
Review

Current and emerging biological therapy in
adult-onset Still’s disease

Yuning Ma1, Jianfen Meng1,2, Jinchao Jia1, Mengyan Wang1, Jialin Teng1,
Dehao Zhu1, Chengde Yang1 and Qiongyi Hu 1

Abstract

Adult-onset Still’s disease (AOSD) is a rare, but characteristic non-familial, multi-genic systemic auto-

inflammatory disorder, characterized by high spiking fever, salmon-like evanescent skin rash, polyarthri-

tis, sore throat, hyperferritinemia and leucocytosis. The hallmark of AOSD is a cytokine storm triggered

by dysregulation of inflammation. Nowadays, with advances in anti-cytokine biologic agents, the treat-

ment of AOSD is no longer limited to NSAIDs, glucocorticoids or conventional synthetic DMARDs. In

this review, we focussed on the roles of these cytokines in the pathogenesis of AOSD and summarized

the current and emerging biological therapy.
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Introduction

Adult-onset Still’s disease (AOSD) is a rare, non-familial,

multi-genic auto-inflammatory disorder with multisystem

involved. The incidence is estimated between 0.16 and 0.4/

100000 persons in different ethnic groups [1–3]. Patients

with AOSD often suffer from high spiking fever, salmon-like

evanescent skin rash, polyarthritis, sore throat, hyperferriti-

nemia and leucocytosis. More importantly, the mortality is

high due to severe life-threatening complications, including

macrophage activation syndrome (MAS) and fulminant

hepatitis [4,5]. In 1897, Sir George Still reported for the first

time 22 children whose symptoms were similar to systemic

onset of JIA (SOJIA) [6]. In 1971, Bywaters analysed 14

adult patients with similar clinical manifestations to SOJIA

and named this independent disease as AOSD [7]. Due to

heterogeneous clinical features and rarity of randomized

controlled studies of this disease, therapy is usually empiric-

al. Nowadays, rheumatologists still face a great challenge in

therapy of AOSD despite a large swathe of new drugs.

Herein, the most recent progress in the biological treatment

of AOSD is reviewed.

Pathogenesis

Based on the different clinical courses, AOSD can be

classified into three distinct patterns, including a mono-

cyclic course, a polycyclic course and a chronic course.

To better make a therapeutic strategy, AOSD phenotype

can be dichotomized in systemic form and chronic ar-

ticular form instead of these three patterns [5, 8,9]. The

hallmark of AOSD pathogenesis is cytokine storm, char-

acterized by excessive production of IL-1b, IL-18, IL-6,

IL-10, IFN-c, TNF and other cytokines [10]. No single

definition of cytokine storm in AOSD is widely accepted

nowadays; we define the cytokine storm in AOSD as a

persisting and chronic self-sustaining cytokine and cellu-

lar stimulation, of which the dominant cytokines can be

changed due to different clinical phenotypes. IL-1b, IL-

18, IFN-c, IL-4 and IL-10 are believed to be more
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associated with systemic form, whereas IL-6, TNF, IL-17

and IL-23 are more associated with chronic arthritic form

[11–13]. Secreted by hyperactivated neutrophils and mac-

rophages, these inflammatory mediators further activate

other immune cells (such as helper T (Th)1 and Th17

cells), leading to uncontrollable inflammatory cascade

[14–17]. There is accumulating evidence that infectious

triggers can initiate a complicated inflammatory cascade

in AOSD with certain genetic susceptibility (Fig. 1).

A cytokine storm

Inappropriate activation of the innate immune cells (mainly

macrophage and neutrophil) is recognized as the first line of

formation of cytokine storm in AOSD. Both pathogen-

associated molecular patterns (PAMPs) and damage-

associated molecular patterns (DAMPs), including S100 pro-

teins, soluble CD163, high mobility group box-1, advanced

glycation end products, macrophage inhibitory factor (MIF)

and neutrophil extracellular traps (NETs) can activate macro-

phages and neutrophils via specific Toll-like receptors

(TLRs), then NACHT, LRR and PYD domains-containing pro-

tein 3 (NLRP3) inflammasome are excessively activated [5,

18–21]. Thus, the activity of caspase-1 is upregulated, lead-

ing to forming bioactive IL-1b and IL-18 [20]. After that, in-

nate and adaptive immune cells are intensely activated,

leading to exuberant production of pro-inflammatory cyto-

kines induced by IL-1b and IL-18, including IL-6, IL-8, IL-17,

IFN-c, TNF, as well as IL-1b and IL-18 themselves, gush

forth and course on like a veritable cascade [14–17].

Other innate immune cells, natural killer (NK) cells, are

also found to play a role in the facilitation of inflamma-

tory cascade. Cytolytic function of NK cells plays a car-

dinal role in immune responses to destroy pathogens

and maintain lymphoid and myeloid immune homoeo-

stasis. Deficiency of cytotoxicity will lead to persistent

activation of lymphocytes and macrophages [22,23].

Though the cytolytic function of NK cells is decreased in

AOSD, the ability to secret IFN-c is enhanced due to

upregulation of IL-12 and IL-15 receptors on NK cells,

and then IFN-c acts as an accomplice of the macro-

phage activation [24–26].

FIG. 1 Pathogenesis and targeted therapy of adult-onset Still’s disease

Genetics and triggers including PAMPs and DAMPs start the initiation of inflammation in AOSD. NLPR3 inflamma-

somes in macrophages are activated. Then NLRP3 inflammasomes facilitate caspase-1 activation, leading to the for-

mation bioactive IL-1b and IL-18. After that, several pro-inflammatory cytokines induced by IL-1b and IL-18, including

IL-6, IL-8, IL-17 and tumour necrosis factor TNF, as well as IL-1b and IL-18 themselves, generate the burst of a cyto-

kine storm. Besides, neutrophils, Th17 cells, Th1 cells and NK cells also contribute to the burst of the cytokine storm.

Targeted therapy for the treatment of AOSD is at IL-1b or IL-1R with anakinra, canakinumab or rilonacept, at IL-18

with tadekinig alfa, at IL-6R with tocilizumab or sarilumab, and at TNF-a or TNFR2 with infliximab, adalimumab or eta-

nercept, at CD20 with rituximab, at CD80/CD86 with abacept, at JAK with tofacitinib or baricitinib or at GM-CSF or

GM-CSFR with mavrilimumab or golimumab. AOSD: adult-onset Still’s disease; DAMP: damage-associated molecular

pattern; NK: natural killer; NLRP3: NACHT, LRR and PYD domains-containing protein 3; PAMP: pathogen-associated

molecular pattern.
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T cells also contribute to the pathogenesis of AOSD.

Increased levels of circulating Th1 cells and Th17 cells,

and decreased levels of circulating CD4þCD25high Treg

cells were found in active AOSD patients [27–29]. Th1

cells produce IFN-c, regulating the recruitment of mac-

rophages, and Th17 cells produce IL-17, which may in-

duce the production of IL-6 and IL-8 [30,31].

Aside from amplified inflammatory cascade, it’s

hypothesized that deficient resolution of inflammation

also plays a role in the cytokine storm of AOSD. The typ-

ical anti-inflammatory cytokines IL-10 and IL-37 are

increased in active AOSD, which may partly quell the ab-

normal inflammation response [32,33]. IL-10 may inhibit

the activation of inflammasome in macrophage, suppress

neutrophil migration and control the production of IL-1b,

IL-6 and TNF [34–36]. IL-37 may inhibit the production of

IL-1b, IL-6 and TNF, just like IL-10 [33, 37]. Moreover, IL-

10 and IL-37 can induce the polarization of anti-

inflammatory macrophages, which help with resolving the

exaggerated inflammatory response [38,39].

Genetic background

No evidence has shown that family aggregation has

appeared in the occurrence of AOSD, but previous stud-

ies have revealed an association between genetic sus-

ceptibility and gene polymorphisms of the HLA,

including HLA-Bw35, -B17, -B18, -B35, -DR2, -DR4, -

DR5, -DQ1, DRw6, -DRB1 and -DQB1 [40–44]. A

genome-wide association study was conducted for the

first time to systematically screen genetic factors influ-

encing susceptibility to AOSD in a Chinese multicentre

cohort, consisting of 264 AOSD cases and 2420 con-

trols. This finding identified that both HLA class I and II

regions are susceptibility loci for AOSD [45].

Polymorphisms in the non-HLA regions encoding IL-6,

IL-18, serum amyloid A, MIF and MEFV also contribute

to the susceptibility of AOSD patients [46–50]. Recently,

functional leucocyte immunoglobulin-like receptor A3

(LILRA3) has been reported to be a novel genetic sus-

ceptibility factor for AOSD [51].

Infectious triggers

There is a popular belief that infection trigger is the main

driver of inflammatory response of AOSD. The outbreak

of COVID-19, a novel virus-induced severe respiratory

disease with high mortality rate has brought attention to

the pathogenetic role of viral infections as inflammatory

triggers in cytokine storm. The similarities of clinical

manifestations between viral infections and AOSD –

such as acute-onset, high spiking fever and sore throat

– have often been remarked on [10]. Unlike the classical

cytokine storm with systemic inflammatory response,

the cytokine storm triggered by SARS-CoV-2 infection

leads to organ-specific dysfunction, characterized by

intra-pulmonary macrophage activation and thrombotic

lesions formation. The cytokine panel between severe

COVID-19 and active AOSD is different, as our previous

study reports [10, 52]. Some studies have found the

presence of anti-viral antibody and viral DNA in active

AOSD patients. Besides viral infections, bacterial infec-

tions have been reported to be accompanied by the

onset of AOSD, due to the potential to initiate inflamma-

tory response by TLRs activation [5, 19, 53–58].

Treatment

In the past, the treatment of AOSD was a tough task with

limited therapeutic options to nonsteroidal anti-

inflammatory drugs (NSAIDs), glucocorticoids, or conven-

tional synthetic disease-modifying anti-rheumatic drugs

(csDMARDs). Glucocorticoids remain the mainstay treat-

ment of AOSD, and DMARDs are often required in some

patients with poor response to glucocorticoids. Around

17–32% of AOSD patients are resistant to both first-line

corticosteroids and second-line DMARDs in some obser-

vational studies, and this group of patients are uniformly

called ‘refractory AOSDs’ [59–63]. Nowadays, with the

success of targeted biological treatments in rheumatic

diseases, the management of AOSD has been revolution-

ized, especially in the refractory forms (Fig. 2).

IL-1b and its inhibitors

IL-1b is the most frequently studied and well character-

ized member of the IL-1 superfamily. Secreted mostly

by myeloid cells, IL-1b activates granulocytes, Th17

cells and innate lymphoid cells (ILC)3, leading to tissue

inflammation and injury. The pathogenic role of IL-1b
has been involved in rheumatic and auto-inflammatory

diseases, including RA, gout, cryopyrin-associated peri-

odic syndromes, SOJIA and AOSD [64,65].

Activation of IL-1b is mediated by inflammasome-

dependent means in monocytes/macrophages and

inflammasome-independent means in neutrophils. After en-

gagement of pattern recognition receptors (PRRs), tran-

scription of IL1B mRNA is induced and translated to a

biologically inert precursor, pro-IL-1b. Pro-IL-1b is stored in

the cytosol of activated monocytes/macrophages and gains

its biological activity after the cleavage of its amino-terminal

pro-peptide with caspase-1 depending on the assembly of

inflammasome complexes [65]. Then, mature IL-1b will be

released into extracellular space and bind to IL-1 receptor 1

(IL-1R1) on target cells. The intracellular signalling molecules

of IL-1b will be provoked, including myeloid differentiation

factor 88, IL-1 receptor-associated kinase 4 (IRAK4) and

TNF receptor-associated factor 6, resulting in activation of

nuclear factor jB (NF-jB) and p38, as well as c-Jun-N-ter-

minal kinase, extracellular signal-regulated kinase and

mitogen-activated protein kinases [65].

This signalling activated by IL-1b will lead to the pro-

duction of various pro-inflammatory mediators, including

IL-6, IL-8, TNF and many chemokines, followed by the

attraction of macrophages, neutrophils and ILC3 cap-

able of secreting IL-17 and IL-22. Besides, IL-1b is also

a key cytokine to promote adaptive immunity. IL-1b sup-

ports the differentiation of CD4þ T cells into pro-

Yuning Ma et al.

3988 https://academic.oup.com/rheumatology



inflammatory T cell populations, including Th1 and Th17

cells, and it can induce expansion and differentiation of

antigen-specific CD8þ T cells as well [66,67].

As a potent pro-inflammatory mediator, IL-1b plays a

fundamental role in the initiation and amplification of

cytokine storm in AOSD. Increased levels of NLRP3

inflammasome, caspase-1 and IL-1b have been found in

peripheral blood mononuclear cells (PBMCs) of AOSD

patients, and NLRP3 inhibitor decreased the protein

expressions of NLRP3 and IL-1b in PBMCs from AOSD

patients [20]. As the role of IL-1b in the pathogenesis of

AOSD is gradually unveiled, therapeutic inhibition of IL-

1b has already become an established target in AOSD.

Three IL-1-targeted biologics (anakinra, canakinumab

and rilonacept) have been approved so far [68].

Anakinra

Anakinra, a recombinant human IL-1 receptor antagon-

ist, reduces the activity of IL-1a and IL-1b by competing

their IL-1 receptor [69]. Anakinra have been proven ef-

fective and well-tolerated in some case series (Table 1).

Based on data from clinical trials, anakinra has been

approved for a licence extension to treat both SOJIA

and AOSD by the European Medicines Agency.

The only randomized study was carried out among 22

patients with refractory AOSD aiming to evaluate the ef-

ficacy of anakinra vs DMARDs. More patients with ana-

kinra treatment achieved remission than patients with

DMARDs treatment [71]. A large number of retrospective

observational studies have confirmed the efficacy of

anakinra in treating AOSD. The largest retrospective ob-

servational study of IL-1 inhibitors in AOSD patients in

Italy reported that anakinra was effective in improving all

clinical and serological manifestations, and Pouchot’s

score was found to be significantly reduced at all time

points [78]. A meta-analysis including nine clinical stud-

ies suggested the potential of anakinra to reduce and

even stop concomitant glucocorticoids without AOSD

flares [79]. However, a randomized, multicentre, phase

FIG. 2 Therapeutic algorithm for adult-onset Still’s disease

CS: corticosteroids; CSA: ciclosporin A.
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ö
m

D
,

2
0
1
2

[7
1
]

1
2

A
N

K
1
0
0

m
g

/
d

a
y

(1
2
)

R
e
m

is
s
io

n
a
t
8

w
e
e
k
s
:
7

(5
8
.3

%
)

R
e
m

is
s
io

n
a
t
2
4

w
e
e
k
s:

6
(5

0
%

)
D

is
c
o

n
ti
n
u
e
d

c
o

rt
ic

o
s
te

ro
id

s
u
s
e
:
3

(2
5
%

)

<
1
2

(1
2
)

W
o

rs
e
n
in

g
o

f
A

O
S

D
(la

c
k

o
f
e
ffi

c
a
c
y
)
(1

)
O

p
e
n

ra
n
d

o
m

iz
e
d

m
u
lt
i-

c
e
n
tr

e
s
tu

d
y

L
e
q

u
e
rr

é
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study for evaluating the efficacy and safety of anakinra

in treating AOSD has been terminated due to a lack of

included patients (ClinicalTrials.gov Identifier:

NCT03265132). Overall, anakinra seems to be not only

effective in improving clinical and laboratory manifesta-

tions, but also likely to reduce the dosage of

glucocorticoids.

Canakinumab

Canakinumab is a human monoclonal antibody against

IL-1b [80]. Although only a handful of clinical trials with

canakinumab were conducted on AOSD patients, cana-

kinumab was approved by the EMA and Food and Drug

Administration (FDA) for both SOJIA and AOSD in 2016

on the basis of the concept of the Still’s disease con-

tinuum [81]. A randomized, phase II study recruited 35

AOSD patients. Although the difference between the

canakinumab group and the placebo group was not

statistically significant due to the lower number of

included patients, a higher response rate was observed

in the canakinumab group [82]. The clinical symptoms

and laboratory findings can be improved after the use of

canakinumab in some trials (Table 1) [19, 78].

Rilonacept

Rilonacept (also known as IL-1 Trap), an IL-1a and b in-

hibitor, has an ability to ameliorate clinic manifestations

and achieve a prolonged remission in refractory AOSD

patients [83,84]. Experience with rilonacept has shown

its effectiveness to both arthritic and systemic symp-

toms of refractory AOSD patients [84–86]. In a 24-month

follow-up study, five refractory AOSD patients were

treated with rilonacept; three of the five patients had

meaningful clinical improvements [87]. Rilonacept is

mostly used in patients with unsatisfied response to

anakinra. Moreover, rilonacept is well-tolerated and has

demonstrated efficacy in a randomized, placebo-

controlled study of active SOJIA [88]. However, rilona-

cept hasn’t been licenced for use in AOSD either in

Europe or the USA. In summary, treatment with IL-1

inhibitors leads to complete or partial remission in most

AOSD patients.

IL-6 and its inhibitors

Although IL-6 is mostly regarded as a pro-inflammatory

cytokine, it is considered to be pleiotropic due to its

protective and regenerative functions on the grounds of

different patterns of signalling [89]. IL-6 can be pro-

duced by neutrophils and monocytes/macrophages. The

membrane-bound mIL-6Ra binds IL-6, and mIL-6Ra
interacts with gp130 and thereby provokes signal trans-

duction through the signal transducer and activator of

transcription 3 (STAT3) and NF-jB pathway [90,91]. IL-6

can feed back in the control of neutrophil and monocyte

responses. It is also a survival factor for lymphocytes

[89,90, 92]. Moreover, IL-6 can drive polarization of

CD4þ T cells towards Th17 cells [93,94]. It can lead to

some pro-inflammatory effects, including typical mani-

festations of active AOSD, such as fever, arthritis, skin

rash and elevated CRP. Not surprisingly, IL-6 level is

significantly increased in both serum and cutaneous

lesions of active AOSD patients. The clinical application

experience of two IL-6 inhibitors (tocilizumab and sarilu-

mab) have been achieved in AOSD.

Tocilizumab

Tocilizumab is a humanized anti-IL-6 receptor antibody

that binds to both membrane-bound and soluble form of

the IL-6 receptor. Iwamoto et al. used tocilizumab for

the first time in a refractory AOSD patients in 2002 with

promising results [95]. Many previous reports have sug-

gested that tocilizumab is effective in treating AOSD of

both systemic and chronic articular forms (Table 2) [96,

98,99, 101–110]. In a pilot study in China, a combination

of tocilizumab with DMARDs or glucocorticoids can par-

tially improve clinical and laboratory manifestations of

refractory AOSD patients and contribute to withdrawal

of glucocorticoids [110]. The first randomized, phase III

study included 27 patients with AOSD refractory to glu-

cocorticoids in Japan. An improvement of clinical mani-

festation and a remarkable steroid-sparing effect was

observed in most patients. Serious adverse events in

the tocilizumab group included infections, exacerbation

of AOSD, drug eruption, anaphylactic shock and aseptic

necrosis in the hips. The study suggests that tocilizumab

is effective and well-tolerated [102]. Moreover, some

case reports have indicated that tocilizumab is effective

for the treatment of AOSD-related systemic complica-

tions, including MAS, pulmonary arterial hypertension

and thrombotic thrombocytopenic purpura [111–114].

Sarilumab

Sarilumab is an IL-6 receptor inhibitor. To our know-

ledge, the use of sarilumab in AOSD has been reported

only once. The case report observed that sarilumab

ameliorated clinical manifestations and spared corticoid

in a 25-year-old male patient with cortico-dependent

AOSD [115]. A post hoc analysis of the ASCERTAIN

EXTEND (NCT01146652) trial suggests that switching

tocilizumab non-responders to sarilumab may have fa-

vourable efficacy outcomes by investigating outcomes

for tocilizumab non-responders completing ASCERTAIN

(NCT01768572) who switched to sarilumab [116].

TNF-a and its inhibitors

TNF-a, a member of the TNF superfamily, is mainly pro-

duced by activated macrophages and lymphocytes

[117]. After binding to two receptors, TNFRI and TNFRII,

it can thereby lead to a variety of cellular and molecular

behaviours and events [118]. TNF-a is a two-edged

sword with the ability of promoting and inhibiting inflam-

matory response. On one hand, TNF-a can regulate
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leucocyte activation, maturation, cytokine and chemo-

kine release, production of reactive oxygen species, and

facilitate inflammatory response. On the other, it’s an

immunosuppressive mediator capable of inhibiting the

development of autoimmune diseases and tumorigen-

esis [119]. TNF-a level is significantly elevated in serum

and synovial membranes of patients with either systemic

or chronic AOSD [43, 120]. Two classes of TNF-a block-

ers have a place currently in managing rheumatic dis-

ease: the monoclonal anti-TNF antibodies, such as

infliximab and adalimumab, and the soluble TNF recep-

tor, etanercept. The anti-TNF agents, infliximab, adali-

mumab and etanercept have been approved by the FDA

for the treatment of RA. TNF inhibitors were the first

bDMARDs in treating SOJIA, but the experience is lim-

ited in treating AOSD.

In 2001, infliximab was first used in three patients with

chronic and active AOSD. It showed a prolonged effi-

cacy in the treatment of relapse of refractory AOSD

patients [121]. Remarkable improvements of clinical

manifestations and normalization of laboratory indices

were observed in all six AOSD patients with severe dis-

ease activity after infliximab treatment [122]. In an ob-

servational study of 20 AOSD patients, ten patients

were treated with infliximab, five treated with etanercept

and five with both drugs. With treatment with infliximab,

four patients achieved complete remission and nine

achieved partial remission [123].

In an open-label study, 12 AOSD patients with active

arthritis refractory to DMARDs were enrolled to receive

etanercept and showed improvement in arthritis without

adverse event [124]. However, in an observational study

of 20 cases, most patients achieved partial response (7/

10) with etanercept treatment, while only one patient

achieved complete remission (1/10) [123]. The safety

and efficacy of adalimumab in AOSD remains uncertain,

because it is limited by small sample sizes and lack of

relevant trials [125,126].

IL-18 and its inhibitors

Similar to IL-1b, IL-18 is a pro-inflammatory cytokine

belonging to the IL-1 superfamily, and it is secreted by

monocytes, macrophages and dendritic cells [100]. After

cleavage of the precursor (pro-IL-18) by caspase-1, IL-

18 become an active form [65]. The mature IL-18 binds

to the IL-18 receptor a (IL-18Ra) and IL-18 receptor b
(IL-18Rb) and leads to activation of downstream pro-

inflammatory signals in effector cells. IL-18 activity is

tightly regulated by natural IL-18 binding protein (IL-

18BP), which precludes IL-18 from binding to its cog-

nate receptors [127].

The circulating level of unbound IL-18 (free IL-18) is

elevated in patients with AOSD during the active and

inactive phase of AOSD compared with other inflam-

matory situations, such as RA, SLE, AS and PsA. A

higher level of free IL-18 is found in patients with ac-

tive disease compared with inactive disease, indicating

that IL-18 is a potential biomarker for evaluation

disease activity of AOSD [128,129]. An extremely high

level of IL-18 is also found in AOSD patients with MAS

[130]. Due to its critical role in AOSD pathogenesis, IL-

18 inhibitor, tadekinig alfa, has emerged as a potential

therapeutic strategy for AOSD, and may have a par-

ticular indication in the forms of AOSD associated with

MAS.

Tadekinig alfa

Tadekinig alfa is a recombinant human IL-18 binding pro-

tein. Recently, a phase II, open-label clinical trial recruited

23 refractory AOSD patients with fever or CRP levels

�10mg/l. Patients received 80 mg (n¼ 10) or 160mg

(n¼13) tadekinig alfa three times per week. One patient

receiving 160mg tadekinig alfa dropped out due to an in-

jection site reaction. One (toxic optic neuropathy) of three

serious adverse events was possibly related to the use of

tadekinig alfa. At week 3, the response rate of either group

is 50%, and all non-responders receiving 80mg tadekinig

alfa were up-titrated to 160 mg and still achieved no clinical

response, indicating a favourable efficacy of 80mg tadeki-

nig alfa in AOSD patients [131]. Two AOSD patients were

reported to have achieved favourable outcomes after tade-

kinig alfa treatment. The levels of free IL-18 in serum

dropped to almost undetectable levels within 2h after injec-

tion and continued low up to 48h [132].

Janus kinase inhibitors

The cytoplasmic domain of both type I and type II cytokine

receptors binds to the Janus kinases (JAKs), including

TYK2, JAK1, JAK2 and JAK3 [133]. After binding their

receptors, several cytokines lead to further induction of in-

flammatory gene expression via JAK pathways, which amp-

lify the loop of inflammatory signalling. Due to their

prominent effects on cytokine production and modulation of

immune response, JAK inhibitors have been a promising

therapeutic strategy in the treatment of inflammatory dis-

eases such as RA, SLE and SpA [134]. JAK inhibitors im-

pede the effect of IL-6, IL-10, IFN-c, IFN-a and GM-CSF,

which are strongly implicated in the AOSD pathogenesis.

Tofacitinib

Tofacitinib (formerly CP-690550), a JAK1/JAK3 inhibitor,

is renowned for the first time as the first JAK inhibitor

tested in the clinic [135]. In 2019, tofacitinib was tested

in 14 patients with refractory AOSD for the first time

from a single centre in China. Seven AOSD patients

achieved complete remission with decrement of con-

comitant glucocorticoids, six patients achieved partial

remission and one relapsed when the prednisone dose

was reduced. It suggests that tofacitinib may be an al-

ternative in treating AOSD, particularly in those with

arthritic form [136].

Yuning Ma et al.

3994 https://academic.oup.com/rheumatology



Baricitinib

Baracitinib (formerly designated INCB028050), a JAK1/

JAK2 inhibitor, has shown its good efficacy and toler-

ability in active refractory RA [137]. The efficiency of bar-

icitinib has been reported in a corticosteroid-dependent

refractory AOSD patient for the first time in 2019 [138].

In conclusion, JAK inhibitors appear to be effective in

AOSD due to cytokine inhibition, thus warranting further

clinical trials. Nowadays, more selective JAK inhibitors

are developed and will provide more therapeutic options

for the treatment of AOSD.

Other biologic agents

Abatacept

Abatacept is a CTLA4 Ig fusion protein that blocks the

interaction between CD28 and CD80/86, thus down-

regulates T-cell activation, a potential pathogenetic role

in AOSD. Furthermore, abatacept reduces the produc-

tion of pro-inflammatory cytokines, including IFN-c and

IL-17 [139]. Some case reports have shown a successful

use of abatacept in treating refractory AOSD, who were

unresponsive to traditional DMARDs, anakinra and adali-

mumab [140,141]. Disruption CD28 co-stimulatory sig-

nalling by abatacept has specific immune-suppressive

effect on T cells, making it a promising therapeutic strat-

egy for AOSD, but more practices are still needed

[140,141].

Rituximab

The role of B cells in AOSD remains to be determined.

It’s possible that treatment targeting B cells might inhibit

pro-inflammatory cytokine release mediated by T cell.

Rituximab, a chimeric anti-CD20 monoclonal antibody

can inhibit the activation of T cells and the production of

pro-inflammatory cytokines [142]. It has been approved

for treatment of RA. However, only a few case reports

have highlighted the potential efficacy of rituximab in re-

fractory AOSD patients [85, 143,144].

Future treatment perspectives

GM-CSF can up-regulate neutrophil properties, including

survival, adhesion and trafficking, oxidative burst,

phagocytosis, and formation of NETs [145–149]. As

increased neutrophil count and NETs are key character-

istics of AOSD [150,151], it will be of interest to see if

treatment targeting GM-CSF or its receptor will be a

new, highly effective way. GM-CSF binds to GM-CSF

receptor a (GM-CSFRa), and then macrophage and neu-

trophil are enhanced in number and function in inflam-

matory lesions, resulting in excessive secretion of pro-

inflammatory cytokines, including IL-1b, IL-6, IL-12, IL-

23 and TNF [152–154]. There is increasing evidence that

GM-CSF deletion/depletion has indicated encouraging

efficacy and safety profiles in many inflammatory and

autoimmune diseases, including RA, axial spondylarthri-

tis and plaque psoriasis.

Mavrilimumab (formerly known as CAM-3001) is an

IgG4 mAb that blocks GM-CSFRa directly, and otilimab

(formerly known as MOR-103) is an IgG1 mAb that binds

to GM-CSF and prevents its interaction with GM-

CSFRa. In a phase Ib/IIa clinical trial, otilimab has pre-

liminary evidence of clinical efficacy, and has a good

safety and tolerability in patients with active RA [155]. In

2 phase IIb studies and an open-label extension study

with a total of 442 RA patients, 65% of patients

achieved remission with Disease Activity Score in 28

joints using the CRP level (DAS28-CRP) <3.2, demon-

strating the sustained efficacy of mavrilimumab [156]. In

a 24-week, randomized phase IIb study, mavrilimumab

and golimumab (anti-TNF) were demonstrated to be

well-tolerated and had similar efficacy in RA patients

who had an inadequate response to other previous

treatments [157]. In a prospective cohort study in

patients with severe COVID-19 pneumonia and hyperin-

flammation, mavrilimumab improved clinical outcomes in

resolution of inflammation and mortality [158].

Mavrilimumab quenches downstream production of myr-

iad pro-inflammatory mediators mediated by granulo-

cytes and macrophages, indicating a potential efficacy

in the treatment of AOSD.

Conclusions

A cytokine storm evoked mainly by macrophages and

neutrophils is the hallmark of AOSD pathogenesis. As

the role of cytokines in the pathogenesis of AOSD is

gradually unveiled, new windows are opened for effect-

ive experimental treatments, especially for refractory

cases. IL-1-targeted biologics and IL-6-targeted biolog-

ics are the major therapeutic agents in treating refrac-

tory AOSD now. New biologics against IL-18, TNF-a and

GM-CSF and JAK inhibitors may become promising

therapeutic options for AOSD. Because the incidence of

AOSD is quite low, large collaborative projects are

required to confirm the efficiency and safety of emerging

biologics.
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55 Escudero FJ, Len O, Falcó V et al. Rubella infection in
adult onset Still’s disease. Ann Rheum Dis 2000;59:493.

56 van de Putte LB, Wouters JM. Adult-onset Still’s

disease. Bailliere’s Clin Rheumatol 1991;5:263–75.

57 Agnihotri A, Ruff A, Gotterer L et al. Adult onset Still’s

disease associated with infection and hemophagocytic
lymphohistiocytosis. Case Rep Med 2016;2016:

2071815.

58 Kádár J, Petrovicz E. Adult-onset Still’s disease. Best
Pract Res Clin Rheumatol 2004;18:663–76.

59 Kalyoncu U, Solmaz D, Emmungil H et al. Response
rate of initial conventional treatments, disease course,

and related factors of patients with adult-onset Still’s
disease: data from a large multicenter cohort. J
Autoimmun 2016;69:59–63.

60 Cavalli G, Franchini S, Aiello P et al. Efficacy and safety

of biological agents in adult-onset Still’s disease.
Scand J Rheumatol 2015;44:309–14.

61 Franchini S, Dagna L, Salvo F et al. Efficacy of

traditional and biologic agents in different clinical
phenotypes of adult-onset Still’s disease. Arthritis
Rheum 2010;62:2530–5.

62 Sfriso P, Priori R, Valesini G et al. Adult-onset Still’s

disease: an Italian multicentre retrospective
observational study of manifestations and treatments in
245 patients. Clin Rheumatol 2016;35:1683–9.

63 Liu Z, Lv X, Tang G. Clinical features and prognosis of

adult-onset Still’s disease: 75 cases from China. Int J
Clin Exp Med 2015;8:16634–9.

64 Garlanda C, Dinarello CA, Mantovani A. The interleukin-
1 family: back to the future. Immunity 2013;39:1003–18.

65 Schett G, Dayer J-M, Manger B. Interleukin-1 function

and role in rheumatic disease. Nat Rev Rheumatol
2016;12:14–24.

66 Ben-Sasson SZ, Wang K, Cohen J, Paul WE. IL-1b
strikingly enhances antigen-driven CD4 and CD8 T-cell
responses. Cold Spring Harbor Symp Quant Biol 2013;
78:117–24.

Current and emerging biological therapy in adult-onset Still’s disease

https://academic.oup.com/rheumatology 3997



67 Santarlasci V, Cosmi L, Maggi L, Liotta F, Annunziato
F. IL-1 and T Helper Immune Responses. Front

Immunol 2013;4:182.

68 Zhou S, Qiao J, Bai J et al. Biological therapy of

traditional therapy-resistant adult-onset Still’s disease:

an evidence-based review. Ther Clin Risk Manag 2018;

14:167–71.

69 Yoo DH. Biologics for the treatment of adult-onset still’s

disease. Expert Opinion Biol Ther 2019;19:1173–90.

70 Naumann L, Feist E, Natusch A et al. IL1-receptor
antagonist anakinra provides long-lasting efficacy in the

treatment of refractory adult-onset Still’s disease. Ann

Rheum Dis 2010;69:466–7.

71 Nordström D, Knight A, Luukkainen R et al. Beneficial

effect of interleukin 1 inhibition with anakinra in adult-

onset Still’s disease. An open, randomized, multicenter

study. J Rheumatol 2012;39:2008–11.
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