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Diabetes is a syndrome characterized by hyperglycemia with or without insulin resistance.
Its etiology is attributed to the combined action of genes, environment and immune cells.
Myeloid-derived suppressor cell (MDSC) is a heterogeneous population of immature cells
with immunosuppressive ability. In recent years, different studies have debated the
quantity, activity changes and roles of MDSC in the diabetic microenvironment.
However, the emerging roles of MDSC have not been fully documented with regard to
their interactions with diabetes. Here, the manifestations of MDSC and their subsets are
reviewed with regard to the incidence of diabetes and diabetic complications. The possible
drugs targeting MDSC are discussed with regard to their potential of treating diabetes. We
believe that understanding MDSC will offer opportunities to explain pathological
characteristics of different diabetes. MDSC also will be used for personalized
immunotherapy of diabetes.
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INTRODUCTION

Diabetes has widespread incidence in almost every country and age group, which severely affects the
worldwide economy and is regarded as an epidemic. According to the International Diabetes
Federation, approximately 436 million patients worldwide had diabetes in 2019 and it was predicted
that this number will exceed 700 million by 2045 (Saeedi et al., 2019). Diabetes is mainly divided into
type 1 diabetes (T1D) and type 2 diabetes (T2D). T1D accounts for less than 10% of the total
incidence of the disease, while T2D accounts for more than 90% of diabetic cases (Association, 2013).
The immune system plays an essential role in the pathogenesis of diabetes: the insufficient central
tolerance of thymus, too little variable number of tandem repeats (VNTR), quantitative and quality
defects in Tregs lead to CD8+T cells attacking islet β cells, while inflammatory cytokines and
recruitment of macrophages, B cells and CD4+T cells assist in attacking islet β cells, resulting in
insufficient insulin secretion (Donath et al., 2019; Chen et al., 2021; Petrelli et al., 2021; Roep et al.,
2021). At present, the drugs available on the market are mainly oral hypoglycemic drugs and insulin
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infusion, but there is no treatment for the basic pathological
process that leads to ß-cell failure and destruction.

Althoughmyeloid-derived suppressor cells (MDSC) have been
reported to implicate in the incidence of diabetes, it has not been
fully explored with regard to their interactions with diabetes
(Whitfield-Larry et al., 2014; Wang T. et al., 2018; Hassan et al.,
2018; Grohová et al., 2020). Herein, we reviewed the quantity,
subtypes and activity ofMDSC in the diabetic microenvironment.
We also introduced the drugs targeting MDSC to delay the
progression of this disease.

MYELOID-DERIVED SUPPRESSOR CELLS

MDSC have been defined for more than 30 years since the initial
description of cancer patients (Buessow et al., 1984; Young et al.,
1987; Seung and Schreiber, 1995). Immature bone marrow cells
undergo activation, proliferation and differentiation into MDSC.
MDSC are defined based on the CD11b+Gr-1+ phenotype in
mice, whereas monocytic MDSC (M-MDSC) are defined as
CD11b+Ly6ChiLy6G– cells with low side scatter.
Polymorphonuclear MDSC (PMN-MDSC) that is granulocytic
MDSC (G-MDSC), can be defined as CD11b+Ly6CloLy6G+ cells
as determined by the high side scatter in the flow cytometry plot
(Peranzoni et al., 2010; Damuzzo et al., 2015; Zhao et al., 2016). In
view of the fact that the term PMN-MDSC is more capable of
distinguishing from steady-state neutrophils (Bronte et al., 2016),
we use the term PMN-MDSC in the following text. The markers
on the surface of human MDSC are complicated. At present,
human MDSC are defined by the expression of the common
myeloid markers CD33 or CD11b and the lack of the marker of
mature myeloid cells, such as HLA-DR, which is CD11b+/
CD33+HLADR−. According to the molecular markers used,
which are specific to the cluster, M-MDSC are defined as
CD11b+/CD33+ HLA-DR-CD14+/CD15−/CD66b− and PMN-
MDSC as CD11b+/CD33+HLA-DR-CD14−/CD15+/CD66b+

(Gabrilovich and Srinivas, 2009; Zhao et al., 2016). In
addition, early-stage MDSC (e-MDSC) lack molecular markers
of any specific subtype, which are defined as CD11b+Gr-1−F4/
80−MHCII−in mice (Zhang W. et al., 2018) and HLA-
DR–CD33+Lin–(Lin: CD15, CD14, CD3, CD56, and CD19) in
humans (Bronte et al., 2016). The latter is a newly defined type of
MDSC, which is different from the other two subtypes.

The definition of MDSC depends on specific molecular
markers and on their immunosuppressive ability. In particular,
given that PMN-MDSC and neutrophils, M-MDSC and
monocytes have the same source and differentiation pathway,
they are almost indistinguishable in phenotype. In human
peripheral blood, gradient centrifugation using
1.077 gl−1density can help isolate neutrophils and PMN-MDSC
(Zhou et al., 2018). However, this method often leads to
miscalculation due to the rise of activated neutrophils to low-
density fraction and the preservation of specimens for too long
and frozen damage. Specific surface markers of PMN-MDSC are
still being studied. Mouse PMN-MDSC expressed higher levels of
CD115 and CD244 than neutrophils (Youn et al., 2012), human
PMN-MDSC expressed lectin type oxidized LDL receptor 1

(LOX-1) (Condamine et al., 2016). Although mouse M-MDSC
also expressed F4/80, M-MDSC can still be isolated from
macrophages and dendritic cells by detection of low levels of
both MHC class II and the dendritic cell marker CD11c. Human
M-MDSC expressed higher S100A8/A9 and lower HLA-DR
(Bronte et al., 2016; Kwak et al., 2020).

The specific tests that can verify the inhibitory ability ofMDSC
on T cells have become the gold standard. In mouse tests, the
immunosuppressive ability was determined by measuring T-cell
proliferation or inhibition of interferon (IFN)-γ production
following MDSC culture with antigen-specific and antigen-
nonspecific T cells. In human tests, the validation was divided
into three groups as follows: Following the addition of candidate
MDSC population, the detection of T cell proliferation or IFN-γ
production was performed; following removal of the MDSC
population, the measurement of T cell proliferation was
performed and following allotransplantation, the measurement
of T cell proliferation or IFN-γ production was performed
(Bronte et al., 2016). During the process of assessing the
immune ability, M-MDSC exhibited the highest
immunosuppressive function, while PMN-MDSC had the
weakest (Zhao et al., 2016).

MDSC play different roles in various pathological processes by
direct cell contact and secretion of immunosuppressive factors
during various pathological processes, including tumor
progression, infection and autoimmune diseases. MDSC are
prominent in immunosuppression, inflammation, and
angiogenesis, which are also the characteristic features of
diabetes. However, their role in diabetes has not been fully
explored.

NUMBER OF MDSC IN DIABETES

MDSC are immature bone marrow cells in healthy
individuals that account for 0.5–1% of peripheral blood
HLA-DR- cells (Whitfield-Larry et al., 2014; Hassan et al.,
2018). Recent studies have demonstrated that the total
numbers of MDSC increased in T1D and T2D subjects
(summarized in Table 1).

In T1D, the non-obese diabetic (NOD) mouse model and STZ
mouse model are commonly used in basic experiments (Busineni
et al., 2015; Chen et al., 2018). Compared with prediabetic
(10–14 week old) NOD mice, newly diabetic NOD mice had
an MDSC (mainly M-MDSC) expansion in bone marrow,
peripheral blood and secondary lymphoid organs (Whitfield-
Larry et al., 2014), while MDSC reduced in pancreatic islets,
which was similar to Fu’s research (Fu et al., 2012) that indicated a
negative correlation between MDSC in the islets and the
progression of diabetes. The decrease of MDSC in the islets
may be one of the reasons for the failure to salvage islet
inflammation. After STZ injection, the number of MDSC in
the peripheral blood increased significantly from day 3 and
continued to increase to day 24, after which it remained stable
at approximately twice of the normal control group (Venneri
et al., 2015). Afterward, in the fourth week, the proportion of
MDSC in the peripheral blood experienced the change from low
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TABLE 1 | Quantity changes of MDSC and subsets of MDSC in the environment of diabetes.

MDSC Subtypes Reference

Type 1
diabetes

NOD mice Expanded in peripheral blood and
secondary lymphoid organ

M-MDSC increased significantly Whitfield-Larry et al.
(2014)

NOD mice Increased in bone marrow and peripheral
blood

— Yin et al. (2010)

NOD mice Decreased in islets — Fu et al. (2012)
NOD mice — 12-week-old showed a decrease in

M-MDSC and an increase in PMN-MDSC
compared to 4-week-old before the onset

Qi et al. (2020)

STZ mice Increased significantly on day three after
STZ injection and then remained higher
than in the control group until the last day
(day 24) of observation and remained
stable at about twice the percentage of the
control group in peripheral blood

— Venneri et al. (2015)

STZ mice Increased in peripheral blood (36.5 vs.
20.5%, P � 0.07)

— Hsieh et al. (2018)

STZ mice Decrease at the fourth week in the bone
marrow

— Furman, (2015)

STZ mice The number of MDSC return to normal at
the sixth week

6 weeks after STZ-induced diabetes in
mice, PMN-MDSC accounted for a large
proportion in bone marrow, but the G/M
ratio decreased, although there was no
statistical significance

Kim et al. (2018)

STZ mice Increased in the spleen, bone marrow,
kidney, and PLN 3 weeks after STZ
treatment

— (Gao et al., 2013;
Hsieh et al., 2018)

STZ mice — The proportion of PMN-MDSC in bone
marrow slightly decreased while the
proportion of M-MDSC slightly increased,
with statistical differences

Li et al. (2021)

STZ mice — The ratio of M-MDSC decreased in PLNs
15 days after STZ treatment

Carlos et al. (2017)

T1D patients (aged 11–46 years), n � 23 vs.
healthy volunteers (aged 12–59 years),
n � 21

Significantly increased in the peripheral
blood of patients with T1D, and most of
them were M-MDSC

M-MDSC significant increased in the
spleen and peripheral blood but
decreased in pancreatic lymph nodes
(PLNS) 15 days after STZ treatment

Whitfield-Larry et al.
(2014)

T1D patients, n � 30 vs. non-diabetic
patients, n � 30

MDSC in nucleated cells increased by
0.72 ± 0.24 (non-diabetic patients) vs.
4.4 ± 2.07 (diabetic patients)

A slight decrease in the M-MDSC of
CD14+ cells (99.3 ± 0.3 vs. 96.5 ± 3.02)
and a significant increase in the PMN-
MDSC of CD14− cells (0.62 ± 0.33 vs.
3.98 ± 3.0) in peripheral blood

Hassan et al. (2018)

T1D patients, n � 65 vs. their high-risk
relatives (diabetes-related antibody
positive), n � 21 vs. healthy volunteers,
n � 24

The number of MDSC, especially the
subgroup M-MDSC, increased
significantly. M-MDSC in the group with
HbA1c >7.5% is significantly higher

— Grohová et al. (2020)

Type 2
diabetes

db/db mice MDSC increased in spleen cells (4.5 vs.
2.3%) and peripheral blood (23 vs. 11%)
(compared with that in the healthy control
group)

— Wang et al. (2018a)

ob/ob mice MDSC in bone marrow did not change.
The number of MDSC in the spleen, fat,
and liver of peripheral organs increased
significantly

— Xia et al. (2011)

ob/ob mice Bone marrow-derived MDSC produced
significantly less CFU G and significantly
more CFU M

— Mahdipour et al.
(2011)

T2D (30–55 years old), n � 24 vs. healthy
volunteers, n � 22

Increase in the proportion of MDSC in
peripheral blood

— Wang et al. (2018a)

T2D, n � 22 vs. no-diabetes patients,
n � 21

The median frequency of MDSC in
peripheral blood was 1.5 and 1%,
respectively, and the difference was
statistically significant

— Fernández-Ruiz et al.
(2019)

(Continued on following page)
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to high, which may be due to the differentiation of MDSC (Hsieh
et al., 2018). As for in the bone marrow, initially, the number of
MDSC appeared to decrease and subsequently (about 2 weeks
later) return to normal levels (Furman, 2015; Hsieh et al., 2018;
Kim et al., 2018). In addition, a significant increase was noted in
the number of MDSC in other organs. Increased number of
MDSC in the spleen, bone marrow, kidney and pancreatic lymph
nodes (PLN) was observed 3 weeks following STZ treatment (Gao
et al., 2013; Hsieh et al., 2018). PMN-MDSC accounted for a large
proportion of these cells in the bone marrow, whereas the PMN/
M ratio was decreased (Gao et al., 2013; Kim et al., 2018; Li et al.,
2021). In the PLN, the ratio of M-MDSC was decreased 15 days
following STZ treatment (Carlos et al., 2017). MDSC in the
peripheral blood of patients with T1D were also shown to be
significantly higher than those of normal healthy volunteers. In
an early study, MDSC (mainly M-MDSC) expansion was
documented in the peripheral blood of T1D patients
(Whitfield-Larry et al., 2014). Similar results were obtained in
the blood of patients with diabetic nephropathy (Hassan et al.,
2018). Also, it was noted that the frequency of M-MDSC in the
group with HbA1c >7.5% was significantly higher (Skyler, 2004).
However, a slight decrease in the M-MDSC and a significant
increase in the PMN-MDSC of CD14− were also indicated in the
peripheral blood of patients with T1D (Hassan et al., 2018).

In T2D, leptin-deficient ob/ob mice and leptin receptor-
deficient db/db mice can be used as the rodent model of
spontaneous type 2 diabetes (Wang et al., 2014; Al-Awar
et al., 2016; Todd, 2016). The frequency of MDSC in the
spleen and the peripheral blood of db/db mice increased
(Wang T. et al., 2018), and the proportion of MDSC in the
blood was positively correlated with the fast blood glucose value
in the ob/ob mouse model. Despite these findings, the proportion
of MDSC in the bone marrow did not change. The number of
MDSC in the spleen, fat and liver of peripheral organs
significantly increased in the T2D mouse models (Xia et al.,
2011). As for the T2D patients, MDSC exhibited a statistical
increase in peripheral blood samples, based on different clinical
sample sizes (Wang T. et al., 2018; Fernández-Ruiz et al., 2019;
Islam et al., 2020). Further evidence suggests that the absolute
number of M-MDSC was increased in the peripheral blood of
patients with T2D compared with that noted in obese normal
glucose volunteers (Friedrich et al., 2019).

Therefore, both in the animal model of diabetes and in the
blood samples of clinical diabetic patients, total MDSC cells

showed an increase, while the performance of the two subsets
of MDSC is not uniform, giving us a better understanding of the
diabetic pathological process.

THE RECRUITMENT OF MDSC IN THE
DEVELOPMENT OF DIABETES

The mechanism of MDSC aggregation in the diabetic
microenvironment has not been fully investigated with regard
to the induction of their recruitment. In the present study, we
summarized four categories of molecules that recruit MDSC
(Figure 1).

The Role of Hyperglycemia and Glycolysis
Products in MDSC Recruitment
Hyperglycemia and glycolysis products are the most prominent
characteristics of the diabetic microenvironment. In vitro
experiments showed that the number of MDSC derived from
the bone marrow of normal mice was significantly increased in an
environment containing high glucose (30M) (Li et al., 2021). In
vivo, central carbon metabolism and bioenergetic kinetic models
were used to confirm that high glycolysis is related to the
maturation of MDSC (Goffaux et al., 2017). In human triple-
negative breast cancer, upregulation of glycolysis also reduced the
apoptotic activity of MDSC via the reduction of the levels of
reactive oxygen species (ROS) produced by MDSC (Jian et al.,
2017). Moreover, the subgroup CD11b+Ly6GlowCD205+ of
PMN-MDSC was heavily dependent on glucose uptake (Fu
et al., 2021). High-flow and high-glucose glycolysis also lead to
the rapid accumulation of the glycolytic process products and the
TCA cycle products in the peripheral blood (Hui et al., 2017;
Guasch-Ferré et al., 2020; Soto-Heredero et al., 2020). A positive
correlation was noted between the glycolytic product lactic acid
and the incidence of diabetes in several epidemiological studies
(Crawford et al., 2010; Juraschek et al., 2013a; Juraschek et al.,
2013b). Exogenous lactic acid was shown to increase the
production of MDSC following stimulation by the granulocyte
colony-stimulating factor (G-CSF) and interleukin-6 (IL-6)
in vitro (Husain et al., 2013; Salminen et al., 2019). This in
turn stimulated the immunosuppressive properties of MDSC. In
addition, the glycolysis metabolite phosphoenolpyruvate (PEP),
which is an essential antioxidant, prevented excessive production

TABLE 1 | (Continued) Quantity changes of MDSC and subsets of MDSC in the environment of diabetes.

MDSC Subtypes Reference

T2D, n � 80 vs. healthy volunteers, n � 11 The proportion of MDSC in PBMC was
higher in T2D patients than in healthy
subjects (median, 6.7 vs. 2.5%); among
this study, PMN-MDSC accounted for
96% of MDSC

— Islam et al. (2020)

T2D, n � 19 vs. obese normal glucose
volunteers, n � 18

The number of M-MDSC increased in
peripheral blood (P � 0.048)

The number of M-MDSC in the peripheral
blood of obese T2D patients was higher
than that of obese non-T2D patients

Friedrich et al. (2019)

NOD mice, (non-obese diabetic mice); STZ mice, (streptozotocin-induced diabetic mice); PMN-MDSC (polymorphonuclear myeloid-derived suppressor cells); M-MDSC, (monocytes
myeloid-derived suppressor cells); T1D, (type 1 diabetes); T2D, (type 2 diabetes).
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of ROS, thus contributing to the survival of MDSC (Jian et al.,
2017). The advanced glycation end products (AGEs) are
produced by non-enzymatic reactions between proteins and
carbonyl compounds and are rapidly increased in
hyperglycemia. The receptor for advanced glycation end-
products (RAGE) is the receptor of AGEs (Prasad and Mishra,
2018). The expansion of MDSC mediated by the AGEs-RAGE
interaction was reported in both cancer and acute myocardial
infarction models (Yao et al., 2015; Huang et al., 2019). Therefore,
the interaction of AGEs-RAGE in MDSC may be one of the
reasons for the increase noted in the percentage of MDSC in the
peripheral blood in patients with diabetes and poor long-term
disease control.

The Role of Inflammatory Cytokines in
MDSC Recruitment
As an inflammatory microenvironment, diabetes is characterized
by 2-3-fold elevated concentrations of tumor necrosis factor
(TNF), IL-6 and C-reactive protein (CRP) in the peripheral
blood. Inflammatory cytokines are active recruitment factors
for MDSC. In T2D, blood glucose enhanced the expression of
IL-1β in islets ß cells (Maedler et al., 2002) and the increase of
low-density lipoprotein enhanced the expression of triggered IL-
1β gene expression via TLR4 engagement (Masters et al., 2010).
The signaling pathways, such as JNK and NF-kappa B, were also
involved in the development of insulin resistance (Matulewicz
and Karczewska-Kupczewska, 2016; Solinas and Becattini, 2017;
Bako et al., 2019). IL-1β is regulated by the IL-1RI/NF-κB
pathway and is a tumor-related factor leading to MDSC
amplification and migration (Cervantes-Villagrana et al., 2020;

Kuo et al., 2021). Previous studies showed a positive correlation
between IL-1β and MDSC frequency in 4T1 breast cancer, lung
cancer, advanced melanoma and other tumors (Bunt et al., 2006;
Shi et al., 2017; Cervantes-Villagrana et al., 2020). IL-1β
upregulates cyclooxygenase-2 (COX-2), which encodes
prostaglandins that mediate MDSC transmission. In addition,
the direct effect of IL-1β and its target gene products was assessed
on the expansion of the MDSC library. It was shown that IL-1β
further induced CC- chemokine ligand 2 (CCL2) (Guo et al.,
2016) to amplify MDSC indirectly in macrophages and
tumor cells.

Similarly, the increase in IL-6 levels in type 2 diabetes is mainly
caused due to the higher rate of obesity and the formation of the
inflammatory microenvironment (Pradhan et al., 2001; Rehman
et al., 2017; Landers-Ramos et al., 2019). In malignant melanoma,
squamous cell carcinoma (SCC), hepatocellular carcinoma
(HCC), ovarian and bladder cancers, the expression levels of
IL-6 were found to be positively correlated with the number of
MDSC (Meyer et al., 2011; Chen et al., 2014; Bjoern et al., 2016;
Lin et al., 2017; Wu et al., 2017; Xu et al., 2017; Yang et al., 2017;
Tsai et al., 2019). A previous study conducted in melanoma
demonstrated that IL-6 could upregulate the expression levels of
CCR5 in MDSC through the STAT pathway, thus promoting
their recruitment in the tumor microenvironment (Weber et al.,
2020). The IL-6 signal transduction pathway activated STAT3 in
MDSC in order to assist its immunosuppressive function,
including increased synthesis of Arg-1 to consume I-Arginine
in the microenvironment (Vasquez-Dunddel et al., 2013), which
in turn promoted the expression of NOX2 and increased the
concentration of ROS (Corzo et al., 2009; Chen et al., 2014) by
releasing higher levels of NO (Xu et al., 2017). In addition, IL-6

FIGURE 1 | Four categories of molecules that recruit MDSC: Hyperglycemia and glycolysis products; inflammatory cytokines: IL-1β, IL-6, TNF-α; CC- chemokine
ligand 2 (CCL2); estrogen, fatty acid synthase (FASN), and leptin.
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downregulated the MHC-II class of myeloid cells and accelerated
metastasis to more immature myeloid cells in tumors
(Beyranvand Nejad et al., 2021).

The pro-inflammatory cytokine TNF-α was involved in the
pathogenesis of diabetes by causing an increase in insulin
resistance and a significant elevation in insulin levels in the
diabetic microenvironment (Akash et al., 2018; Alzamil, 2020).
Other TNF family members also promoted MDSC survival and
increased MDSC aggregation by upregulating the expression
levels of the cellular FLICE-inhibitory protein (c-FLIP) and by
inhibiting caspase-8 activity (Zhao et al., 2012).

The increase in the expression levels of the classical
inflammatory markers, JNK and the IκB kinase ß (IKKβ)
played a role in promoting insulin resistance in the
pathogenesis of diabetes (Yuan et al., 2001; Hirosumi et al.,
2002; Cai et al., 2005). Moreover, these signaling pathways
were also the cause of MDSC dilatation in the bone marrow
(Flores et al., 2017; Guha et al., 2019). It is deduced that
inflammation is very likely to be the driving force for
promoting the survival of MDSC in the diabetic environment.

The Recruitment of CCL2 on MDSC
The recruitment of MDSC is often dominated by the
chemokine family members. For example, in cancer,
chemokine (C-C motif) ligand (CCL) 2 and its receptors,
chemokine (C-C motif) receptors (CCR) 2, 4, and 5 played
a crucial role in attracting M-MDSC (Zhang et al., 2010; Chang
et al., 2016; Korbecki et al., 2020; Gu et al., 2021). In
endometriosis, CXCL1, 2 and 5 were expressed in the lesion
site and the interaction of CXCR2 with MDSC facilitated the
induction of a large number of MDSC (Zhang T. et al., 2018).
Similarly, an elevated level of CCL2 was noted in plasma and
eye fluids of patients with diabetic retinopathy (Maedler et al.,
2002; Koleva-Georgieva et al., 2011; Koskela et al., 2013). We
have reason to assume that the increased expression levels of
CCL2 in the diabetic microenvironments may play a role in
recruiting MDSC.

The Role of Estrogen, Fatty Acid Synthase
and Leptin in MDSC Recruitment
In particular, patients with type 2 diabetes have a high rate of
obesity. Increased estrogen levels, fatty acid synthase (FASN) and
leptin in the metabolic environment of obese patients were
involved in the recruitment of MDSC. Obesity was associated
with increased estrogen production by converting androgens to
adipocytes through aromatase (Sasano et al., 2009). Estrogen is an
important growth factor that stimulates the production of
granulocytic monocytes in the bone marrow. Excessive
estrogen production could lead to hematopoietic dysfunction,
which in turn inhibited the production of mature dendritic cells
from the bone marrow (Carreras et al., 2008). It was believed that
excessive estrogen in obese individuals with type 2 diabetes might
be a factor in recruiting MDSC. FASN is the key to adipogenesis
in obesity (Berndt et al., 2007), which might induce MDSC
aggregation and M2 macrophage differentiation via activation
of the COX-2 pathway (Obermajer et al., 2011). The increased

secretion of leptin by the adipose tissue in type 2 diabetes was
shown to enhance the aggregation and immunosuppressive
ability of MDSC (Clements et al., 2018).

The significant increase in the MDSC recruitment factors in
the presence of the aforementioned diabetic microenvironment
seems to explain the increase in the percentage of MDSC in these
diabetic conditions. However, it is worth noting that complex
differences exist with regard to the specific microenvironment in
different diseases, and the response of the MDSC thus may differ
with regard to these recruitment factors. With the exception of
hyperglycemia, advanced glycolysis products, glycolysis and
leptin, no specific studies have examined the role of
chemokines in recruiting MDSC in the diabetic
microenvironment up to now.

THE INTERACTION OF MDSC WITH
INNATE IMMUNE CELLS

During the development of T1D, the classically activated
macrophages release the pro-inflammatory cytokines IL-1β, IL-
6, TNF-α, IFN-γ, IL-12, IL-17, and NO. It was reported that the
number of macrophages in draining lymph nodes and joints of
CIA mice was significantly decreased following treatment with
MDSC (Zhang et al., 2014), indicating MDSC and macrophages
may be converted to each other. Macrophages can be divided into
pro-inflammatory (M1) and anti-inflammatory (M2) type cells.
In obese subjects, Gr-1 cells induced the differentiation of
macrophages into insulin-sensitive cells, which were alternately
termed activated M2 macrophages (Xia et al., 2011).
Intraperitoneal injection of Brazilian propolis ethanol extract
(PEE) caused a direct stimulation of the transdifferentiation of
cultured M1 macrophages into MDSC (Kitamura et al., 2018).
The role of macrophages in diabetic wounds will be
discussed below.

Dendritic cells (DCs) are important innate immune cells and
professional antigen-presenting cells. During the pathogenesis of
diabetes, CD4+T cells induced DCs to effectively stimulate
CD8+T cells. The proportion of iNOS+ DCs in patients with
diabetes was significantly increased and these cells were usually
activated (Gajovic et al., 2018). As immature myeloid
immunosuppressive cells, MDSC has the potential to
differentiate into DCs. Tumor-derived factors redirected the
differentiation from immune-promoting DCs to tolerable
MDSC, which could be an immunological marker of cancer
(Rodríguez-Ubreva et al., 2017). Concomitantly,
myeloperoxidase-driven lipid peroxidation in PMN-MDSC
inhibited antigen cross-presentation of DCs (Ugolini et al.,
2020). M-MDSC directly targeted subsets of DCs and
produced NO in a NOS2-dependent manner to rapidly lyse
conventional and plasma cell-like DCs (cDC, pDC). This
process indirectly inhibited the effector T cell response
(Ribechini et al., 2019). Synovial fluid (SF) cells in arthritic
joints of PGIA mice had the characteristics of MDSC and
could inhibit the differentiation of DCs by reducing the
expression levels of MHCII and CD86 (Egelston et al., 2012).
The interference of MDSC on the antigen presentation function
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of DCs may be one of the key mechanisms to unravel the
immune-mediated development of diabetes.

THE MODULATION OF MDSC ON
ADAPTIVE IMMUNE CELLS IN DIABETES

The pathogenesis of T1D is based on the attack of CD4+ and
CD8+T cells on islet ß cells. The cells establish a connection that
triggers the release of perforin and granzyme B from cytolytic
granules inside the T cells. A hole is made in the cell to allow
granzyme B to enter the cytoplasm, release cleaved caspase-3 and
activate the apoptotic pathway (Pirot et al., 2008). CD4+T cells
assist CD8+T cells, B cells and DCs while secreting cytokines to
attack islet ß cells (Burrack et al., 2017). Recent studies showed
that CD4+T cells also directly attacked certain MHCII-positive ß
cells (Zhao et al., 2015). MDSC suppress CD4+ and CD8+T cells
by direct contact, consuming I-Arginine and releasing NO and
ROS. The inhibition of T cells was further confirmed to be Ag-
dependent andMHCII-restricted (Yin et al., 2010). Moreover, the
adoptive transfer of diabetic CD4+T cells and MDSC to NOD/
SCID mice significantly reduced the incidence of diabetes caused
by single-transferred CD4+T cells, further clarifying that MDSC
delayed diabetes by inhibiting T cells. However, the
immunosuppressive ability of MDSC in the diabetic
microenvironment could also shuttle between normal and
tumor environments. MDSC of mice with allogeneic breast
tumors had a more robust ability to inhibit T cell proliferation
and Treg cell expansion. Adoptive metastasis delayed the onset of
diabetes in NOD/SCID mice (Yin et al., 2010; Wang T. et al.,
2018).

The same finding was also confirmed in T1D patients. Bone
marrow mesenchymal stem cells from T1D patients inhibited
T cell proliferation in a contact-dependent manner, but their
immunosuppressive ability was enhanced by cytokine induction
in vitro (Whitfield-Larry et al., 2014). The anti-diabetic effect of
MDSC may be further enhanced by inducing cytokine expression
in patients with diabetes. Concomitantly, different subsets of
MDSC play different roles, which are similar to those noted in
the tumor and EAE microenvironments. In addition, it was
reported that M-MDSC were the specific cell group that
mainly exerted its immunosuppressive ability to T cells in the
T1D microenvironment (Whitfield-Larry et al., 2014). Although
their activity was weaker than that noted in tumors (M-MDSC:
T cells � 1:4), the M-MDSC effectively inhibited T cell
proliferation and decreased the expression levels of CD3-ζ
chain cytokines in T cells at a 1:1 ratio compared with TGF-β,
thus enhancing T cell tolerance (Grohová et al., 2020). Due to the
strong immunosuppressive ability of the MDSC on T cells, the
development of diabetes may proceed due to the reduced
immunosuppression.

The roles played by CD4+ and CD8+T cells are also noted in
T2D pathogenesis, while the increased levels of MDSC in the db/
db mice exhibited an immunosuppressive effect on CD4+T cells.
MDSC also releases IFN-γ and iNOS to inhibit the function of
CD8+T cells. It was shown that the increased accumulation of
MDSC enhanced insulin response, while depletion of MDSC

significantly reduced glucose tolerance and insulin sensitivity and
this process was related to the ability of MDSC to inhibit
inflammation (Xia et al., 2011). However, it is not clear
whether MDSC maintains its inhibitory properties in vivo. We
speculated that the frequency ofM-MDSC in the peripheral blood
might be too low to exert its inhibitory potential, or the immunity
cannot be entirely suppressed since the local microenvironment
affects MDSC.

B cells are the critical antigen-presenting cells of CD4+ and
CD8+T cells. Autoantibodies may not directly cause pathology
but aid in capturing restricted antigens and promote T cell
initiation by spreading the autoimmune response (Serreze
et al., 1998). The presence of B cells in islet lesions was
positively correlated with rapid ß cell destruction, early-onset
time and the development of more aggressive diseases (Morgan
et al., 2014; Wedgwood et al., 2016; Greenbaum and Lord, 2020).
If B cells could not secrete autoantibodies, the incidence and
penetrance of T1D would be significantly reduced (Wong et al.,
2004). The transfer of serum autoantibodies stimulated the
activation of CD4+T cells (Silva et al., 2011). Clinically,
patients with eliminated B cells due to treatment with anti-
CD20 (rituximab) reduced their need for exogenous insulin
for a long time period (Pescovitz et al., 2009). In the SLE
mouse model, PMN-MDSC induced the activation of IFN-I
signal transduction in B cells. MDSC treatment reduced
immunoglobulin production of autologous B cells in a dose-
dependent manner in mice with rheumatoid arthritis (Crook
et al., 2015). Previous studies onmouse AIDSmodels showed that
MDSC inhibited B cell responses by releasing reactive oxygen/
nitrogen species and TGF-β (Rastad and Green, 2016). During
mouse tumor progression, MDSC reduced IL-7 and STAT5
expression levels as well as the B cell response to suppress
B cell proliferation in an arginase-dependent manner that
required cell-to-cell contact in vitro (Wang Y. et al., 2018). In
contrast to these observations, human M-MDSC effectively
inhibited the proliferation and function of human B cells in a
non-contact manner via the release of NO, Arg1 and IDO in vitro
(Jaufmann et al., 2020). In an experiment in which anti-CD20
antibodies depleted B cells in NOD mice, MDSC amplified,
inhibited the function of CD4+ and CD8+T cells through cell-
to-cell contact and released IL-10 and NO, ultimately inhibiting
the development of type 1 diabetes in mice (Hu et al., 2012).

As an essential component of the peripheral immune
tolerance, Tregs stably express Foxp3, inhibit CD4+ and CD8+

T cells, and secrete IL-10 and TGF-β (La Cava, 2009; Mohr et al.,
2019). The change in the number of Tregs is controversial
following the development of diabetes. The number of Tregs
in the pancreatic lymph nodes of mice was abnormally increased
when the animals approached the onset of the disease, whereas
the ratio of Treg/Teff in the islets was decreased. This finding
could be attributed to a decrease in the number of Tregs or to
resistance induced by Treg cell-mediated inhibition (Tang et al.,
2008). Tregs produced more IL-10 in 8-week-old mice than 16-
week-old mice and delayed the pathogenesis of T1D induced by
adoptive transfer effector cells, indicating that the function of
Tregs decreases with age (Gregori et al., 2003). Similarly, Treg
defects were reported in T1D patients. Further studies
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demonstrated that in vitro expansion and re-infusion of Tregs
into diabetic NOD mice effectively reversed spontaneous and
adoptive metastasis of T1D (Tang et al., 2004). Clinically, the
in vitro expansion of Tregs and the subsequent reinfusion
resulted in the C-peptide being stable for more than 2 years as
determined in Phase I clinical trials (Bluestone et al., 2015).
MDSC were shown to promote the expansion of Tregs in the
tumor microenvironment (Li F. et al., 2018; Wu et al., 2019;
Sieminska and Baran, 2020; von Arx et al., 2020). CD115+ MDSC
(mainly M-MDSC) in the diabetic microenvironment expanded
Foxp3+ Tregs in a TGF-β dependent manner both in vivo and
in vitro (Wu et al., 2015; Zhao et al., 2016), whereas the expansion
of Tregs was Ag-dependent and MHCII-restricted (Yin et al.,
2010).

As the increase in the number of MDSC in the diabetic
environment, its immunosuppressive ability to T cells was lower
than that in the tumor environment (Gajovic et al., 2018). As an
autoimmune-mediated disease, the network of
immunosuppression between MDSC and the immune cells
may happen to inhibit the pathogenesis of diabetes. MDSC
exerts a certain degree of immunosuppressive ability in T1D,
while the ability to inhibit inflammation and
immunosuppression in T2D slows down the progression of
diabetes. Therefore, regulating the frequency and activity of
MDSC may become an expected method for the treatment of
diabetes.

MDSC IS A CANDIDATE TARGET FOR THE
TREATMENT OF DIABETES

Stem Cell Therapy
Stem cell therapy has been a research hotspot in recent years.
As a newly discovered subgroup of MDSC, f-MDSC are
CD33+IL-4R α+ fibrous cells differentiated by umbilical cord
blood progenitor cells cultured with FDA-approved cytokines
(rh-GM-CSF and rh-G-CSF). These cells are cultured for
4 days and display a fibroblast-like shape. They are also
characterized by cytoplasmic elongation, nuclear nucleoli,
phagocytic extension and high adhesion to plastic (Mazza
et al., 2014). F-MDSC have been shown to produce IDO
following their interaction with activated T cells in NOD/
SCID mice in order to promote Tregs differentiation and
reduce blood glucose to normal levels for therapeutic
purposes (Zoso et al., 2014). Human umbilical cord
mesenchymal stem cells (Huc-MSCs), which are widely
used in NOD mice, can inhibit the differentiation of MDSC
by secreting the soluble factors COX2/PGE2 and IFN-β and
enhance their inhibitory ability on immune cells so as to
achieve effective therapeutic effects against diabetes (Qi
et al., 2020). Based on the aforementioned findings, the
metastasis of MDSC, f-MDSC, or the transfer of Huc-MSCs
may possess the enhanced inhibitory ability on immunity and
demonstrate the therapeutic effect on diabetic mice (Yin et al.,
2010; Xia et al., 2011; Torbica et al., 2019; Ren et al., 2021).
MDSC-related stem cells also may be a promising treatment
for diabetes.

Anti-Gr-1 Antibody
The use of antibodies against the molecular markers of MDSC
was initially intended to deplete the MDSC of the subject. A one-
time intravenous injection of anti-Gr-1 only temporarily reduced
MDSC in the body, followed by a long-term increase in Gr1+

CD11b+cells, which was similar to the findings noted in the
tumor microenvironment (Ma et al., 2012). When the anti-Gr-1
antibody (0.25 mg/mice) was injected intravenously in NOD
mice, MDSC depletion lasted only 4 days and the number of
MDSC was significantly higher than that in the control group
noted from the 7th to the 17th day following treatment (Hu et al.,
2012). These findings suggest that short-term injection of anti-
Gr-1 antibody may induce a long-term compensatory increase.

Functional Molecule Inhibitor
Rapamycin is a specific inhibitor of mTOR. It can trigger the
inhibition of mTORC1, which leads to the increase of Tregs and
MDSC. Rapamycin reduced the phosphorylation of S612 (insulin
receptor substrate-1) in adipose, muscle and liver tissues, which
inhibited the degradation of IRS-1 and improved insulin
sensitivity in mice. Concomitantly, rapamycin also adjusted
the classification of MDSC, increased the number of PMN-
MDSC in fat and liver tissues and in the blood and reduced
M-MDSC, thereby reducing inflammation (Pederson et al., 2001;
Makki et al., 2014). It was indicated that the mTOR inhibitor
INK128 could inhibit the differentiation of M-MDSC into
M1 pro-inflammatory macrophages, thus reducing
inflammation and promoting diabetic wound healing (Li et al.,
2021). Knockout of the C3 complement gene significantly
promoted the immunosuppressive ability of MDSC. In STZ-
induced T1D mice, MDSC were highly activated and
suppressed T cells in order to regulate Treg cells via TGF-β
secretion. A similar effect was achieved by using the complement
activation inhibitor FUT-175 (Gao et al., 2013).

IL-17-/- mice resisted STZ-induced diabetes by increasing the
percentage and number of MDSC in the spleen and enhancing
their immunosuppressive ability (Tong et al., 2015). Therefore, it
was expected that IL-17 inhibitors could also play an anti-diabetic
effect. In addition, K118 is an inhibitor of PISHIP1, which was
shown to target SHIP1 in MDSC derived directly from visceral
adipose tissues and increase the number of MDSC and improve
blood glucose control and insulin sensitivity. K118-treated mice
demonstrated no harmful side effects in the lung, small intestine,
or other organs and in the bone mineral density (Srivastava et al.,
2016). Although the number of activated CD4+T and CD8+T cells
was decreased, MDSC was determined by the positive expression
of IL4aR and Arg and the T cell inhibitory effect ofMDSCwas not
directly measured in that study.

Diet
Dietary polyunsaturated fatty acids rely on STAT3 signaling to
increase MDSC and ROS production to enhance their
immunosuppressive ability, which was almost entirely reversed
by application of the STAT3 inhibitor JSI-124 (Yan et al., 2013).
In tumors, MDSC use fatty acid oxidation as their energy supply
and the tumor microenvironment can cause upregulation of the
expression of enzymes critical to fatty acid oxidation, thus
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increasing the inhibitory ability of MDSC. These findings were
confirmed both in mice and humans (Hossain et al., 2015).
Therefore, a new theoretical basis has been deduced for
dietary recommendations to increase the intake of
polyunsaturated fatty acids for T2D. Nevertheless, as a
sensitive cell group, the effect of comprehensive food intake
on MDSC may change. In a recent experiment that examined
atherosclerotic subjects, the number and proportion of MDSC in
the bone marrow of high-fat diet mice were both decreased
following co-administration with omega-3 polyunsaturated
fatty acids, flavanols, and phytosterols (Moss et al., 2021).
However, the number and function of MDSC in the blood are
not currently known under these feeding conditions. Additional
research is thus required to explain these findings.

Brazilian propolis is a resin mixture of African honey bee
saliva and wax mixed with plant exudates (Kumazawa et al., 2003;
Bankova et al., 2014). It has been widely used in folk medicine due
to its anti-inflammatory, anti-viral, analgesic and metabolic
effects (Tsuchiya et al., 2018; Al-Hariri and Abualait, 2020).
Following intraperitoneal injection, Brazilian propolis was
shown to induce visceral adipose tissue and intraperitoneal
MDSC production in mouse models, which exerts an anti-
inflammatory effect and improves the severity of T2D
(Kitamura et al., 2018). Oral administration of PEE should be
recommended to assess the induction of the stimulation of
human MDSC and the potential side effects.

Intestinal flora plays a vital role in the pathogenesis of diabetes
and has been a research hot spot in recent years (Dolpady et al.,
2016; Ghaisas et al., 2016; Jia et al., 2017; Henschel et al., 2018;
Mullaney et al., 2018). The IgM purified from the serum of
normal mice can maintain the normal Bacteroides: Firmicutes
ratio and reverse the pathogenesis of diabetes in NOD mice
following administration by intraperitoneal injection. The
number of Tregs and MDSC in mice treated with IgM was
significantly increased. Oral feeding exhibited a certain effect
on this process (Chhabra et al., 2018). This also should be used as
another convenient and feasible way to increase the number
of MDSC.

Other Therapies
Worm infection and its antigens, such as soluble (TCS) or
excretory/secretory (TCES) antigens derived from
Taeniasolium can increase the number of MDSC in T1D mice.
Intravenous injection of dichloromethylene diphosphonate
(clodronate) encapsulated in liposomes depleted macrophages
but increased the number of MDSC and their subtypes
(Espinoza-Jiménez et al., 2017).

Various factors can affect the proliferation and recruitment of
MDSC and related studies have been performed in the tumor
microenvironment. Among them, HIF-1α, which is decreased
due to the instability of the HIF protein in the diabetic
microenvironment, is a strong chemokine of MDSC and
regulates their function. HIF-1 can bind to the erythropoietin
gene promoter during hypoxia and form heterodimerization of
HIF-1α and HIF-1β. Insulin signaling upregulates HIF-1α
through phosphorylation of PI3K and MAPK. However,
diabetic patients had impaired insulin signaling due to insulin

resistance. The levels of HIF-1 α decreased and the lack of HIF-1α
further weakened the function and survival of ß cells, forming a
vicious circle (Cheng et al., 2010). The induction of
hyperglycemia enabled the stimulation of the degradation of
HIF-1α by 2-methyl Glyoxal and inhibited its transcriptional
activity. 2-methyl Glyoxal inhibited the formation of the HIF-1α-
HIF-1β dimer (Bento and Pereira, 2011). In obese diabetic
subjects, a decrease in succinic acid was caused by fatty acid
metabolism and an increase in HIF-1α protein hydrolysis (Dodd
et al., 2018). HIF-1α was shown to be effective in increasing the
number and function of MDSC in the tumor microenvironment.
HIF-1α also activated glucose transporter-1 (Glut-1) to promote
glycolysis, thus exerting the effect of glycolysis on MDSC (Choi,
2017). HIF-1α yet induced the expression of nucleoside
diphosphate hydrolase 2 ENTPD2/CD39L1 in order to
consume extracellular ATP, which in turn promoted the
maintenance of MDSC (Chiu et al., 2017).

It is known that metformin can reduce the phosphorylation
levels of STAT3 and inhibit the expression of CD73/CD39 on
MDSC by activating AMPK and inhibiting the HIF-1α pathway
to exert an inhibitory effect on MDSC (Li L. et al., 2018; Xu et al.,
2019). However, it is unclear whether metformin has a special
regulatory effect on MDSC in a diabetic microenvironment.

THE ROLE OF MDSC IN DIABETIC
COMPLICATIONS

In several complications of diabetes, specific organ damage leads
to the corresponding increase in the recruitment and activity of
MDSC. MDSC play different functions in different
complications. Among them, the complications caused by
MDSC microangiopathies, such as diabetic retinopathy,
diabetic nephropathy, and diabetic refractory wounds are
prominent. These conditions will be discussed separately below.

Diabetic Nephropathy
Diabetic nephropathy is the leading cause of the end-stage renal
disease (Li et al., 2016). The pathogenesis mainly lies in the
fibrosis caused by the accumulation of extracellular matrix
proteins in the glomerular mesangial interstitium (Chang
et al., 2014). The number of MDSC in the kidney was
increased (Xing et al., 2017), and the adoptive transfer of
MDSC induced by cytokines reduced fibronectin levels in the
glomerulus and resulted in a normal glomerular filtration rate
(Hsieh et al., 2018). PMN-MDSC in the kidneys of patients with
T2DN might not be sufficient to maintain renal function,
resulting in compensatory anti-inflammatory failure of the
kidney (Duran-Salgado and Montserrat, 2014; Islam et al.,
2020). The increased number and enhanced anti-inflammatory
ability of PMN-MDSC may be one of the therapeutic targets for
diabetic nephropathy.

Diabetic Atherosclerosis
Atherosclerosis (AS) is the leading cause of coronary heart
disease, cerebral infarction and peripheral vascular disease
(Lusis, 2000). Diabetes accompanied by high fat and an
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inflammatory environment is a fundamental cause of the
development of atherosclerosis (Poznyak et al., 2020). The role
of MDSC and their subgroups in AS is still controversial (Wang
et al., 2015; Fernández-Ruiz et al., 2019). It was demonstrated that
MDSC increased about two-fold in the bone marrow of AS model
mice, where M-MDSC increased in proportion and PMN-MDSC
decreased, and the inhibitory activity of M-MDSC was enhanced
(Foks et al., 2016). This was consistent with the phenomenon
observed in peripheral blood samples of AS patients (Wang et al.,
2015). Moreover, the frequency of PMN-MDSC was negatively
correlated with low-density lipoprotein cholesterol (Fernandez-
Ruiz et al., 2019). It was proposed that the increase of MDSC in
the bone marrow of depressed AS mice, especially PMN-MDSC,
could increase neutrophil traps (NETS) and aggravate AS
(Yamamoto et al., 2018). The opposing effects of the two
subgroups of MDSC remind us to observe the role of MDSC
in AS and score clear subgroups. In the LDLr-/- model (Foks et al.,
2016) and the ApoE-/- murine model (Wang et al., 2020) fed on
the Western-type diet (WTD, containing 0.25% cholesterol and
15% cocoa butter) diet (0.25% cholesterol and 15% cocoa butter),
MDSC were shown to significantly slow down the disease process
of AS after adoptive transfer. Also, the therapy for MDSC was
regarded as one of the hopes for the treatment of atherosclerosis.
It was proved that oral HSP60 reduced the development of AS by
increasing the number of M-MDSC and enhancing its function,
while subcutaneous HSP60 caused the opposite response (Hu
et al., 2018). In addition, SBI-0206965, an inhibitor of autophagy,
rapidly reduced MDSC and promoted the development of
atherosclerosis (Wang et al., 2020). Therefore, the
immunomodulation of MDSC and its subgroups may be
regarded as a potential treatment of atherosclerosis.

Diabetic Retinopathy
The pathogenesis of diabetic retinopathy lies in the structural
disorder of microvessels. The main sign of the development of the
non-proliferative type to a more advanced proliferative type is the
proliferation of ocular neovascularization (Hendrick et al., 2015).
Existing drugs are mainly focused on preventing
neovascularization, such as the anti-VEGF drug ranibizumab
(Chatziralli and Loewenstein, 2021). In the ocular humor of
patients with DR, both levels of IL-6 and CCL2, which are
important proliferative factors of MDSC, and the number and
activity of myeloid cells were observed to be increased (Koleva-
Georgieva et al., 2011; Koskela et al., 2013). MDSC play a role in
stabilizing blood vessels in diabetic retinopathy (Liyanage et al.,
2016; Villacampa et al., 2020). MDSC reduced retinal
neovascularization in oxygen-induced retinopathy (Kataoka
et al., 2011; Xu et al., 2018) and laser-induced choroidal
neovascularization (Espinosa-Heidmann et al., 2003; Sakurai
et al., 2003; Nagai et al., 2007). These actions of MDSC were
different from those noted during tumor angiogenesis (Albini
et al., 2018; Zhang T. et al., 2018; Yang et al., 2018; Lin et al., 2019;
Rahma and Hodi, 2019; Dysthe and Parihar, 2020).

Diabetic Refractory Wounds
The difficulty in wound healing of diabetic patients is caused by
chronic inflammation, vascular endothelial injury, hypoxia,

autonomic nervous dysfunction and decreased neuropeptide
signal transduction (Noor et al., 2015). The diabetic foot ulcer
is the most crucial reason for the amputation of patients with
non-traumatic conditions (Everett and Mathioudakis, 2018).
MDSC distribution could change due to the addition of the
wounds. During the period from the inflammatory to the
proliferative phase, a new round of proliferation of bone
marrow MDSC was stimulated by the wound. MDSC led to
peripheral distribution and targeted the wound (Mahdipour et al.,
2011; Li et al., 2021). It was shown that the CD11b+Ly6Chi cell
group on the wound was rapidly transformed into
CD11b+Ly6Clow cells within 1–2 days of wound formation.
Subsequently, an additional CD11b+Ly6Chi cell group flowed
into the wound on the 3rd-4th day sequentially (Kimball
et al., 2018). Nevertheless, MDSC were retained at a higher
density explicitly in the assumed granulation tissue area of the
wound. They were associated with endothelial cells at the injury
site and their frequency was higher than that of non-diabetic mice
(Torbica et al., 2019). The role of MDSC in diabetic wounds was
examined, suggesting that immature myeloid cells could impair
diabetic wound healing, while the use of G-CSF in db/db wounds
could accelerate wound healing (Wicks et al., 2015). However, the
positive effect of MDSC on wound healing was supported by
various studies. The fact that the adoptive transfer of MDSC
derived from the spleen (Mahdipour et al., 2011) or the bone
marrow (Tong et al., 2014) of mice to diabetic wounds could
assist wound healing has become an essential supporting basis.
The number of blood vessels was analyzed in diabetic and non-
diabetic mice by injecting bone marrow-derived MDSC into the
wounds of diabetic and non-diabetic mice. The results
demonstrated that MDSC benefited angiogenesis, whereas the
diabetic microenvironment impaired their ability (Mahdipour
et al., 2011). Besides, MDSC derived from the bone marrow of
diabetic mice indicated decreased proliferation and
differentiation, decreased chemotactic function, lower
expression of VEGF and higher MMP-9 levels as determined
by in vitro studies (Torbica et al., 2019). In addition, the
recruitment of MDSC in wounds might be impaired by
damaging the SDF-1/CXCR4 axis (Tong et al., 2014).

Abnormal differentiation of MDSC typing can also be noted in
diabetic wounds. Bone marrow cells can be activated or polarized
into different states related to Th1 and Th2 cytokines by the local
microenvironment. These myeloid cells are termed classically
activated (M1) or alternatively activated (M2) cells. The diabetic
microenvironment affected the pedigree commitment of these
progenitor cells, inhibited granulosa cell differentiation and
promoted monocyte differentiation (Mahdipour et al., 2011).
The M1 group on the diabetic wound was mainly composed
of M-MDSC. In the subsequent stage of healing, macrophages
were transformed into M2 cells in the non-diabetic wound and
retained a large amount of pro-inflammatory M-MDSC in the
diabetic wound (Mahdipour et al., 2011; Bannon et al., 2013). The
transformation of MDSC to PMN-MDSC (like overexpressing
Hoxa3) resulted in significant induction of neovascularization in
diabetic wounds.

In view of these studies, it is suggested that MDSC may
promote wound healing by their conversion to
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CD11b+Ly6Clowcells, which in turn promote angiogenesis.
However, the effect of the complex diabetic microenvironment
on MDSC, such as the imbalance between the different types of
MDSC, may impair wound healing (Figure 2).

SUMMARY AND CONCLUSION

Altogether, diabetes is mainly divided into T1D and T2D. We
summarized the variation in quantities, classification, activity
and immunosuppressive ability of MDSC in T1D and T2D. The
underlying roles in diabetes and potential MDSC-targeting
diabetes treatment were assessed. The diabetes environment
activates the one-time development of MDSC in the bone
marrow and promotes the accumulation of MDSC in
peripheral organs except for pancreatic islets. This is
inseparable from the abundant MDSC recruiting factors, such
as glycolysis products, inflammatory factors, CCL2, etc. MDSC
exert a certain degree of immunosuppressive ability in T1D,
while their ability to regulate inflammation and
immunosuppression in T2D slow down the progress of
diabetes. Therefore, many possibilities for the treatment of
diabetes related to MDSC have been derived. In addition, the
main pathology of diabetic complications focuses on the disorder
of blood vessel formation and the inflammatory environment.
The stable angiogenesis and immunosuppressive ability of

MDSC should have a therapeutic effect on complications.
However, the performance of MDSC subsets in diabetic
complications differs widely. NETS developed by excessive
PMN-MDSC in AS and pro-inflammatory excess of M-MDSC
in diabetic refractory wounds aggravates the development of the
disease. In-depth understanding of MDSC and its subsets, and
intervention and adjustment according to different pathological
characteristics, will gradually become the key to making good use
of the double-edged sword of MDSC and personalized
immunotherapy.
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FIGURE 2 | MDSC is rapidly transformed into macrophages following recruitment to the wound. This process exerts an anti-inflammatory effect and promotes
wound healing. MDSC remains in diabetic wounds and affects angiogenesis, whereas diabetes hinders the recruitment of MDSC from the wound; the existence of an
imbalance ratio of PMN/M-MDSC keeps the wound in an inflammatorymicroenvironment hindering wound healing. Therefore, MDSC promotes wound healing, whereas
excessive M-MDSC impairs wound healing.
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