), monocytes, con-

ventional dendritic cells (cDC1 and cDC2), Trem2 macrophages,

and recently identified ‘‘mature DCs enriched in immunoregula-

tory molecules’’ (Mreg_DCs)47 (Figure 7A). Apart from Kupffer

cells, all other myeloid subpopulations increased in CDE and/or

TAA mice compared with healthy controls (Figure 7B), although

this did not reach statistical significance for themonocyte subset.

Cell-specific gene expression associated with each of the identi-

fied clusters clearly defined each subpopulation (Figures 7C and
Figure 5. Human daHeps identified in public snRNA-seq datasets show

(A) UMAP visualizations and unsupervised clustering of 117,123 single hepatic n

datasets. Six liver cell types were annotated based on cell-specific marker exp

mesenchymal, and biliary epithelial cells (BECs) are shown. Nuclei were labeled

(B) Relative frequencies of cell types in each sample.

(C) Consensus k-means clustered dot plot showing expression of top genes in e

(D) UMAP visualizations and unsupervised clustering of 78,250 hepatocyte nuc

datasets. Five hepatocyte subsets were annotated based on gene expression an

metadata (right). Red ellipses highlight the daHep cluster region.

(E) Relative frequencies of hepatocyte subsets in each sample. Liver pathology m

(F) Frequencies of daHeps (top) and combined HCC clusters (bottom) in each liver

Dunnett’s multiple comparisons test vs. healthy for each group.

(G) Consensus k-means clustered dot plot showing expression of top genes in eac

(H) Boxplots depicting expression levels of genes upregulated in daHeps and H

normal hepatocyte (bottom) in tumor samples from TCGA-LIHC patients (tumor, n

from the GTEx dataset (normal, n = 160). Log2 FC cutoff 0.25, *p < 0.0001 by on

(I) ORA of upregulated (top) and downregulated (bottom) genes in human daHep

(J) Heatmap showing inferCNV output of downsampled (10,000 nuclei) human h

with daHep, HCC_1, HCC_2, and HCC_3 clusters. Rows, single nuclei; columns,

chromosomes labeled in the x axis are delineated by black vertical lines.

(K) Distribution of inferCNV hidden Markov model (HMM) predictions on the UMAP

expressed genes within CNVs for the indicated chromosomes.

(L) Ridgeline plots depicting the fraction of genome with inferred CNVs across hep

identity (bottom).
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7D and Table S7). Kupffer cells were characterized by high

expression of known markers of liver-resident macrophages,

Clec4f, Cd5L, and Vsig4.25 Monocytes expressed high levels of

Ccr2 and Cx3cr1, receptors that mediate monocyte chemotaxis.

Clec9a and Irf4 defined cDC1 and cDC2 populations, respec-

tively. Trem2 macrophages have previously been identified in

NASH and cirrhosis,9,12 are enriched in human HCC,13 and play

pro-tumorigenic immunosuppressive functions in different types

of human cancers.48,49 They were characterized by high expres-

sion of Gpnmb, Mmp12, and Colec12 compared with other

myeloid subsets (Figure S5A). Here, we show that Trem2macro-

phagesalsohold remarkable similarity to lipid-associatedmacro-

phages, identified in the adipose tissue of obese individuals and

shown to play a role in lipid uptake and metabolism, preventing

adipocyte hypertrophy and inflammation, suggesting that

Trem2 macrophages may play similar roles in liver injury50 (Fig-

ure S5B). Overrepresentation analysis supports this hypothesis,

as phagocytosis and cholesterol metabolism were among the

most enriched ontologies in Trem2 macrophages (Figure S5C).

Trem2 macrophages were abundantly found only in CDE and

TAA mice and were nearly absent in healthy controls (Figure 7E).

These findings are consistent with previous reports identifying

Trem2 macrophages in different pre-clinical models of liver dis-

ease and human patients.9,12,51 RNAscope analysis confirmed

that Gpnmb, which is exclusively expressed by Trem2 macro-

phages, was found only in TAA and not in healthymice (Figure 7F).

Strikingly,Gpnmbexpressionexclusively localized in the vicinity of

daHep (Anxa2) cells, in pericentral regions of extensive liver injury

in TAA mice. These observations suggest that Trem2 macro-

phagesmay be involved in phagocytosis of daHep as an immuno-

logical clearing mechanism of dysfunctional hepatocytes in pre-

malignant liver. Similar findings have recently been reported in

other studies, including Trem2macrophage localization to fibrotic

tissue,52 as well as efferocytosis of dying hepatocytes in a mouse

model of NASH.53
an exacerbated mutational burden

uclei from integrated GSE185477, GSE174748, GSE192742, and GSE212046

ression (left). Hepatocytes (Hep) and endothelial (Endo), lymphoid, myeloid,

according to sample IDs (right).

ach cell type. Circle size, detection frequency; color, expression levels.

lei from integrated GSE185477, GSE174748, GSE192742, and GSE212046

d liver pathology metadata (left). UMAP visualizations split by liver pathology

etadata of sample groups are highlighted above the bar plot.

pathology group. Bars indicate mean ± SD. *p < 0.05 by one-way ANOVA with

h hepatocyte subset. Circle size, detection frequency; color, expression levels.

CC vs. normal hepatocytes (top) and downregulated in daHeps and HCC vs.

= 369) in comparison with adjacent non-involved tissue and healthy human liver

e-way ANOVA.

s with WikiPathways terms.

epatocyte subsets. Normal hepatocytes were set as reference and compared

genes. Genes were ordered according to genomic positioning, and individual

of human hepatocyte clusters. Nuclei are labeled according to proportions of

atocyte nuclei grouped according to liver pathology metadata (top) and cluster
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Next, we used CIBERSORTx to assess the frequencies of

Trem2 macrophages in public datasets of liver disease. This

approach confirmed thepresenceof these cells inmouseand hu-

man NASH and evidenced an increase in human HCC compared

with adjacent non-involved tissue (Figures S5D–S5F). The fre-

quencies of Trem2 macrophages also positively correlated with

daHep in human NASH (Figure S5G), corroborating the notion

that Trem2 macrophages and daHeps are co-enriched and co-

localize in chronic liver disease.

We also found a subset of DCs recently characterized in lung

cancer. These DCs were named ‘‘mature DCs enriched in immu-

noregulatorymolecules’’, becauseof their co-expressionof immu-

noregulatory and maturation genes.47 Mreg_DCs were shown to

capture cell-associated antigens during normal or excessive cell

death and restrict anti-tumor immunity by regulating the threshold

of T cell activation. Here, we report this subset in the liver for the

first time (Figures 7A–7E). The exact samemarker genes identified

byMaier et al.47 seem tohavedriven the clustering of this subset in

our dataset, including expression of maturation (Cd40, Cd80, and

Il12b), regulatory (Cd200, Pdcd1lg2, and Cd274), and migration

(Ccr7, Cxcl16, and Icam1) genes (Figures S5H and S5I).

DISCUSSION

The prognosis for HCC patients depends on the tumor stage at

diagnosis,withcurativeoptionsavailableonly to thosediagnosed

at early stages.54 Yet, most HCC patients are still diagnosed at

advanced stages,withmedian survival of less than 6months.55,56

Thus, surveillance programs that facilitate early diagnosis are

crucial to improve survival. International guidelines recommend

6-monthly ultrasound surveillance of cirrhotic liver disease pa-

tients,57 since the presence of advanced fibrosis or cirrhosis is

by far the strongest risk predictor of future HCC develop-

ment.58,59 Even in cirrhotic patients, however, HCC annual inci-

dence is only 2%–4%.60 Furthermore, a significant number of

liver disease patients, particularly those with NAFLD/NASH,

develop HCCwithout cirrhosis and thus are excluded frommoni-

toring programs.61 This highlights the limitations for HCC predic-

tion or detection of current guidelines, emphasizing the need for

novel approaches to stratify patients according to their future

HCC risk.
Figure 6. Transcriptional signature of daHeps is a predictor of future H

(A) Schematic representation of the hepatocellular carcinoma-predictive study

Representative H&E image of MUP-uPA HFD-fed mice at 24 weeks. Scale bar, 1

(B) Bar plot of individual MUP-uPA HFD-fed mice grouped according to tumor

showing frequencies of each hepatocyte subtype (left). Summarized data of da

unpaired t test.

(C) Receiver operating characteristic (ROC) curve assessing the power of daHep

under the curve.

(D) Alanine aminotransferase (ALT) levels at 24 weeks, grouped according to tum

(E) Scatterplot showing log2 fold change of all 2,014 DEGs in daHeps (x axis) com

axis). Pearson’s correlation analysis p < 0.0001.

(F) Heatmap showing normalized average expression of top 80 DEGs in TB vs. T

(G) Counts per million (CPM) values of two top upregulated (Tinag and Cyp2a4) an

24 weeks (top), and their expression in the UMAP space of hepatocytes in the m

(H) CDKN1A expression in theUMAP space of human hepatocyte subsets. Red ell

in biopsies of HCV patients that progressed vs. did not progress to HCC. Black da

indicate mean ± SD; ***p < 0.001 by Mann-Whitney test (bottom left).
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This studyemployedsnRNA-seq toprobe thepre-malignant he-

patic transcriptome, aiming to uncover gene signatures with po-

tential prognostic value. Our data unraveled a previously

unidentified hepatocyte state (daHep) that arises during liver

disease and accumulates as hepatic pathology progresses. We

provide several lines of evidence, in both mice and humans, that

high frequencies of daHeps are a common feature of advanced

liver disease. Further, the daHep signature displays strong tran-

scriptional similarities toHCC, includingenrichment inproto-onco-

genic transcription factorprogramsand lossof hepatocyte identity

gene activity. We observed increased numbers of daHeps in indi-

viduals prior tohepatocellular transformation, highlighting thepos-

sibility of predicting future HCC development. Notably, many indi-

vidualdaHepmarkershereinunveiledhavepreviouslybeenshown

to havebiomarker value inHCC.62–65 Furthermore, several studies

assessing global transcriptomic and proteomic changes in liver

disease have previously reported network changes that resemble

the gene expression profile of daHeps.35,36,66

Large genomic instability and chromosomal rearrangements

are a known hallmark of hepatocarcinogenesis.67 Recent studies

have shown that cirrhotic livers have a higher mutational burden

than normal livers.68–70 These studies concluded that the muta-

tional burden correlates with fibrosis stage and increases during

malignant transformation. However, to the best of our knowl-

edge, mutational signatures have not yet been linked to any

hepatocyte transcriptional state. Here, employing two orthog-

onal approaches, we demonstrate that the bulk of genetic alter-

ations that occur during liver disease accumulate specifically in

daHeps. This was shown in mice by microdissection of

Anxa2high/G6pclow (daHeps) vs. Anxa2low/G6pchigh (normal he-

patocytes), followed by LP-WGS, and in humans by inferCNV

analysis of snRNA-seq data (Figures 3 and 5). In line with our ob-

servations, a recent study showed that (1) G6pc is greatly

reduced in pre-malignant hepatic lesions, resulting in increased

glycogen storage, a keymetabolic adaptation in HCC initiation,71

and (2) loss of G6pc accelerates HCCdevelopment.71 Thus, a tu-

mor-promoting metabolic switch may also be a feature of da-

Heps and may potentially facilitate malignant transformation.

The discovery of daHeps as a highly predictive biomarker pro-

vides us with a clinically significant opportunity to triage liver dis-

ease patients into low-risk and high-risk groups. This facilitates a
CC development

using a partial penetrance model: MUP-uPA mice fed a high-fat-diet (HFD).

00 mm.

development outcome at 40 weeks (TF, tumor-free, and TB, tumor-bearing),

Hep frequencies at 24 weeks (right). Bars indicate mean ± SD; **p < 0.01 by

frequencies to predict tumor development outcome at 40 weeks. AUC, area

or development outcome at 40 weeks.

pared with their fold changes inMUP-uPA HFD TB vs. TF mice at 24 weeks (y

F across hepatocyte subsets in the snRNA-seq dataset.

d downregulated (C6 and Cyp7b1) genes inMUP-uPA HFD TB vs. TB mice at

ouse snRNA-seq dataset (bottom). Red ellipses, daHep cluster region.

ipse, daHep cluster region (top left). Representative P21 immunohistochemistry

shed line marks magnified area (right). Summary of P21 count data. Error bars
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more focused clinical follow-up, rationalization of clinical

resource consumption, earlier diagnosis, and improved cancer

outcomes in the small percentage of individuals who develop tu-

mors each year. We know that less than 40% of cirrhotic individ-

uals currently comply with advice to attend for ultrasound sur-

veillance as recommended by guidelines.72 Our data provide

the foundation for future research that will provide clinicians

and patients with a truly personalized approach for the preven-

tion or early detection of HCC.

Limitations of the study
Although our study yielded interesting findings, it is important to

acknowledge its limitations. While our results strongly suggest

that daHeps may serve as HCC-initiating cells, further experi-

mental confirmation is required. Future studies may utilize spe-

cific daHepmarkers to develop lineage tracing models that track

the ontology and trajectory of these cells in vivo. In addition,

while our analysis validated the clinical value of daHep fre-

quencies in predicting future HCC risk in a small cohort of

HCV-driven patients, more extensive validation in larger cohorts

with different HCC etiologies is warranted. Such validation would

demonstrate the potential of determining daHep levels as a prac-

tical approach to HCC risk screening.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
Fig

(A)

den

(B)

tes

(C)

(D)

(E)

(F)

100

16
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Mouse models

B Human samples

d METHOD DETAILS

B Nucleus isolation

B Single nucleus RNA library preparation and

sequencing

B SnRNA-seq data processing and analysis

B Over-representation and gene set enrichment analysis

B InferCNV analysis of human hepatocyte subsets

B Bulk RNA-seq deconvolution

B Bulk RNA-seq analysis

B RNA in situ hybridization (RNAscope) assay

B Ultra-low-pass whole genome sequencing (LP-WGS)
ure 7. Trem2 macrophages are spatially associated with the daHep

UMAP visualization of myeloid reclustering reveals six subsets, including K

dritic cells (cDC1 and cDC2), and ‘‘mature DCs enriched in immunoregulator

Frequencies of myeloid subsets in each experimental group. Bars indicate me

t vs. healthy for each subset.

Heatmap showing expression of the top 10 marker genes in each cluster.

Expression of marker genes of each subset in the UMAP space.

UMAP visualization split by experimental condition. Trem2 macrophages are

RNA in situ hybridization (RNAscope) images of healthy and TAA mice. Anxa

mm; PV, portal vein; CV, central vein.

Cell Genomics 3, 100301, May 10, 2023
B Immunohistochemistry and immunofluorescence

B Histology

B Serum alanine aminotransferase (ALT) assay

B Immunoblot analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

xgen.2023.100301.

ACKNOWLEDGMENTS

This work was supported by NHMRC Project Grants APP1031330 and

APP1087125 to J.E.E.T.-P., G.A.R., and J.K.O. and APP1160323 to J.E.E.T.-

P., G.A.R., J.K.O., and S.J.F. Our study was also supported by a Collaborative

Cancer Research Grant from the Cancer Research Trust ‘‘Enabling advanced

single-cell cancer genomics in Western Australia,’’ an Enabling Grant from the

Cancer Council of Western Australia, and a Gastroenterological Society of

Australia (GESA) Project Grant. Genomic data were generated at the Australian

Cancer Research Foundation Centre for Advanced Cancer Genomics. R.C. is

the recipient of a Cancer Council WA postdoctoral research fellowship. M.A.F.

is supported by an Australian National Health and Medical Research Council

(NHMRC) Investigator Grant (APP1194141) and by NHMRC Project/Ideas

Grants (APP1042465, APP1041760, and APP1156511 to M.A.F. and

APP1122227 to M.A.F. and M.K.). A.R.R.F. is supported by an NHMRC fellow-

ship, APP1154524. Computational resources were provided by the Pawsey

Supercomputing Centre supported by the governments of Australia andWest-

ern Australia. The authors would like to thank Dr. Ankur Sharma (Curtin Univer-

sity and Harry Perkins Institute of Medical Research) for valuable feedback and

insight on data analysis and interpretation.

AUTHOR CONTRIBUTIONS

R.C. conceived the study, designed and performed experiments, analyzed

and interpretated data, and wrote the manuscript with J.E.E.T.-P. and

M.A.F. E.D. performed pre-processing of sequencing data, analyzed and inter-

pretated data, and critically appraised the manuscript. E.B., J.K.-G., N.M.,

N.D.B.A.B., G.D.S., M.J., A.B.B., D.P., B.J.D., C.J., and M.C.T. performed ex-

periments. G.Y. conceived and designed some experiments, provided re-

sources, and critically appraised the manuscript. R.L., E.S.G., J.K.O.,

G.A.R., S.F., A.R.R.F., and M.A.F. provided resources and critically appraised

the manuscript. E.D. and A.R.R.F. provided critical advice on computational

analysis. J.E.E.T.-P conceived the study, designed experiments, interpreted

data, and critically appraised and edited the final manuscript.

DECLARATION OF INTERESTS

M.A.F. is the founder and shareholder of Celesta Therapeutics.

Received: June 1, 2022

Revised: January 27, 2023

Accepted: March 17, 2023

Published: April 13, 2023
niche

upffer cells, monocytes, Trem2 macrophages, two subsets of conventional

y molecules’’ (Mreg_DCs).

an ± SEM; *p < 0.05 by one-way ANOVA with Dunnett’s multiple comparisons

enriched in disease models and nearly absent in healthy mice (red ellipses).

2, purple; Gpnmb, white; DAPI, blue. White scale bar, 200 mm; red scale bar,

https://doi.org/10.1016/j.xgen.2023.100301
https://doi.org/10.1016/j.xgen.2023.100301


Resource
ll

OPEN ACCESS
REFERENCES

1. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Je-

mal, A., and Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN

estimates of incidence and mortality worldwide for 36 cancers in 185

countries. CA. Cancer J. Clin. 71, 209–249. https://doi.org/10.3322/

caac.21660.

2. Moon, A.M., Singal, A.G., and Tapper, E.B. (2020). Contemporary epide-

miology of chronic liver disease and cirrhosis. Clin. Gastroenterol. Hepa-

tol. 18, 2650–2666. https://doi.org/10.1016/j.cgh.2019.07.060.

3. Rawla, P., Sunkara, T., Muralidharan, P., and Raj, J.P. (2018). Update in

global trends and aetiology of hepatocellular carcinoma. Contemp. Oncol.

22, 141–150. https://doi.org/10.5114/wo.2018.78941.

4. Ramachandran, P., Matchett, K.P., Dobie, R., Wilson-Kanamori, J.R., and

Henderson, N.C. (2020). Single-cell technologies in hepatology: new in-

sights into liver biology and disease pathogenesis. Nat. Rev. Gastroen-

terol. Hepatol. 17, 457–472. https://doi.org/10.1038/s41575-020-0304-x.

5. Halpern, K.B., Shenhav, R., Matcovitch-Natan, O., Toth, B., Lemze, D.,

Golan, M., Massasa, E.E., Baydatch, S., Landen, S., Moor, A.E., et al.

(2017). Single-cell spatial reconstruction reveals global division of labour

in the mammalian liver. Nature 542, 352–356. https://doi.org/10.1038/

nature21065.

6. Aizarani, N., Saviano, A., Sagar, Mailly, L., Durand, S., Herman, J.S., Pes-

saux, P., Baumert, T.F., and Grun, D. (2019). A human liver cell atlas re-

veals heterogeneity and epithelial progenitors. Nature 572, 199–204.

https://doi.org/10.1038/s41586-019-1373-2.

7. MacParland, S.A., Liu, J.C., Ma, X.Z., Innes, B.T., Bartczak, A.M., Gage,

B.K., Manuel, J., Khuu, N., Echeverri, J., Linares, I., et al. (2018). Single

cell RNA sequencing of human liver reveals distinct intrahepatic macro-

phage populations. Nat. Commun. 9, 4383. https://doi.org/10.1038/

s41467-018-06318-7.

8. Halpern, K.B., Shenhav, R., Massalha, H., Toth, B., Egozi, A., Massasa,

E.E., Medgalia, C., David, E., Giladi, A., Moor, A.E., et al. (2018). Paired-

cell sequencing enables spatial gene expressionmapping of liver endothe-

lial cells. Nat. Biotechnol. 36, 962–970. https://doi.org/10.1038/nbt.4231.

9. Xiong, X., Kuang, H., Ansari, S., Liu, T., Gong, J., Wang, S., Zhao, X.Y., Ji,

Y., Li, C., Guo, L., et al. (2019). Landscape of intercellular crosstalk in

healthy and NASH liver revealed by single-cell secretome gene analysis.

Mol. Cell 75, 644–660.e5. https://doi.org/10.1016/j.molcel.2019.07.028.

10. Dobie, R., Wilson-Kanamori, J.R., Henderson, B.E.P., Smith, J.R., Match-

ett, K.P., Portman, J.R., Wallenborg, K., Picelli, S., Zagorska, A., Pendem,

S.V., et al. (2019). Single-cell transcriptomics uncovers zonation of func-

tion in the mesenchyme during liver fibrosis. Cell Rep. 29, 1832–

1847.e8. https://doi.org/10.1016/j.celrep.2019.10.024.

11. Payen, V.L., Lavergne, A., Alevra Sarika, N., Colonval, M., Karim, L.,

Deckers, M., Najimi, M., Coppieters, W., Charloteaux, B., Sokal, E.M.,

and El Taghdouini, A. (2021). Single-cell RNA sequencing of human liver

reveals hepatic stellate cell heterogeneity. JHEP Rep. 3, 100278. https://

doi.org/10.1016/j.jhepr.2021.100278.

12. Ramachandran, P., Dobie, R., Wilson-Kanamori, J.R., Dora, E.F., Hender-

son, B.E.P., Luu, N.T., Portman, J.R., Matchett, K.P., Brice, M., Marwick,

J.A., et al. (2019). Resolving the fibrotic niche of human liver cirrhosis at

single-cell level. Nature 575, 512–518. https://doi.org/10.1038/s41586-

019-1631-3.

13. Sharma, A., Seow, J.J.W., Dutertre, C.A., Pai, R., Blériot, C., Mishra, A.,

Wong, R.M.M., Singh, G.S.N., Sudhagar, S., Khalilnezhad, S., et al.

(2020). Onco-fetal reprogramming of endothelial cells drives immunosup-

pressive macrophages in hepatocellular carcinoma. Cell 183, 377–

394.e21. https://doi.org/10.1016/j.cell.2020.08.040.

14. Planas-Paz, L., Sun, T., Pikiolek, M., Cochran, N.R., Bergling, S., Orsini, V.,

Yang, Z., Sigoillot, F., Jetzer, J., Syed, M., et al. (2019). YAP, but not

RSPO-LGR4/5, signaling in biliary epithelial cells promotes a ductular re-

action in response to liver injury. Cell Stem Cell 25, 39–53.e10. https://

doi.org/10.1016/j.stem.2019.04.005.
15. Pepe-Mooney, B.J., Dill, M.T., Alemany, A., Ordovas-Montanes, J., Mat-

sushita, Y., Rao, A., Sen, A., Miyazaki, M., Anakk, S., Dawson, P.A., et al.

(2019). Single-cell analysis of the liver epithelium reveals dynamic hetero-

geneity and an essential role for YAP in homeostasis and regeneration.

Cell Stem Cell 25, 23–38.e8. https://doi.org/10.1016/j.stem.2019.04.004.
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Rabbit anti-p21 Cell Signaling Technology Cat# 2947; RRID:AB_823586

Goat anti-HNF4a Santa Cruz Biotechnology Cat# sc-6556; RRID:AB_2117025

Rabbit anti-Ki-67 Cell Signaling Technology Cat# 9129; RRID:AB_2687446)
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Chemicals, peptides, and recombinant proteins
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10x Genomics Cat# PN-1000075
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Deposited data

Mouse snRNA-seq This study GEO: GSE200366

Human snRNA-seq Andrews et al.18 GEO: GSE185477

Human snRNA-seq Filliol et al.44 GEO: GSE174748

GEO: GSE212046

Human snRNA-seq Guilliams et al.43 GEO: GSE192742

Human scRNA-seq Payen et al.11 GEO: GSE158723

Mouse Bulk RNA-seq Xiong et al.9 GEO: GSE119340

Mouse Bulk RNA-seq Ben-Moshe et al.42 https://zenodo.org/record/

5172137#.Y8-68XbP2Po

Human Bulk RNA-seq Suppli et al.36 GEO: GSE126848

Human Bulk RNA-seq Hoang et al.39 GEO: GSE130970

Human Bulk RNA-seq Govaere et al.38 GEO: GSE135251

Human Bulk RNA-seq Jin et al.40 GEO: GSE105130

Human Bulk RNA-seq Fallowfield and Kendall37 https://steatosite.com/

Experimental models: Organisms/strains

Mouse: C57BL/6J Animal Resources

Centre, Murdoch,

Australia

N/A

Mouse:MUP-uPA Karin Lab N/A

Software and algorithms

Cell Ranger 10x Genomics https://support.10xgenomics.com/

single-cell-gene-expression/

software/downloads/3.1

dplyr CRAN https://cran.r-project.org/web/

packages/dplyr/index.html

tidyverse CRAN https://cran.r-project.org/web/

packages/tidyverse/index.html

ggplot2 CRAN https://cran.r-project.org/web/

packages/ggplot2/index.html

patchwork CRAN https://cran.r-project.org/web/

packages/patchwork/index.html
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cowplot CRAN https://cran.r-project.org/web/

packages/cowplot/index.html

RColorBrewer CRAN https://cran.r-project.org/web/

packages/RColorBrewer/index.html

Seurat Hao et al.73 https://www.rdocumentation.org/

packages/Seurat/versions/4.2.1

scCustomize Samuel Marsh https://samuel-marsh.github.io/

scCustomize/index.html

Nebulosa Alquicira-Hernandez

and Powell74
https://www.bioconductor.org/

packages/release/bioc/html/

Nebulosa.html

enrichR Jawaid75; Kuleshov et al.76 https://cran.r-project.org/web/

packages/enrichR/index.html

CIBERSORTx Newman et al.34 https://cibersortx.stanford.edu/index.php

inferCNV Tickle et al.45 https://github.com/broadinstitute/infercnv

bcl2fastq Illumina https://sapac.support.illumina.com/sequencing/

sequencing_software/bcl2fastq-conversion-

software.html

Batchelor Haghverdi et al.23 https://www.bioconductor.org/packages/release/

bioc/html/batchelor.html

FastQC Andrews, S https://www.bioinformatics.babraham.ac.uk/

projects/fastqc/

TrimGalore! Felix Krueger https://www.bioinformatics.babraham.ac.uk/

projects/trim_galore/

STAR Dobin et al.77 https://github.com/alexdobin/STAR

RSEM Li and Dewey78 https://deweylab.github.io/RSEM/README.html

limma Ritchie et al. 79 https://bioconductor.org/packages/release/

bioc/html/limma.html

DESeq2 Love et al.80 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

ichorCNA Adalsteinsson et al.32 https://github.com/broadinstitute/ichorCNA

HMM Copy Utils Daniel Lai https://github.com/shahcompbio/hmmcopy_utils

Image Lab Bio-Rad Laboratories https://www.bio-rad.com/en-au/product/

image-lab-software?ID=KRE6P5E8Z

Zen Blue Edition Carl Zeiss Microscopy GmbH https://www.zeiss.com/microscopy/en/

products/software/zeiss-zen.html

GraphPad Prism 8 GraphPad https://www.graphpad.com/scientific-software/prism/
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Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Janina E. E.

Tirnitz-Parker (n.tirnitz-parker@curtin.edu.au).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The complete mouse snRNA-seq atlas can be accessed as a Cell Browser output at http://premalignantliver.

s3-website-ap-southeast-2.amazonaws.com. Raw sequencing data files are available at Gene Expression Omnibus (GEO) un-

der accession GSE200366. Fully processed mouse and human snRNA-seq data and supplemental files associated with ORA,

GSEA, CIBERSORTx, and inferCNV analyses are available at Mendeley Data at (https://doi.org/10.17632/w7yh4yjvbw.2). Mi-

croscopy data reported in this paper will be shared by the lead contact upon request.

d This paper does not report original code.
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d Any additional information required to reanalyze the data reported in this work is available from the lead contact (J.E.E.T.-P.)

upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse models
Six-week-old male C57BL/6J mice (Animal Resources Centre, Murdoch, Australia) were housed in individually ventilated cages and

kept on 12-hour light/dark cycles at the Curtin University Animal Facility with local animal ethics committee approval (ARE2021-2 and

ARE2020-18). Micewere randomly grouped into three experimental groups (healthy, CDE and TAA). Healthy animals received normal

chow and drinking water ad libitum; CDE animals received a choline-deficient diet (MP Biomedicals, NSW, Australia) with drinking

water that contained 0.15% DL-ethionine (Sigma-Aldrich); and TAA mice received normal chow with water that contained

300 mg/L of TAA (Sigma-Aldrich) as previously described (Kohn-Gaone et al., 2016a). Animals were sacrificed and liver tissue

and serum harvested at several timepoints ranging from 3 days up to 32 weeks after the start of experimental protocols.

MUP-uPAmice were originally generated by E. Sandgren at School of Veterinary Medicine, University ofWisconsin-Madison in the

Karin laboratory (Nakagawa et al., 2014).MUP-uPA animals were bred and housed at the Biological Testing Facility (Garvan Institute

of Medical Research, Sydney, Australia) and the Murine Disease Modelling Facility (Monash University, Parkville, Australia) in a

pathogen-free facility under controlled environmental conditions and exposed to 12-hour light/dark cycles.MUP-uPAmouse exper-

iments were approved by the Garvan/St Vincent’s Animal Ethics Committee (AEC) and the Monash Institute of Pharmaceutical

Sciences Ethics Committee (MIPS AEC). Experiments started when mice were six weeks of age. All mice were maintained in individ-

ually ventilated cages, with weekly bedding changes and fed a high-fat diet (HFD - 36% of total energy from fat; SF03-002, Specialty

Feeds, WA, Australia) for 40 weeks, until sacrifice and liver tissue harvest for tumor presence assessment. A liver biopsy was per-

formed at 24 weeks. For this, mice were anaesthetized with 4% isoflurane and buprenorphine, 0.1 mg/kg, followed by a small trans-

versal incision through the skin andmuscle layers to uncover the liver. A sterile cotton tip and forceps were used to expose the lowest

liver lobe and a small wedge of liver excised and replaced with gel-foam to stop bleeding. The liver biopsy was then snap-frozen in

liquid nitrogen for later RNA extraction. The liver was replaced into the abdominal cavity and the muscle layer closed with a contin-

uous absorbable suture. The skin was stapled closed and local analgesia with bupivacaine 0.1 mg/kg applied to the suture site. Skin

clips were removed 5-6 days after surgery.

All animal experimentation was conducted in accordance with the National Health and Medical Research Council (NHMRC) of

Australia Guidelines for Animal Experimentation.

Human samples
Approval to access archival, de-identified liver biopsy material was obtained from the Human Research Ethics Committee of the

South Metropolitan Health Authority, Perth, Western Australia (HREC 13/59). Liver biopsies were acquired between 1998 and

2009. For study inclusion, subjects must have undergone a liver biopsy for clinical standard-of-care assessment of liver disease,

not for the diagnosis of HCC, at least two years before the earliest recorded suspicion of HCC. The cohort included seven subjects

with chronic hepatitis C infection who developed HCC 3-12 years after acquisition of the biopsy (this group was termed the HCC

group). At the time of the original biopsy, the HCC group had no clinical or histological evidence of tumor presence. The HCC-free

group was a randomly selected group of 27 subjects with chronic hepatitis C virus infection who did not develop HCC during the

follow-up of 6-16 years after the original biopsy and were matched for fibrosis stage. All patients presented with advanced hepatic

fibrosis or cirrhosis (METAVIR scores F3 and F4). Patient characteristics including gender, age at liver biopsy and follow-up period are

shown in Table S8.

METHOD DETAILS

Nucleus isolation
Hepatic nuclei were isolated from flash-frozen liver chunks from healthy, CDE- and TAA-treated mice at the 3-wk timepoint. Briefly,

tissue samples were cut into pieces of approximately 25 mg and immediately homogenized using a Kimble Dounce tissue grinder

(Sigma-Aldrich, D8938) by performing 15 strokes with pestle A in 2 ml of ice-cold nucleus lysis buffer (10 mM Tris-HCl, 10 mM

NaCl, 3 mM MgCl2, and 0.1% IGEPAL� CA-630, pH 7.4). Then, another 2 ml of nucleus lysis buffer were added to each sample

and lysis proceeded on ice for 10 min followed by straining the lysates through 40 mm cell strainers (Falcon, Corning). Lysates

were centrifuged at 500 g for 5 min at 4�C and resuspended in 4 ml of nucleus wash buffer (PBS supplemented with 1% BSA and

0.2U/ml RNasin� Plus Ribonuclease Inhibitor (Promega, N2615). Following another round of centrifugation, nuclei were resuspended

in 700 ml of nucleus wash buffer, stained with 4’,6-diamidine-2’-phenylindole dihydrochloride (DAPI) at 0.1 mg/ml and propidium io-

dide (PI) at 2.5 mg/ml. Nucleus preparations were strained through 70 mm cell strainers prior to fluorescence-activated cell sorting

(FACS) with a two-laser configuration (488 nm80mWand 640 nm50mW) BDFACSJazzTM stream-in-air cell sorter (BDBiosciences),

equippedwith a 100 mmnozzle operating at a sheath pressure of 27 psi. Machine calibration was performed by flow cytometry facility

staff before each sort using SpheroTM 8-peak rainbow calibration beads (BioLegend) to achieve optimal stream alignment, laser
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alignment and target mean fluorescence intensities for each detector. The drop delay was determined by setting a value that resulted

in total side-stream deflection of Accudrop Beads (BD Biosciences) sorted through a 640 nm 5 mW laser that bisected center and

side streams. Nuclei were identified through an initial FSC-H/SSC-H gate, followed by the discrimination of single events exhibiting

proportional FSC-W/FSC-H profiles. Within single events, nuclei were identified as PI-positive events. Two peaks of PI-positive

events were visualized corresponding to 2n and 4n nuclei; both peaks were pooled together for sorting and downstream 10x Geno-

mics analysis to maintain hepatic cell representation unaltered. 50,000 PI-positive events were sorted per sample, then post-sort

nucleus concentration and quality were checked using a fluorescence microscope and hemocytometer. A representative profile

of nuclei preparations was acquired using a FACS LSR Fortessa flow cytometer (BD Biosciences), highlighting 2n and 4n nuclei using

DAPI fluorescence (Figure S1A).

Single nucleus RNA library preparation and sequencing
For the construction of snRNA-seq libraries, 10x Genomics Chromium Single Cell 3’v3 Reagent Kits were used according to the

manufacturer’s instructions. 10,000 freshly sorted nuclei were loaded onto a 10x Genomics Chromium Single Cell 3ʹ v3 chip B and

processed immediately in a 10x Chromium controller. Specifically, we utilized 19 PCR cycles for cDNA amplification. Sequencing

of libraries was performed as described in.19 Briefly, libraries were quantified with qPCR using the NEBnext Library Quant Kit for Illu-

mina and fragment size assessed with TapeStation D1000 kit (Agilent). Libraries were pooled in equimolar concentration and

sequenced using an Illumina NovaSeq 6000 and S2 flow cells (100 cycle kit) with a read one length of 28 cycles, and a read two length

of 94 cycles.

SnRNA-seq data processing and analysis
BCL files were demultiplexed and converted into FASTQ using bcl2fastq utility of Illumina BaseSpace Sequence Hub. FASTQ files

were processed using Cell Ranger 3.0.2. Both intronic and exonic readswere counted towards gene expression using a custom pre--

mRNA reference built as described in (https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/3.0/

advanced/references#premrna) from mm10-2.1.0 Cell Ranger reference. Raw gene-barcode matrices from Cell Ranger output

were used for downstream processing. Cell Ranger outputs were read into individual Seurat R package v4 objects73 using the func-

tions Read10x, then CreateSeuratObject. For each sample independently, quality control filtering was done based on the number of

features (nGene) and the percentage of mitochondrial RNA. Only barcodes with >500 and <3000 genes and with <5%mitochondrial

genes were maintained. Seurat objects corresponding to individual samples were merged into one combined object, then data

were normalized, scaled, and the top 2000 variable features identified using the functions NormalizeData, ScaleData and

FindVariableFeatures, respectively. Next, we implemented a manual supervised approach to remove low quality and doublet barc-

odes. The approach was based on successive rounds of clustering, identification and removal of clusters corresponding to low qual-

ity and doublet nuclei. Low quality clusters likely corresponded to empty droplets that were contaminated with ambient RNA. These

were characterized by presenting a low average number of features and expression of highly expressed cell type-specific genes from

multiple cell types. Doublets were identified and removed based on high expression of canonical cell type-specific genes from two

cell types; these clusters also presented an average number of features above themean of other clusters in the dataset. The standard

Seurat workflow recommends linear dimensional reduction by principal component analysis (PCA), followed by clustering and non-

linear dimensional reduction (tSNE and UMAP). When this approach was utilized, clusters were driven by treatment group instead of

cell types (Figure S1C). Thus, we implemented Batchelor,23 a batch correction approach based on mutual nearest neighbor (MNN),

then passed the top 25 components of the MNN output to the FindNeighbors, RunTSNE and RunUMAP functions and calculated the

Louvain clusters using the FindClusters function with a resolution of 0.05. This approach resulted in clusters driven by cell type that

were contributed by barcodes originating from all treatment groups (Figure S1D). Using the above approach, we obtained a com-

bined dataset with a total of 40,748 nuclei from n=9mice (three per treatment group) and 28,692 genes detected. Differential expres-

sion analysis was conducted using the default Wilcoxon Rank Sum test with the FindAllMarkers function retaining only those genes

expressed in at least 25% of the cells in a given cluster and a log-fold change of at least 0.25 compared to all remaining cells. Nine

clusters were obtained and annotated based on cell type-specific marker expression. Individual clusters corresponding to hepato-

cytes, mesenchymal, endothelial, biliary epithelial and myeloid lineages were subset in separate objects for re-clustering. Each of

these subsets were reanalyzed in isolation similarly to above, however using the FindClusters function with a resolution between

1 and 2.5. Specifically, for the daHep cluster of hepatocytes, we ran the FindMarkers function with a slightly less stringent filter, re-

taining genes expressed in at least 20% of the cluster cells in order to capture a larger gene set for downstream analyses.

For human snRNA-seq data (Figure 5), Cell Ranger outputs were downloaded from the following Gene Expression Omnibus data-

sets GSE185477, GSE174748, GSE192742 and GSE212046. A similar pipeline as described above for mouse snRNA-seq data

processing was implemented; however, QC filtering was based on number of unique molecular identifiers (UMIs) > 500

and < 15,000. Sample metadata can be found in Table S9.

Visualizations were generated with Seurat, Nebulosa, scCustomize and ggplo2 R packages.73,74,81

Fully processed and annotated mouse and human snRNA-seq data were deposited at https://doi.org/10.17632/w7yh4yjvbw.2.
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Over-representation and gene set enrichment analysis
Over-representation (ORA) andgene set enrichment analyses (GSEA) formouse snRNA-seq resultswere conducted onWebGestalt29

by uploading differentially expressed gene lists to the web server. Method and functional database for analyses were selected, and

advancedparameters set to default. Enriched categorieswere first rankedbased on false discover rate (FDR) and then the top10 to 12

most significant categories selected for plotting. ORA for human daHep DEGswas conducted using enrichR R package by searching

theWikiPathwaysdatabase.75,76CompleteWebGestalt set of results fromeachanalysis, includingmappedgenes, category sizesand

overlap, enrichment ratios and statistics are provided as supplementary files at https://doi.org/10.17632/w7yh4yjvbw.2.

InferCNV analysis of human hepatocyte subsets
First, to reduce computation requirements, barcodes in the human hepatocyte snRNA-seq dataset were downsampled to 10,000

nuclei. These nuclei were then read into an inferCNV object using the function CreateInfercnvObject (https://github.com/

broadinstitute/infercnv) and normal hepatocytes were set as reference. Then, analysis was performed using the function infercnv::run

with cutoff set to 0.05 and results appended to the Seurat object for plotting using the function infercnv::add_to_seurat. To obtain the

fraction of the genome containing CNVs for each barcode in the downsampled dataset, chromosomic HMM predictions from the

inferCNV output were summed in each barcode, accounting for each chromosome’s percentage contribution to total genome size.

Bulk RNA-seq deconvolution
Publicly available bulk RNA-seq datasets as well as bulk RNA-seq data generated in this study were deconvoluted to estimate cell

type frequencies using CIBERSORTx.34 Analysis was conducted in the CIBERSORTx webserver (https://cibersortx.stanford.edu/

index.php) as detailed in.82 Briefly, annotated single cell reference matrix files were generated for the hepatocyte and myeloid

subsets in our snRNA-Seq dataset by using the function GetAssayData in Seurat v4, then the outputs exported into tab-delimited

tsv files. After uploading the single cell expression matrix files into the CIBERSORTx server, signature matrices were created using

the Create Signature Matrixmodule with all parameters set to default and minimal expression set to 0. Raw gene expression counts

from bulk RNA-Seq datasets were also uploaded to the CIBERSORTx server, then the Impute Cell Fractions module was utilized to

estimate cell type abundancies in individual samples from each dataset. The S-mode batch correction and Disable quantile normal-

ization options were checked, and Permutations for significance analysis set to 500. Gene names in human datasets were first con-

verted to mouse orthologues using the Ensembl Biomart tool (https://m.ensembl.org/biomart/martview) prior to upload. Expression

matrices for hepatocyte andmyeloid cell classes, as well as CIBERSORTx output files are provided as supplementary files at https://

doi.org/10.17632/w7yh4yjvbw.2.

Bulk RNA-seq analysis
Bulk RNA-Seq analysis of MUP-uPA mice was performed as previously described.83 RNA was extracted from snap-frozen liver

chunks using the NucleoSpin RNA kit (Macherey-Nagel, D€uren, Germany) and library preparations done using TruSeq Stranded

mRNA Library Prep Kit (Illumina), following the manufacturer’s guidelines and best practices. Libraries were assessed for quality

using an Agilent 2100 Bioanalyzer and the DNA 1000 Kit. Paired-end sequencing was performed on a HiSeq 2500 v4.0 system, re-

sulting fastq files quality controlled using FastQC, and adapters trimmed using TrimGalore! v0.4.0. Trimmed fastq files were aligned

to the reference genome (Mus_musculus.GRCm38.83) using the STAR aligner (v2.5.1)77 and gene expression levels estimated with

RSEM (v1.3.0).78 Downstream differential expression analysis was performed using limma.79 For analysis of high vs. low daHep in the

Steatosite dataset, all patient transcriptomes were first deconvoluted using CIBERSORTx to estimate daHep frequencies. Patients

were ranked into high (90th percentile) and low (10th percentile) daHep frequencies, then downstream differential expression analysis

performed using DESeq2.80

RNA in situ hybridization (RNAscope) assay
RNA in situ hybridization assays were performed using the RNAscope� Fluorescent Multiplex Reagent Kit v1 (ACD, Hayward, CA,

USA) according to the manufacturer’s instructions. Briefly, OCT-embedded frozen liver blocks were sectioned at 15 mm thickness,

followed by fixation with ice-cold 10% neutral buffered formalin (NBF) for 15 min at 4�C. Sections were dehydrated by incubating

in 50%, 70%, then twice 100% ethanol, sequentially for 5 min each at room temperature. Next, slides were air-dried for 5 min and

a hydrophobic barrier was drawn around the tissue with an ImmedgeTM hydrophobic barrier pen. RNAscope Protease IV was

added onto the tissue slide for 30 min at room temperature, followed by two washes in PBS. Then, RNAscope probes were added,

and slides placed in a HybEZTM Slide Rack and incubated for 2 h at 40�C in a HybEZTM Hybridization Oven. Probes used were

Anxa2 (Cat# 501011-C2), G6pc (Cat# 469041) and Gpnmb (Cat# 489511-C3) (ACD, Hayward, CA, USA). Slides were washed twice

with 1X Wash Buffer for 2 min at room temperature, then hybridized with amplification probes 1, 2, 3 and 4, sequentially, as in-

structed in the manufacture’s protocol. Sections were then mounted with Prolong Gold Antifade reagent with DAPI (Life Technol-

ogies, Victoria, Australia) and imaged in a AxioScan.Z1 slide scanner (Carl Zeiss Microscopy GmbH, M€unchen, Germany) using a

Plan Apochromat 20x/0.8 M27 objective lens with LED beamsplitter at 405 nm, 575 nm and 654 nm using a 425/30, 592/25 and

681/45 filter set. Images were processed using Zen Blue Edition v3.3 software (Carl Zeiss Microscopy GmbH, M€unchen,

Germany).
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Ultra-low-pass whole genome sequencing (LP-WGS)
RNAscope was performed as above on liver sections of TAA-treated mice at the 3- and 24-week timepoints by co-staining

for Anxa2 and G6pc without mounting. Slides were kept submerged in RNAscope 1X Wash Buffer at 4�C overnight. Sections

were scanned on a CellCelector (ALS, Jena, Germany). Using the CellCelector, the long edge of a 150 mm glass capillary was

utilized to mechanically scrape small tissue sectors from the slide which were aspirated and deposited in 1 ml of PBS in 0.2 ml

PCR tubes (Eppendorf, Hamburg, Germany). Scraped sectors were subjected to whole genome amplification using the Ampli1

WGA Kit (Silicon Biosystems) according to the manufacturer’s instructions. Following amplification, 400 bp sequencing libraries

were constructed using the Ampli1 Low-Pass Whole Genome Sequencing Kit for Ion Torrent (Silicon Biosystems) per the manu-

facturer’s instructions. Libraries were diluted to 50 pM, loaded into an Ion Chef for template preparation and loading into an

Ion 530 chip, and then sequenced for 525 flows on an Ion S5 (Thermo Fisher Scientific). Sequencing data were aligned and

indexed to mm10 mouse reference genome on Torrent Server (V 5.16, Thermo Fisher Scientific). Following alignment and indexing,

ichorCNA32 was used to assess chromosomal copy number alterations. The runIchorCNA.R script (https://github.com/

broadinstitute/ichorCNA) was modified, changing line 128 "seqinfo <- getSeqInfo(genomeBuild, genomeStyle)" to "seqinfo

<- NULL" to enable the use of a non-human genome. The mm10.fa reference was downloaded from Torrent Server, and a genome

reference mappability file and GC counts was created using HMM Copy Utils (https://github.com/shahcompbio/hmmcopy_utils).

Centromere locations for mm10 were downloaded from UCSC’s goldenpath. Next, .wig files were generated for normal, daHep

and tumor regions using readCounter in 1 Mb windows from HMM Copy Utils. Somatic copy number alterations were detected

with 1 Mb bins.

Immunohistochemistry and immunofluorescence
Immunohistochemistry in human liver biopsies was performed using formalin-fixed paraffin-embedded (FFPE) 4mm sections after

rehydration, according to standard protocols. Antigen retrieval was performed in a microwave for 10 min with EnVision low pH

target retrieval solution (Agilent). Immunofluorescence was performed in frozen OCT-embedded 7 mm mouse liver sections. Sec-

tions were fixed in ice-cold acetone-methanol fixative for 2 min, air-dried at room temperature for 1 h, then rehydrated with PBS

for 10 min. Blocking was performed using serum-free protein blocking solution (Agilent) for 1 h. Primary antibodies were diluted in

Dako REAL Antibody Diluent and incubated overnight at 4�C in a humidity chamber. Primary antibodies were rabbit anti-P21 (1:60,

Cell Signaling Technology, #2947), goat anti-HNF4a (1:500, Santa Cruz, sc-6556) and rabbit anti-Ki67 (1:400, Cell Signaling Tech-

nology, # #9129). For immunohistochemistry, signal was detected using universal LSAB2 kit and DAB (Agilent) followed by

counterstaining with Hematoxylin solution (Agilent). For immunofluorescence, secondary antibodies were donkey anti-rabbit Alexa

Fluor 594 and donkey anti-goat Alexa Fluor 488 (Thermo Fisher Scientific, Australia) diluted in Dako REAL Antibody Diluent and

incubated in the dark at room temperature for 1 h. Sections were then mounted with Prolong Gold Antifade reagent with DAPI (Life

Technologies) and imaged in a AxioScan.Z1 slide scanner (Carl Zeiss Microscopy GmbH) using a Plan Apochromat 20x/0.8 M27

objective lens with LED beamsplitter at 405 nm, 493 nm and 575 nm using a 425/30, 514/31 and 592/25 filter set. Images were

processed and quantified using Zen Blue Edition v3.3 software (Carl Zeiss Microscopy GmbH). The Image Analysis Module of

Zeiss Zen Blue v3.3 was used to identify and count brown and blue nuclei in P21 immunohistochemistry and HNF4a+/Ki67+ nuclei

in immunofluorescence images by applying a threshold-based binary mask to the entire area of whole slide scans.

Histology
Hematoxylin and eosin (H&E), Picrosirius Red and Oil Red O stainings were performed to evaluate liver pathology. H&E and Picrosir-

ius Red were performed in 4 mm tick FFPE and Oil Red O in 7 mm thick frozen liver sections. FFPE sections were dewaxed by incu-

bating for 2 mins each, with gentle agitation, three times in xylene, three times in 100% ethanol, once in 70% ethanol, and once in

50% ethanol. Then, sections were rehydrated in tap water for 10 min. H&E staining was performed in the Pathology Laboratory at

Fiona Stanley Hospital, Murdoch, Western Australia using an automated standard protocol. Picrosirius Red stain Kit (Polysciences

Inc., PA, USA) was used with a slight modification of the manufacturer’s instructions. Briefly, slides were immersed in phosphomo-

lybdic acid for 2 min, rinsed with reverse osmosis (RO) water, incubated in Picrosirius Red solution for 60 min, then immersed

in 0.01 N hydrochloride acid for 2 min. Sections were then dehydrated and mounted following standard protocols. For Oil Red O

staining, frozen sections were air-dried for 30 min, fixed in ice-cold 10% NBF for 5 min, rinsed with three changes of RO water,

and air-dried for 10 min. Sections were placed in 1, 2-propanediol (VWR Chemicals BDH Prolabo, Australia) for 5 min, then trans-

ferred into 0.5% Oil Red O (Sigma-Aldrich) in 1,2-propanediol solution and incubated for 8 min at 55�C. After an incubation in

85% 1,2-propanediol for 5 min, sections were washed twice in RO water, counterstained with hematoxylin, and mounted with

gelatin-based aqueous mounting media. Sections were imaged in a AxioScan.Z1 slide scanner (Carl Zeiss Microscopy GmbH) at

20X magnification and images processed using Zen Blue Edition v3.3 software (Carl Zeiss Microscopy GmbH).

Serum alanine aminotransferase (ALT) assay
ALT levels to estimate liver damage were determined in mouse serum samples using ALT/GPT Reagent (Thermo Fisher Scientific,

TR71121) according to the manufacturer’s instructions.
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Immunoblot analysis
Flash-frozen liver chunks were weighed and lysed with RIPA buffer (Astral Scientific, Australia) containing a protease and phospha-

tase inhibitors cocktail (Cell Signaling Technology) at a concentration of 10 ml of RIPA per mg of tissue. Total protein concentration

was determined by Pierce BCA protein assay kit (Thermo Fisher Scientific). After dilution in NuPAGE� LDS Sample Buffer (1X)

(Thermo Fisher Scientific), 30 mg of total protein extracts were separated by SDS-PAGE using BoltTM 4-12% Bis-Tris precast gels

and transferred onto nitrocellulose membranes. Membranes were stained with RevertTM Total Protein Stain (Li-Cor, 926-11010)

according to the manufacturer’s instructions, then blocked in 1X Tris-buffered saline (TBS) with 5% w/v non-fat dry milk for

60 min. Membranes were incubated overnight at 4�C with primary antibodies for GSTA1 (Abcam, ab180650) and ABCC4 (1:1000,

Cell Signaling Technology, #12857). SNAP i.d. quick immunoblot vacuum system (Millipore) was used for washing steps and second-

ary antibody incubations, which consisted of horseradish peroxidase-conjugated goat anti-rabbit IgG (Cell Signaling Technology,

#7074). Bands were developed using ClarityWestern ECL substrate (Bio-Rad Laboratories). Visualization and quantitative densitom-

etry analysis were performed with the Molecular Imager� Gel DocTM XR System v5.2.1 and Image Lab 6.0.1, respectively (Bio-Rad

Laboratories).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses run locally were performed using R version 4.2.0 or GraphPad Prism 8 software. Some statistics were run in the

web-based servers GEPIA2 and WebGestalt. Details of tests used, significance and sample size were provided in figure legends.

Appropriate hypothesis testing approaches were chosen based on the nature of the data and distribution of variables to be tested.

Variables were tested for normality using multiple normality tests, including Anderson-Darling test, D’Agostino and Pearson test,

Shapiro-Wilk test, and Kolmogorov-Smirnov test. Variables that passed normality tests were analyzedwith parametric tests and vari-

ables that did not pass normality tests were either analyzed with non-parametric counterparts or log-transformed to conform to

normality prior to testing with parametric tests. A p value of <0.05 was considered statistically significant.
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