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Abstract

Cellular Potts models (CPMs) are used as a modeling framework to elucidate mechanisms of biological development. They
allow a spatial resolution below the cellular scale and are applied particularly when problems are studied where multiple
spatial and temporal scales are involved. Despite the increasing usage of CPMs in theoretical biology, this model class has
received little attention from mathematical theory. To narrow this gap, the CPMs are subjected to a theoretical study here. It
is asked to which extent the updating rules establish an appropriate dynamical model of intercellular interactions and what
the principal behavior at different time scales characterizes. It is shown that the longtime behavior of a CPM is degenerate in
the sense that the cells consecutively die out, independent of the specific interdependence structure that characterizes the
model. While CPMs are naturally defined on finite, spatially bounded lattices, possible extensions to spatially unbounded
systems are explored to assess to which extent spatio-temporal limit procedures can be applied to describe the emergent
behavior at the tissue scale. To elucidate the mechanistic structure of CPMs, the model class is integrated into a general
multiscale framework. It is shown that the central role of the surface fluctuations, which subsume several cellular and
intercellular factors, entails substantial limitations for a CPM’s exploitation both as a mechanistic and as a phenomenological
model.
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Introduction

Motivation
Understanding the mechanisms that control tissue organization

during development belongs to the most fundamental goals in

developmental biology. Quantitative approaches and mathemat-

ical models are essential to deduce the consequences of existing

morphogenetic hypotheses, thus providing the basis for experi-

mental testing and theoretical understanding. One approach to

questions concerning patterning in developing organisms is to

consider tissues as huge populations of cells which behave

according to certain rules that depend on their genetic programs

and inner structure as well as on environmental influences. To a

large extent, the environmental influences are constituted of the

states and actions of directly neighboring cells. Then, tissue

organization can be understood as emergent behavior that results

from local intercellular interaction, being the result of processes at

different spatio-temporal scales. To understand the relevance of

particular factors on the subcellular or cellular scale for tissue

organization, the development and analysis of suitable mathemat-

ical models is indispensable.

Physics has a long history in modeling and analyzing problems

where multiple spatio-temporal scales are involved, so-called multi-

scale problems. Therefore, existing frameworks often originate in

statistical physics. For instance, so-called equilibrium models are

designed to study the macroscopic-scale characteristics of many

particles which interact on a microscopic scale at equilibrium, that

is when the temporal evolution has relaxed to a stationary state.

Often these models are analyzed with the help of Markov chain

Monte Carlo methods, for instance the Metropolis algorithm [1].

In these cases, an auxiliary dynamics is constructed which drives

the system from an arbitrary initial state towards the equilibrium

state that shall be studied.

One attempt to tackle patterning processes in development has

been to adopt a suitable equilibrium model of statistical physics

together with an auxiliary dynamics and modify it such that the

needs of developmental biology are met. This approach was

pursued by Glazier and Graner in a series of papers such as [2–7].

They took a model which was originally developed in solid state

physics to study ferromagnetism. Adapting the term which

describes the interdependence structure of the individual units at

the lower spatial scale and modifying the updating algorithm of the

Metropolis algorithm, they obtained a dynamical system that

mimics observed biological behavior seemingly realistically. The

thus proposed model has been called cellular Potts model (CPM) or

Glazier-Graner-Hogeweg model. It was first used in computational

biology for a theoretical study of cell sorting, a phenomenon where

an initially mixed cell population segregates into homotypic

clusters presumably due to type-specific differences in the strength

of intercellular adhesion. Subsequently, the model has been

extended more and more to address a variety of biological

questions in different contexts including tumor formation and

progression, see for instance [5,8–15]. In general, CPM-based

models are used to simulate the collective behavior of interacting

cells and to predict the emergent behavior at the tissue scale.
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In a CPM, biological cells are described as spatially extended

but internally structureless objects that cover several nodes of a

regular lattice. Cells move or change their shape by annexing or

rejecting single nodes according to a rule which is dependent on a

pre-specified cellular and subcellular interdependence structure.

The resulting cell behavior in a CPM visually resembles

membrane fluctuations and pseudopod protrusions as observed

for biological cells. Due to the cells’ subdivision into subcellular

parts, a CPM is capable to model cells with type-specific sizes and

morphologies.

There are only a few model classes besides the CPM that allow

to study interacting cell populations with non-isotropic and type-

specific cell morphologies. Established models with a similar

spatial resolution are the Vertex Model [16–18] and the

Subcellular Element Model [19,20]. They are spatially continuous

models of different origin and nature than the CPM. Their specific

advantages and drawbacks render them in some respects

comparable to the CPM, however a detailed analysis of the

similarities and differences is left to further study. In this paper, the

focus is laid solely on the properties of the CPM.

Notice that, despite its popularity in theoretical biology, the

modeling framework of cellular Potts models has received little

attention yet from mathematical and modeling theory. Though

the CPM has its origin as an equilibrium model – for which the

mathematical properties are well-understood – , the theoretical

fundament of the CPM framework and area of sound application

need further clarification. This is because there has been a

paradigm shift when devising the CPM for patterning processes in

developmental biology. CPMs are utilized as kinetic models, that is to

study or identify major dynamical determinants of a temporarily

evolving process. However, being no longer equilibrium models,

they are not automatically appropriate kinetic models. To

distinguish the problems where CPMs can be effectively applied

as kinetic models for tissue organization and to assess the

mathematical properties of this model type, the modeling

framework of cellular Potts models is subjected to a theoretical

study in this paper. It is explored under which conditions a CPM is

an appropriate dynamical model for intracellular interaction and

what its principal behavior at different time scales characterizes.

It is shown that the modifications in the Metropolis algorithm

have a dramatic impact on the long-time behavior of the model. In

the long run, the cells consecutively die out, independent of the

specific interdependence structure that characterizes the model. At

smaller time scales, when spatial correlations have already

established but the stationary state is not yet reached, the model

outcome is the result of an interplay between behavior that is

controlled by the modeler via the specification of the cellular

interdependence structure and an additional, hardly controllable

impairment that is due to the modification of the Metropolis

updating scheme. Dwelling deeper into the question to which

extent the model can be exploited to derive reliable predictions of

the macroscopic behavior that can be expected from particular

microscopic interactions, the CPM is integrated into a general

multiscale modeling framework. It is argued, that the CPM’s

resolution below cell level allows to overcome the lattice anisotropy

and to model cells with flexible and adaptive morphologies.

However, the characteristic to model intercellular interaction

exclusively via surface fluctuations entails substantial constraints

with respect to the level of detail from the subcellular scale that can

be traced by the model. In addition, the cells’ subdivision into

subcellular parts necessitates non-local interaction rules to control

the cellular morphology. These rather technical terms hinder the

application of some powerful mathematical methods, such as

rigorous spatio-temporal limit procedures, for the analysis of the

emergent macroscopic behavior. Thus, the flexibility in the cells’

morphologies comes at the price of less control over the model’s

cellular behavior and intercellular interaction and of limited

analytic tractability, both leading to a reduced mechanistic

understanding. It is clear from many successful applications of

CPMs to deep biological questions, e.g. [4,5,9,21], that the CPM

frameworks is an expedient modeling approach if cell size, cell

shape, or cell polarity essentially affect the intercellular interaction

rules and, in particular, if the cellular morphology is considered

adaptive to the surrounding cellular environment. However, to

value the contribution of a model to the underlying biological

problem, it is essential to understand the model’s theoretical basis

and construction and to discuss openly its power and limitations.

There exists considerable empirical knowledge of how CPMs

behave for certain choices of the parameter values which has been

obtained from extensive CPM simulations. Nevertheless, it is

necessary to complement empirical experience with rigorous

analytical arguments to provide more clarity about the structural

properties of CPMs and to distinguish reliable facts from mere

beliefs. This also helps to expose existing inconsistencies and

drawbacks of the model class as a basis and encouragement for

further discussions and developments. This paper shall be a

contribution towards this objective.

Mathematical model description
A CPM assigns a value g(x) from a set W~f0,1,:::,ng to each

site x of a countable set S, cp. Fig. 1. The set S resembles the

discretized space and is usually chosen as a two- or three-

dimensional regular lattice. The set W~f0,1,:::,ng contains so-

called cell indices, where n[N is the absolute number of cells that are

considered in the model. The state of the system as a whole is

described by configurations g[X~W S: Given a configuration g[X, a

cell in the CPM is the set of all points in S with the same cell index,

cell{w : ~fx[S : g(x)~wg,w[W \f0g: The value 0 is assigned

to a given node, if this node is not occupied by a cell but by

medium. Each cell is of a certain cell type, which determines the

migration and interaction properties of the cell, the set of all

possible cell types being denoted by L: Denote by t : W?L the

Figure 1. Cell-surface interaction in the cellular Potts model is
regulated by the surface energy coefficients. Three cells with cell
indices 1, 2 and 3, respectively, each one covering several lattice sites,
interact with each other at the cell surfaces. The cells 1 and 3 are of type
A, depicted in dark grey, the cell 3 is of type B, depicted in light grey.
The strength J of the interaction depends on the cell types. There are
also interactions between the cells and the medium (white, cell index 0).
Possible boundary interactions are not shown.
doi:10.1371/journal.pone.0042852.g001
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map that assigns each cell its cell type. A cell with index w[W has

volume

Vw(g) : ~
X
x[S

d(w,g(x)),

where the Kronecker symbol d is defined by d(u,v)~1 if u~v and

d(u,v)~0 otherwise, and surface length

Sw(g) : ~
1

2

X
interfacesfx,yg

d(w,g(x)):

The sum in the last term is taken over all interfaces of a given

configuration g, that are all pairs of lattice neighbors which do not

belong to the same cell.

A cellular Potts model (CPM) is a time-discrete Markov chain

with state space X, where the transition probabilities are specified

with the help of a Hamiltonian or energy. The latter is a function

H : X?R which often has a special structure. Usually it is the sum

of several terms which are supposed to control single aspects of the

cells’ interdependence structure. Basically two terms are used in

most CPM studies. First a surface interaction term

HI (g)~
X

interfacesfx,yg
J(t(g(x)),t(g(y))), g[X, ð1Þ

is specified. Here J : L|L?R, the matrix of so-called surface

energy coefficients, is assumed to be symmetric. Second a volume

constraint

HV (g)~
X
w[W

lt(w)(Vw(g){vt(w))
2, g[X: ð2Þ

is used. Here vt, the target volume, and lt, the strength of the

volume constraint, are cell-type specific parameters, t[L: Depen-

dent on the actual situation that shall be studied with the help of a

CPM, further addends can be included, for instance a surface

constraint [3]

HS(g)~
X
w[W

at(w)(Sw(g){st(w))
2, g[X: ð3Þ

Again st, the target surface length, and at, the strength of the

surface constraint, are parameters, t[L: Thus, the typical structure

of a CPM-Hamiltonian is

H~HIzHV zH0, ð4Þ

where HI ,HV are given in (1) and (2) and H0 : X?R is a model-

specific addend. Transitions from one configuration to another

follow a special rule which is called modified Metropolis algorithm. First

two additional parameters Tw0, the so-called temperature, and h,

a transition threshold, are specified. Note that the transition

threshold was set to h 6¼ 0 in the original model proposed by [2]

but it turned out that in some applications h 6¼ 0 is a better choice

[7,22]. Then the following algorithm is performed:

1. Start with configuration g:

2. Pick a target site x[S at random with uniform distribution.

3. Pick a neighbor y of x at random with uniform distribution

among all lattice neighbors of x:

4. Calculate the energy gain, DHy
x : ~H(gy

x){H(g), that is

reached if the present configuration g is replaced by the trial

configuration gy
x. The latter is obtained from g by copying the

index g(y) onto the node x, that is gy
x(z) : ~g(y) if z~x and

gy
x(z) : ~g(z) otherwise.

5. If the energy gain is below the transition threshold, that is if

DHy
xvh, accept the trial configuration and put g : ~gy

x; go to

s t e p 1 . O t h e r w i s e , p u t g : ~gy
x w i t h c h a n c e

exp {(DHy
x{h)=T

� �
and keep g unchanged with chance

1{ exp {(DHy
x{h)=T

� �
.

Consequently, only such transitions are possible where the index

of at most one lattice site is changed, resulting in a shift of the cell’s

center of mass. The new assignment to this lattice site is chosen

from the cell indices of the neighboring lattice sites. These

dynamics are interpreted to resemble membrane fluctuations,

where one cell shrinks in volume by one lattice site and a

neighboring cell increases in volume by occupying this site.

To complete the model, appropriate boundary conditions must

be specified. If the influence of the boundary shall be neglected,

periodic boundary conditions are used. This means that the space

can be thought of as being mapped onto a torus. However, fixed

boundary conditions, where the interaction between the cell

surfaces and the confining environment is explicitly modeled, can

be defined within this modeling framework, as well.

It will turn out, that most of the properties of the CPM that shall

be discussed within this article do not depend on the specific

structure of the Hamiltonian H. Therefore, it is assumed in the

following that the Hamiltonian is a real function on X without

stipulating a special structure such as (4). This approach has the

additional advantage that boundary conditions can be included by

adjusting the Hamiltonian accordingly.

Definition. Let H : X?R be a real function on X and

suppose that Tw0. A cellular Potts model is a discrete-time Markov

process with state space X and with transitions following the

modified Metropolis algorithm with respect to H and T .

The CPM model formalism has been used for several problem-

specific extensions. In general, this is done by including additional

terms into the Hamiltonian (4). For instance, elongated cell shapes

can be modeled in a CPM by imposing a cell length constraint

which renders the major axis of the ellipsoidal approximation of

the cell’s shape to be close to some prescribed target value [23].

Rod cell shapes with particular stiffness have been modeled using a

compartmentalized cell concept, where each cell consists of a row

of standard CPM cells [12]. In some cases, the kinetics of the

original CPM is altered by directly modulating the transition rates

that are calculated in step 4. of the modified Metropolis algorithm.

Specific control terms that may depend on the configuration of the

system but also on addition system parameters, like the position x
of the target site, the position y of the trial spin or the velocity

increment of the affected cell, are added in step 3. of the modified

Metropolis algorithm to the energy gain DHy
x that is calculated

from the Hamiltonian. Notice that these models cannot be

represented within the classical model since the control terms

cannot be derived from a Hamiltonian. Therefore these models

with kinetic extensions will be referred to as extended CPMs. Examples

comprise the explicit modeling of inertia by constraining the cell

velocity increment [24] or the inclusion of chemotactic responses

to some field c : S?½0,?) of signals into the model as in [3,25].

Another extension of the CPM framework comprises hybrid

CPM models. The standard CPM treats cells as internally

A Critical Analysis of the Cellular Potts Model
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structureless lattice domains. However, several studies have

adapted the CPM to allow the modeling of subcellular structures,

as well. The latter are derived from models of the intracellular

biochemistry, typically modeled in terms of ordinary differential

equations. In this way, the spatial configuration of the cells, their

sizes, shapes, motility properties as well as the intercellular

interaction can be coupled with cell-intrinsic processes. For

instance, the effect of intracellular actin dynamics on membrane

protrusions and retractions is modeled via a hybrid CPM in [21].

Results

Equilibria of the cellular Potts model
The standard Metropolis algorithm, see for instance ([1], 14.3),

differs from the rules 0.-4. described in the previous section Steps

0. and 1. remain unchanged. In 2., the cell index w that is chosen

to replace g(x) with some probability, is drawn uniformly from W

without considering the neighborhood of x. Then, in 3., a trial

configuration gw
x (z) with

gw
x (z) : ~

g(z), z 6¼ x,

w, z~x,

�

is used and the energy difference is calculated via

DHw
x ~H(gw

x ){H(g). Afterwards an attempt is made to replace

g by gw
x according to the decision rule in step 4.

The standard Metropolis algorithm is a Markov chain Monte

Carlo method to explore the equilibrium model corresponding to

the Hamiltonian H . It samples typical configurations of the so-

called Gibbs measure corresponding to H . The latter is a measure m
on X defined by

m(g) : ~Z{1 exp {
H(g)

T

� �
, g[X,

where Z : ~
X

g[X
exp {H(g)=Tf g is the normalizing factor.

This measure is a widely accepted model of statistical physics for

the equilibrium behavior of particle systems at temperature T
whose microscopic interdependence structure is described by H.

The transition rates r(g,g’) for transitions g?g’ of the standard

Metropolis algorithm satisfy the detailed balance conditions w.r.t. m,

that is

r(g,g’)m(g)~r(g’,g)m(g’), g,g’[X:

See ([1], 14.3) for details. Therefore, the Markov chain generated

by the standard Metropolis algorithm has the Gibbs measure m as

a reversible measure. Since this chain is finite and irreducible, m is

its only invariant measure and the distribution at time t converges

to m for t??. Thus, starting from an arbitrary initial

configuration, the standard Metropolis algorithm produces real-

izations which are distributed approximately according to m after a

sufficiently long relaxation time.

The modified Metropolis algorithm does not satisfy the detailed

balance conditions w.r.t. m. Indeed, it is easily verified by applying

the results in ([26], Thm. 4.1) that the transitions in the CPM

cannot satisfy detailed balance w.r.t. any measure neither related

nor non-related to H. The main argument behind this statement is

as follows. A cell in the CPM that covers only a single node has a

positive chance to disappear during a transition, while the

probability to reappear is zero. This behavior is a direct

consequence of the modification in the Metropolis algorithm

and is not present in the classical method. Therefore, the Markov

chain defined by the CPM dynamics has several absorbing states,

namely all those configurations that consist of only one cell that

covers all nodes of the lattice. As it is shown rigorously in the

Methods section, a CPM is eventually trapped in one of these

absorbing states regardless of the special structure of its

Hamiltonian. Its distribution nt at time t converges as t?? to a

measure n that is a convex combination of point measures

dw,w[W , each of them concentrated on a constant configuration

gw[X with gw(z)~w,z[S. In detail, nt converges towards

n~
X
w[W

cwdw,

where cw§0,w[W , and
X

w[W
cw~1. The weight cw depends

on the initial configuration g and equals the probability that the

CPM started in g is absorbed by the constant configuration gw.

The values cw,w[W , can be calculated explicitly, see the Theorem

1 in the Methods section. The time until absorption depends on

the structure and parameter values of the Hamiltonian. Estimates

of the time till absorption are provided in the Methods section.

The differences between standard and modified Metropolis

algorithm become particularly blatant when T~? (or H~0). In

this case, the CPM is a multi-type voter model [27], since in each

transition the cell index of the target site is replaced by the cell

index of a randomly chosen neighboring site. Consequently, the

longtime behavior agrees with that of the voter model, where the

cells consecutively die out. In contrast, the standard Metropolis

algorithm decouples for T~?, that means the evolution of each

lattice site is independent from that of the other lattice sites and

one observes a uniform distribution of spins in the long-time limit.

Note that, for large temperatures, it was observed but not studied

in detail in [2] that in a CPM ‘the pattern loses energy simply by

eliminating cells’, which is a clear cue towards absorption.

Thus, it turns out that the modifications in the updating

algorithm change the longtime behavior of the corresponding

Markov chain dramatically in comparison with the standard,

equilibrium model. Since detailed balance w.r.t. the Gibbs

measure related to H is broken and absorbing states are present,

the long-time behavior is no longer controlled by the Hamiltonian

H . The modifications in the Metropolis algorithm, which could

seem to be marginal, produce a qualitatively different behavior. In

the long run, the evolution in the CPM is not directed towards the

minimization of the energy H but the cells in the CPM

consecutively die out.

Impact of the Hamiltonian on the model dynamics at
different time scales

It is pointed out in subsection Equilibria of the cellular Potts

model that the modification of the Metropolis algorithm has a

major impact on the dynamics. By relating the transition

mechanism to the cell indices in the neighborhood of the target

site, the impact of the Hamiltonian on the actual transition

probabilities is reduced and even vanishes in the long-time limit.

Still, it might be objected that the phenomenon of successive cell

extinction in a CPM only marginally affects its behavior in

parameter ranges that are of interest in the applications and that

the above considerations are of theoretical value only. The main

arguments in this direction are as follows. Firstly, a pragmatic ‘no-

extinction’-rule for the CPM cells could be implemented.

Secondly, it might be argued that the disappearance of CPM
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cells is so seldom that it can be neglected and that interesting and

complex behavior is observed in the CPM before the process of

cell extinction becomes manifest. The third objection could be that

the role of the Hamiltonian H is purely technical to give the

transition rates a bias and that the focus of interest in CPM studies

is put neither on the long-time behavior nor on the minimization

of the energy H .

However, there is a methodological problem with these

arguments. A modeler controls the structure and the parameters

of the Hamiltonian. With the help of the Hamiltonian, he

implements his ideas about the underlying biological process into

the model. The transition probabilities and thus the model

kinetics, however, depend not only on this controlled term but also

on a non-controlled voter-like part, stemming from the modifica-

tion of the Metropolis dynamics, which depends on the geometric

composition of a target spin’s neighborhood. The latter part of the

dynamics is sensible, for instance, to the topology of the underlying

lattice, to the size of the chosen neighborhood structure and to the

number of subcellular parts a CPM cell is divided into. These are

technical parameters that have no mechanistic role for the

biological process of interest. Thus, the CPM dynamics is

characterized by a constant conflict of controlled behavior

specified by the Hamiltonian and a non-controlled impairment.

The impact of the Hamiltonian, the controlled behavior,

vanishes in favor of the non-controlled behavior for certain –

long – time scales, as is discussed in subsection Equilibria of the

cellular Potts model. To exploit the model in possibly well-behaved

parameter regions, it is essential to address the following questions.

What characterizes those regimes of a CPM, where the non-

controlled, voter-like part of the transitions is marginal for the

emergent behavior compared to the part of the transitions that is

controlled by the Hamiltonian? To which extent does this regime

depend on the structure and parameters of the Hamiltonian? To

which extent does this regime depend on the dimension and

topology of the underlying lattice and the grain size of the

subcellular segmentation? What are the typical time scales that

separate ‘good’, controlled behavior from ‘bad’, largely uncon-

trolled behavior? These theoretical questions have not been

addressed in depth so far but need to be thoroughly discussed, if

the results that are obtained from the analysis of a CPM are to be

carried over into biological understanding.

Thus, coming back to the above objections, it can be argued

that, firstly, a pragmatic ‘no-extinction’ rule for the CPM cells – as

it is implemented in many applications, sometimes without explicit

notice [28] – conceals the underlying conflict between controlled

and uncontrolled behavior in the CPM. It has no mechanistic

biological interpretation since it aims at a symptom that is of

model-technical origin. Secondly, if the complex behavior

observed in the CPM before the process of cell extinction becomes

manifest shall be exploited for biological comprehension, it is

necessary to validate the model appropriately. The interpretation

of the model outcomes in biological terms is valuable in those cases

where the extent of possible non-controlled influences is clearly

assessed. This is particularly important, when quantitative

predictions are to be derived. Thirdly, the focus of interest in

CPM studies is predominantly in identifying the distinctive

signature at the tissue level that emerges from specific intercellular

interactions. It is characteristic for emergent phenomena, that the

effect of the super-positioned microscopic interactions becomes

not evident at the macroscopic spatial scale until a certain time –

also measurable at a macroscopic scale – has elapsed. Therefore,

numerical studies of the long-time behavior of CPMs and

approximative descriptions of the their dynamics particularly at

long, macroscopic time scales are indispensable.

Thus, the Hamiltonian H has a technical role by favoring those

transitions which lower the energy. However, the dynamics is not

driven by the Hamiltonian alone but there is a constant conflict

with a non-controlled voter-like portion in the transition rates.

This conflict becomes particularly blatant in the long-time

behavior. The consequences of this conflict within other param-

eter regimes are not yet well-understood. The ambiguity in the

model’s dynamics constitutes a serious restraint for utilizing the

CPM as a mechanistic model.

Utility for spatio-temporal limit procedures
Typical properties of a spatially explicit dynamical model are

often revealed by applying suitable spatio-temporal limit proce-

dures. For instance, the ensemble (mN )n[N of Gibbs measures on

increasing cubes LN~½{N,N�\Zd is studied in statistical

physics. The cluster points of these measures are Gibbs measures

on the infinite lattice Zd . By studying the latter objects the

phenomenon of phase transitions in the original model can be

understood. In the case of the two-type voter model, the longtime

behavior of spatially bounded systems is always trivial, that is the

system is absorbed in one of the two constant configurations.

However the extension of the voter model to infinite lattices shows

a more complex behavior in dimensions d§3 [27,29,30].

Exploiting the fact that spatially large but bounded systems are

‘close’ to infinite systems, the characteristics of the clustering

process before absorption can be derived [31]. Another important

tool of analysis is the derivation of a spatially and temporally

continuous description of the considered process by sending the

lattice spacing and the time unit to zero. The resulting model,

which is often a partial differential equation, can be considered to

be a description of the emergent macroscopic behavior that arises

from the microscopic interaction [32,33].

To carry out spatio-temporal limit procedures rigorously, it is

necessary that the original Markov chain model on S can be

extended to the infinite, spatially unbounded lattice. Assuming, for

simplicity, that S is a d-dimensional cubic lattice, an extension of

the model to S~Zd is required. The specification of transition

probabilities is no longer sufficient for the description of the model,

since the state space X? : ~W Zd

is innumerable then. This

becomes apparent, for instance, if it is tried to perform the

Metropolis algorithm on an infinite lattice. Actually, it is not self-

evident that an extension of the model to spatially unbounded

domains exists as a mathematically well-defined object. However,

such an extension is straightforward, if the model can be

interpreted as an interacting particle system (IPS) in the sense of

Liggett [29]. This is the case, if the following two conditions are

satisfied.

(1) The original Markov chain model is temporally continuous.

(2) The transitions are local.

Condition (1) is no serious restriction, since a time-continuous

Markov chain can be constructed from a time-discrete Markov

chain by a standard procedure. Indeed, let p~(p(g,g’))g,g’[X be the

transition matrix of the original Markov chain model and define

q : ~p{I,

where I is the unit matrix on X. Then q~(q(g,g’))g,g’[X satisfies

q(g,g’)§0,g,g’[X,g 6¼ g’and
X

g’[X
q(g,g’)~0. Hence q is a rate

matrix which generates a time-continuous Markov chain. The

evolution of this chain is very close to that of the original chain.

A Critical Analysis of the Cellular Potts Model

PLOS ONE | www.plosone.org 5 September 2012 | Volume 7 | Issue 9 | e42852



The only difference is that the time to the next attempted

transition is now exponentially distributed instead of constant.

Condition (2) is essential for defining a Markov process on X?.

Transitions are local, if

(2-I) the configuration is changed only locally when a transition

is performed;

(2-II) to calculate the transition rate, it is sufficient to know the

configuration within a local neighborhood of the region that is to

be changed.

A mathematically precise formulation of these conditions is

given in the Methods section. In a CPM, the transition rates of the

time-continuous algorithm satisfy (2-I) since only one site is

changed in an (infinitesimal) transition. However, (2-II) is not

satisfied, since the volume constraint HV (2) is a non-local

function. Indeed, to assess the impact of a cell-index change at

location x on HV , the volumes of the affected cells need to be

known. These volumes can be determined only if the configuration

on the whole lattice is examined. It is not enough to scan an

appropriate neighborhood of x. A detailed discussion of this issue

can be found in the Methods section.

Thus, a CPM would be qualified for the application of spatio-

temporal limit procedures, if it had a natural extension to spatially

unbounded systems. However, the non-local nature of the

transition rates blocks the integration of a CPM with Hamiltonian

(4) into the model class of interacting particle systems in the sense

of Liggett [29]. The methods that are available for CPM analysis

so far comprise essentially numerical simulation studies, such as

[7,34], and heuristic approximations as in [35,36], for instance.

This reveals a present challenge when exploiting CPMs, since the

extent of additional insight that can be gained by applying the

model as well as the stringency of the conclusions within the model

depend strongly on the capability and the rigor of the available

analytical tools.

Multiscale modeling within the CPM framework
CPMs are typically utilized to study the tissue scale properties

that result from specific intercellular interactions. In extended

CPM models such as [8,10,15,21,23,25,37], intracellular or

molecular details are included additionally. Therefore, since

multiple spatial and temporal scales are coupled into one

description, CPMs are considered to be multi-scale models.

There are two principal classes of such models that need to be

distinguished. Mechanistic models evolve according to rules that have

been abstracted from the underlying biological process. These

rules represent a proposed or hypothetical mechanism concerning

the intercellular interaction. The latter may depend on cellular

characteristics and intracellular processes. The goal of developing

a mechanistic model is essentially to provide a proof-of-principle

for a proposed mechanism or to ‘verify’/falsify a hypothetical

mechanism. This can be accomplished by determining – with the

help of the model – the distinctive characteristics at the tissue level

which emerge from the assumed intercellular interaction and their

comparison with experimental observation. A scheme of this

mechanistic multi-scale framework is depicted in Fig. 2. The main

challenge of mechanistic models lies in accounting for the

appropriateness of the model class by assessing the possible

impact of simplifying model assumptions on the intended

mechanism.

In contrast, a model of interacting cells is phenomenological,

sometimes also called empirical or data-based, if it agrees with

observed biological behavior in a statistical sense but its intrinsic

mechanism of evolution is secondary. The models principal

qualification for the studied question needs to be verified on an

appropriate data basis. If adequate agreement is reached,

phenomenological models can be exploited to explore theoretically

the tissue scale outcome at conditions that resemble or comple-

ment the experimentally tested ones, thereby describing, inter- or

even extrapolating existing biological data. The biological

experimentalist can thus be guided towards the most interesting

behavior. The main challenge of phenomenological models lies in

validating the model appropriately, that is to identify and match

particularly those characteristics that are critical for accordant

model behavior.

Thus, mechanistic and phenomenological models are used for

different purposes. Sufficiently validated phenomenological mod-

els can be utilized to summarize and visualize data, to make

predictions and as heuristics for designing experiments. Mecha-

nistic models with well-founded model assumptions can also

provide predictions of the system’s behavior but the focus is put

rather on an satisfactory explanation of the observed phenomena.

Notice that phenomenological models might be constructed partly

by mechanistic considerations. However, if the exploited model

behavior is not robust with respect to additional, purely technical

model assumptions or a full parameter variation within the

biologically explained constraints, its explanatory power becomes

ambiguous.

The mechanistic construction of a CPM is displayed schemat-

ically in Fig. 3. The central device in a CPM are the CPM cells’

surface fluctuations. They are mainly regulated by the Hamilto-

nian H, but the actual control of the Hamiltonian over the

intensity of the surface fluctuations is attenuated by a voter-like

portion in the transition rates, as is discussed in the subsection on

the Impact of the Hamiltonian. The Hamiltonian is a sum of

terms, typically at least the surface interaction term HI and the

volume constraint HV , see (1) and (2), respectively, which are

assumed to reflect simultaneously the effect of the intercellular

interaction and of the cellular characteristics. Supplementary

terms, such as the surface constraint HS , see (3), are integrated into

the Hamiltonian to further enforce phenomenologically realistic

behavior. All these terms are, however, not derived from a

mechanistic assumption about the behavior and interaction of the

subcellular parts that are resembled by the single nodes of a CPM

cell. Instead, these terms describe heuristically the effect of all

determinants – from the subcellular to the intercellular scale –

which are assumed to become ‘somehow’ manifest as cell surface

Figure 2. A mechanistic multiscale framework is characterized
by the coupling of multiple spatial and temporal scales on the
basis of abstracted rules. The assumed intercellular interaction may
depend on an interplay with cellular characteristics and intercellular
details. By determining the distinctive characteristics at the tissue level
and their comparison with experimental observation, it can be tested
wether a specific mechanism explains the behavior of an experimentally
studied cell system.
doi:10.1371/journal.pone.0042852.g002
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fluctuations. Thus, the parameters of a CPM Hamiltonian can be

dived into (i) directly biologically interpretable or measurable

parameters, like the cells’ target volumes Vw, (ii) effective

parameters that subsume various intercellular processes and

cellular details, such as the surface interaction strengths Jij , and

(iii) merely technical parameters with ambiguous biological

interpretation, like the parameters lw and aw, w[W , which

determine the impact of the volume and surface constraints. The

temperature T , which weights the overall impact of the

Hamiltonian on the dynamics, is also a purely technical

parameter. In the model, the parameter T controls the strength

of interaction between neighboring lattice nodes. The higher T ,

the less dependent they evolve. Thus, it affects at the same time the

subcellular cohesion, the intercellular interaction and the degree of

control that is exerted via the Hamiltonian onto the surface

fluctuations. There is a continuing obscurity concerning the

interpretation that can be given to this parameter [2,3,11,15]. It

seems that it remained from the physical origin of the model.

Notice, that the parameter T of the CPM can be omitted by a

scaling H ’ : ~H=T .

The surface fluctuations drive simultaneously the actual

behavior of a CPM at the cellular scale, the specifics of

intercellular interaction and the emerging behavior at the tissue

scale. Single aspects of the cellular properties in the model, for

instance the cell shape flexibility, the magnitude of random cell

displacements or the emerging cells’ surface roughness, and of the

intercellular interaction, like the strength of intercellular adhesion,

cannot be controlled individually but are interlinked with each

other. Likewise, purely model-technical control parameters such as

the cellular integrity, that is the property of CPM cells to span over

connected, essentially convex lattice domains, are coupled

indirectly with biologically interpretable cellular and intercellular

properties. The emerging tissue scale behavior is solely rooted in

the specified characteristics of the CPM cells’ surface fluctuations

and not directly linked to cellular and intracellular specifics.

If a CPM shall be utilized as an explanatory mechanistic model,

the central role of the surface fluctuations constitute a handicap for

a thorough understanding and interpretation of the model

outcome. This is because the single aspects of cellular behavior

in a CPM cannot be assessed individually by the modeler but are

coupled to each other in an indirect fashion. An observed

signature at the tissue scale might be traced down to the

underlying intensity of surface fluctuations. However, it is hardly

possible to identify and separate the effect of single components in

the model’s interplay of intercellular interaction, cellular charac-

teristics and even intracellular or molecular details that is apparent

as cell surface fluctuations.

Thus, a CPM’s spatial resolution below the cellular level, which

is the basis for modeling deformable cells, and the central role of

the surface fluctuations entail substantial drawbacks for its

mechanistic construction and, consequently, the explanatory

power of the model. If flexible, adaptive and non-isotropic cell

shapes or a variability in the cells’ sizes are assumed to essentially

affect the intercellular interaction, a CPM is one of a few existing

models that can be applied to show that a proposed mechanism

‘somehow’ produces the observed behavior. Disagreement with

the biological data, however, could mean both: the incapability of

the model to correctly capture the postulated mechanism or the

inappropriateness of the hypothetical mechanism for the biological

system at hand. Therefore, mechanistic conclusions drawn from

CPM models are only limitedly reliable. A validation of the results

with the help of alternative models which operate at differing levels

of complexity and thus represent different modeling compromises

is worthwhile. If cell sizes and shapes are of minor importance for

the interaction, more coarse-grained individual-based approaches

such as interacting particle systems, e.g. [29,38–40] may lead to

Figure 3. Cell surface fluctuations are the central device in the realization of the multiscale concept in CPMs. Both the rules of
intercellular interaction and the considered cellular characteristics are eventually coded, via the Hamiltonian or directly for extended models, into an
expression that regulates the intensity of CPM-cells’ surface fluctuations. Additional technical parameters are integrated into the Hamiltonian to be
able to suppress phenomenologically unrealistic behavior. The actual impact of the Hamiltonian on the intensity of CPM cells’ surface fluctuations is
attenuated by a voter-like portion in the transition rates. The surface fluctuations drive simultaneously the actual behavior of a CPM at the cellular
scale, the specifics of intercellular interaction and the emerging behavior at the tissue scale. Single aspects of the cellular properties in the model, for
instance the cell shape flexibility, the magnitude of random cell displacements or the cells’ surface roughness, and of the intercellular interaction, like
the strength of intercellular adhesion, cannot be controlled individually but are interlinked with each other. Likewise, purely model-technical control
parameters such as the cellular integrity, that is the property of CPM cells to span over connected, essentially convex lattice domains, are coupled
indirectly with biologically interpretable cellular and intercellular properties. The emerging tissue scale behavior is solely rooted in the specified
characteristics of the CPM cells’ surface fluctuations and not linked directly to cellular and intracellular specifics.
doi:10.1371/journal.pone.0042852.g003
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mechanistically better understood and analytically easier tractable

models.

If a CPM shall be exploited as a phenomenological model, it is

necessary to empirically match the kinetic properties of the model

with the respective data from the relevant biological experiments.

The benefit of this approach depends on the availability of

representative data for parameter estimation and model validation

as well as on theoretical knowledge about the fundamental

dynamical properties of CPMs. Although blatantly unrealistic cell

behavior is prevented by modifying the standard Metropolis

algorithm, it is not self-evident that the kinetic properties of a given

CPM with Hamiltonian H really resemble the dynamical behavior

of the considered experimental system. The challenge consists in

(I) identifying the key determinants that have to be empirically

matched in model and experiment to maximize the descriptive

power of the model and in (II) defining suitable measures of the

descriptive and predictive performance with respect to specific

traits. To progress in this direction, it is necessary to have a

substantial knowledge of the model’s principal behavior in the

respective parameter regions. So far, there are a few studies that

analyze the kinetic properties of CPM’s and compare them to

corresponding characteristics found in experimental data. For

example, [34] studied numerically the relaxation kinetics for

clustering in the original CPM introduced by [2] for cell sorting,

thus providing a reference framework for the model’s comparison

with experimental data. Other examples include [12] who assess

the biological plausibility of single cell dynamics before they turn

towards their actual focus of study, the collective behavior that

results from alignment rules based on elongated cell shapes, and

[41] who provide empirical guidelines about how to tune a CPM

in order to optimize its behavior with respect to certain biophysical

characteristics.Notice that the necessity to empirically match

simulations and experiments has already been recognized in [42]:

‘A first step towards quantitative cell-based modeling is to ensure

the cell behavior modeled by the CPM matches experiments

exactly.’ Here, it shall be emphasized that tuning the parameters of

a model such that it empirically matches the observations with

respect to certain key characteristics – regardless of the qualitative

or quantitative nature of the conformance measures – implies that

the model is utilized predominantly as a phenomenological model.

Those models describe or visualize rather than explain experi-

mentally observed behavior.

To describe a given experimental situation by a CPM, it is

necessary that there is a protocol of how to adjust the model

parameters in such a way, that the ‘in silico’ condition is

comparable with the actual preparation of the biological system.

Since the CPM parameters interfere with each other in a complex

way, a simultaneous parameter fitting is often applied. At present

there is no standard algorithm for the model adjustment. Instead,

it is a very intricate task that requires much intuition and skill by

the user [28].

Vice versa, if the behavior at conditions that have not yet been

explored experimentally shall be predicted, it is essential that a

concrete ‘in-silico’ setting can be translated into a biologically

condition that is defined by the states of certain experimentally

manageable quantities. However, several CPM parameters, in

particular those which subsume various intercellular and cellular

details into unspecific effects becoming manifest as surface

fluctuations, like the surface energy coefficients Jij , are hard to

match with biological traits. Varying Jij , for instance, affects the

details of intercellular interaction and, simultaneously, the cell

motility, the magnitude of surface fluctuations and the smoothness

of the cell surface: ‘more cohesive cells [in a CPM] have more

crumbled surfaces, larger membrane fluctuations and diffuse

further than less cohesive cells’ [3]. Even the actual cell size in the

CPM is affected: ‘... cells with a higher surface energy (but the

same target volume) overall are smaller ...’ [8]. There are a

number of observed tissue scale characteristics in the CPM that

have a direct biological interpretation, such as the average

magnitude of cell center displacements within the cell population,

the actual average magnitude of surface fluctuations, the apparent

smoothness of cell surfaces, or the observed distribution of cell

sizes. However, the attribution of these emergent characteristics to

manageable quantities at the cellular and intercellular scale, such

as the strength of intercellular adhesion between two cells, the

degree of the intrinsic motility of an individual cell, or even the

expression profiles of certain molecules at the cell surfaces, is

sometimes rather vague.

Thus, the central role of the surface fluctuations for the CPM

dynamics entails substantial drawbacks for its exploitation as a

phenomenological model of collective cell behavior. If the key

characteristics of the studied biological system that have to be

matched by the model system include flexible, adaptive and non-

isotropic cell shapes or a considerable variability in the cells’ sizes,

a CPM is one of a few existing models that can be applied.

The exploitation of a CPM as a phenomenological model is also

reasonable if the morphometric composition and the spatial

arrangement of the CPM cells and their dynamic reorganizations

solely constitute the spatial structure for the study of coupled

intracellular and molecular processes. In this case, the focus of

interest is put on analyzing the patterns and structures that emerge

from the interaction of these processes, for instance by modeling

them as coupled ODE systems. If the underlying spatial structure

shall not be static but temporarily varying or even be slightly

adaptive to the modeled intracellular occurrences, a CPM can

provide such a spatial framework. A CPM that is empirically

adjusted to match the key determinants of the morphometric cell

composition and the spatial cell arrangement in the given

experimentally assay, can be utilized then as the spatial basis for

an additional, mechanistic modeling stacked on top on it.

Discussion

CPMs are typically applied if the tissue scale properties that

emerge from specific intercellular interactions shall be described,

predicted or explained. The model class originates in statistical

physics, where Markov chain Monte Carlo methods are utilized to

study the behavior of many interacting particles at equilibrium.

The model’s adaption to the requirements of modeling morpho-

genetic processes involves a paradigm shift from equilibrium to

non-equilibrium, kinetic modeling. The temporal evolution in the

model – which before has been an auxiliary tool to drive the

system towards the equilibrium state of interest – turns out to be

the core of the transition mechanism in a CPM. Correction terms

in the CPM Hamiltonian and additional modifications in the

original transition mechanism help to eliminate biologically

unrealistic behavior. The modifications in the transition mecha-

nism dramatically alter the long-time behavior of a CPM

compared to its counterpart in statistical physics. In the long-

run, the temporal evolution of a CPM is not directed towards the

minimization of the Hamiltonian or energy but instead the CPM

cells consecutively die out. The correction terms in the Hamilto-

nian render the transition mechanism to be non-local, thus

hindering the application of powerful analysis methods from

statistical physics such as spatio-temporal limit procedures. Thus,

the descent from a well-studied model class in physics can hardly

be exploited for CPMs.
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To assess whether CPMs constitute good dynamical models for

multi-scale problems in morphogenesis, it is helpful to distinguish

between the intended purpose of modeling: mechanistic modeling

can be applied to explain an observed phenomenon, while

phenomenological modeling rather describes biological observa-

tions. In both cases, the mechanistic construction of the CPM

dynamics, where the intensity of the surface fluctuations is the

central device that subsumes the effect of all cellular and

intercellular details, entails substantial limitations for a CPM’s

exploitation in the respective direction. If considerable variability

in the cell sizes and shapes or flexible cellular neighborhood

relations are supposed to essentially determine the intercellular

interaction, the CPM framework is one of a few model classes that

can be utilized. The application of CPMs is also reasonable, if a

non-static, dynamically changing spatial structure shall be

simulated that forms the cellular basis for interacting intercellular

and molecular processes. Then the focus is put on the patterns and

structures that emerge from the interaction of these processes and

the tissue rearrangement described by the CPM is of minor

importance, utilized rather to represent the fluctuations in the

spatial composition of the cell population. In those cases, however,

where essentially isotropic, non-polarized cells of uniform size are

considered, it is worthwhile to validate the results by comparing

them to the outcomes of more coarse-grained modeling approach-

es, like Cellular Automata or Interacting Particle Systems, that are

mechanistically better understood and analytically more accessible

although they may look visually less appealing.

In most cases where a CPM is used, an important biological

problem is addressed which is characterized by an interplay of

several factors from different scales, acting at the intracellular, the

intercellular and the tissue level. The developed CPM usually

incorporates much detail and substantiates deep biological insight.

Computer simulations can be an important tool for a deeper

understanding. However, already the original system, which

underlies all more elaborate CPMs, is still poorly understood in

its theoretical and mathematical properties. The methods that are

available for its analysis so far comprise essentially numerical

studies and heuristic approximations. Since the stringency of the

conclusion that can be gained by applying a model depends

substantially on the capability and rigor of the available analytical

tools, this presents a considerable challenge. The more details from

the cellular, intracellular and possibly intracellular scale are

included into the model the more pronounced are the challenges

which are encountered when adjusting the model specifics to the

biological situation at hand or when analyzing the model

outcomes theoretically. To value the contribution of a CPM to

the understanding of an underlying biological problem, it is

essential that the theoretical characteristics of the model class are

well-understood. Artifacts and non-robustness of the model

behavior deserve particular attention, since laying them open

helps to define the good of the model. This study provides a

starting point for such work. It also constitutes a theoretical basis

for developing assistance in constructing and choosing expedient

model parameters and to give practical advice for cellular Potts

implementations. Quantitative estimates for choosing the param-

eter values such that a CPM behaves as intended within certain

time scales depend largely on the specific model that shall be

applied. While the formulas to calculate the time to extinction for

a given CPM are derived explicitly here, the development of

further quantitative support for the CPM construction, the

appropriate parameter choices and the determination of reason-

able time scales for conclusive simulations is left to future studies.

Further theoretical analysis of the CPM class is worthwhile and

shall be encouraged by this work. In particular, the study of highly

simplified models may lead to mathematically well-founded

assessments of the principal behavior of CPMs under various

conditions concerning the temporal scales and the specific

structure of the Hamiltonian as well as the parameter regimes.

Besides this, the simultaneous representation and theoretical as

well as empirical analysis of the same biological mechanism by

various models which differ in their spatial resolution and

particular model structure can help to distinguish the factors that

are robustly described from the effects that must be attributed to

the model’s peculiarities. In this respect, the comparison between

CPMs and non-lattice models, such as the Vertex model, or

between CPM and cellular automata or interacting particle

systems seems to be most promising.

Methods

Absorption for cellular Potts models
First, it shall be shown that any cellular Potts model as defined

in subsection Mathematical model description is eventually

absorbed by a constant configuration. Recall that

W~f0,1,:::,ng and X~W S , where S5Zd is a finite set. For

V5W , let be P0(V ) : ~fU5V : U 6¼1,U 6¼ Vg the set of

non-empty proper subsets of V . Define further

CV : ~VS
\

[
U[P0(V )

US, V5W ,V 6¼1, ð5Þ

the set of all configurations where exactly the cells with cell indices

from V are present. Notice that, for u[W , the set Cu : ~Cfug
contains only the constant-u configuration gu(x)~u,x[S.

Since the probability for the next transition in a given CPM is

determined solely by the present state but not the past ones, the

temporal evolution of a CPM is a Markov chain ([43], Def.2.1.1).

The behavior of the latter is completely characterized by the

transition matrix p~(p(g,f)g,f[X, where p(g,f) is the probability of

a transition g?f by one step of the modified Metropolis

algorithm, g,f[X.

In the following, the assertion that any CPM is eventually

absorbed by one of the constant configurations is derived from

considerations about the structure of the transition matrix. The

findings presented here are based on results in the theory of finite

Markov chains. See, for instance, ([44], 14-15) or [43] for more

detail.

Proposition 1. 1. The sets CV ,V5W ,V 6¼1, are the

communication classes associated with the transition matrix p.

2. For V5W ,V 6¼1, the class CV is closed if and only if

DV D~1.

3. The elements of

A : ~
[

u[W

Cu~fgu : u[Wg

are the absorbing states associated to p while the states that belong to

T : ~X\A are the transient states.

4. If the configurations in X are arranged appropriately, the

transition matrix has the form

p~
IA 0

B Q

� �
, ð6Þ

where IA is the unit matrix on A|A, 0 is the null-matrix on

A|T , B is a non-negative, non-vanishing matrix on T|A and Q
is a substochastic matrix on T|T .
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Notice that a matrix Q is substochastic if it has non-negative

entries with row sums less or equal than one but strictly less than

one for at least one row.

Proof. (1) Given two configurations g,f[CV , it is possible to reach

g from f by performing a finite number of transitions each with positive

transition probability, and vice versa. Thus, the elements of CV are

communicating ([43], Def.2.4.1). If a configuration g[CV is given,

each set CU with U[P0(V ) can be reached by performing a finite

number of transitions each with positive transition probability, but the

sets CU where V[P0(U) cannot be reached in this way. Therefore,

the sets CV ,V5W ,V 6¼1, are the communication classes associated

with the transition matrix p ([43], 12.4.1).

(2) One observes that

p(gu,g)~0, g 6¼ gu, p(gu,gu)~1:

Therefore, the states gu,u[W , are absorbing and the singletons

Cu,u[W , are closed communication classes ([43], Def.2.4.2). Since

the class CU is accessible from the class CV , if U[P0(V ) and since

P0(V ) 6¼1 for DV Dw1, it can be concluded that for

V5W ,DV Dw1, there exists an g[CV such that

X
f[CV

p(g,f)v1 :

Therefore, the classes CV are not closed if DV Dw1.

(3) Any state of a Markov chain is either recurrent or transient,

compare ([43], 13.1.1). Both properties are class properties ([43],

Thm.3.1.2), that means either all elements of a communication

class are recurrent or all class members are transient. A recurrent

communication class is closed ([43], 13.1.3). Thus, one finds that

A~
[

u[W

Cu~fgu : u[Wg

is the set of absorbing states associated to p, and T : ~X\A are the

transient states.

(4) It follows from (3) that the transition matrix p has the

structure described in (4) if the configurations in X are arranged in

such a way that the absorbing configurations from A are followed

by the transient configurations from T .

Next, asymptotic properties of the matrices Bk and Qk are

derived, where Qk is the k-th matrix power of the matrix Q and

Bk is defined by

Bk : ~
Xk{1

j~0

Qj

 !
B, ð7Þ

both Q and B given by (6). This is motivated by the fact that the

long-time behavior of a Markov chain with transition probability p

is completely determined by the k-th matrix power pk of the

transition matrix p for sufficiently large k[N. Indeed, if n0 is the

initial distribution, then

nk : ~n0pk

is the distribution at time k ([43], 13). Notice that

pk~
IA 0

Bk Qk

� �
, k[N: ð8Þ

Proposition 2. (1) For any g,f[T , it holds that

lim
k??

Qk(g,f)~0:

(2)

lim
k??

Bk~(IT{Q){1B:

Proof. (1) ([44], Prop. 5.1(i)).

(2) Define S : ~
X?

j~0
Qj . Since

(IT{Q)
Pk
j~0

Qj

 !
~IT{Qkz1

~
Pk
j~0

Qj

 !
(IT{Q), k[N0,

one obtains by letting k?? that

(IT{Q)S~S(IT{Q)~IT :

Thus, S~(IT{Q){1. The assertion (2) follows now from (7) by

letting k??. Indeed, one finds that

lim
k??

Bk~SB:

Now the results about eventual absorption and the probabilities

of absorption by a particular configuration can be stated. Suppose

that the Markov chain with initial distribution n0 and transition

matrix p is denoted by (Xk)k§0 and the underlying probability

space is denoted by (V,A,P). Absorption is the event that the Markov

chain reaches one of the absorbing states within finite time, that is

C : ~
[
k§0

fXk[Ag:

The event of being absorbed by a particular constant-u
configuration gu is defined by

Cu : ~
[
k§0

fXk~gug, u[W :

Denote by dg the Dirac or point measure in g[X.
Theorem 1. (1) For any initial distribution, absorption occurs

almost surely, that is

P(C)~ lim
k??

P(Xk[A)~1:
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(2) If the Markov chain (Xk)k§0 is started in the configuration

g[T , then the probability of absorption by the constant

configuration gu is given by

cu : ~P Cuð Þ~ lim
k??

P(Xk~gu)~ (IT{Q){1B
� 	

(g,gu), u[W :

(3) The set of stationary distributions of a CPM is given by

I~fm : m~
X
u[W

ĉcudgu with ĉcu§0,u[W , and
X
u[W

ĉcu~1g:

Proof. (1) One finds that the event fXk[Ag implies the event

fXkz1[Ag, since the Markov chain cannot escape from an

absorbing state once it was captured there. Consequently,

P(C)~P
[
k§0

fXk[Ag
 !

~ lim
k??

P(Xk[A)

by the continuity of the measure P.

For the distribution nk of the Markov chain at time k, it holds

that nk : ~n0pk, where n0 is the initial distribution and pk is the k-

th matrix power of the transition matrix p. Since

pk~
IA 0

Bk Qk

� �

with Bk defined by (7), one obtains

nk(g)~
X
f[T

n0(f)Qk(f,g), g[T , ð9Þ

and

nk(g)~n0(g)z
X
f[T

n0(f)Bk(f,g), g[A: ð10Þ

Thus on can conclude

P(Xk[A)~nk(A)

~1{nk(T)

~1{
X
g[T

nk(g)

~1{
X
g[T

X
f[T

n0(f)Qk(f,g),

where the last equality follows from (9). By Proposition 2 (1), each

addend converges to zero for k??. Taking into account that the

sum consists only of a finite number of addends, the assertion is

proven.

(2) Fix u[W . The event fXk~gug implies the event

fXkz1~gug, since the Markov chain cannot escape from an

absorbing state gu once it was captured there. Thus

P
[

k§0
fXk~gug


 �
~ limk?? P(Xk~gu) by the continuity of

the measure P. Since n0~dg, one obtains from (10) and

Proposition 2 (2) that

lim
k??

P(Xk~gu) ~ lim
k??

nk(gu)~ lim
k??

Bk(g,gu)

~ (IT{Q){1B
� 	

(g,gu):

(3) Since the Markov chain is almost sure captured by one of the

absorbing states gu,u[W , the set of stationary distributions is the

convex hull of the point measures dgu
concentrated on the

constant-u configurations gu,u[W .

Time till absorption for cellular Potts models
A CPM’s development towards absorption proceeds from an

initial state where all cell indices of W are present via the

consecutive disappearance of single cell indices until the final

absorbing state is reached. Therefore, the time of absorption can

be estimated if the time until the first disappearance of a cell index,

that is the time of the Markov chain exit time from the set CW , can

be estimated. Let the random variable t denote this time of exit

from the set CW ,

t : ~ minfk : Xkz16 [CWg,

where CW is given by (5). Thus, t is the time where the first CPM

cell dies out.

To state the results about the distribution of t, some additional

notation is necessary. Notice that the transition matrix p has the

structure

p~
R0 0

B0 Q0

� �
,

where R0~(p(g,f))g,f[X\CW
, B0~(p(g,f))g[CW ,f[X\CW

and

Q0~(p(g,f))g,f[CW
, if the rows and columns of p are arranged

appropriately. Consequently, it holds that

pk~
Rk

0 0

B0,n Qk
0

 !
,

where Rk
0 and Qk

0 are the n-th matrix power of R0 and Q0,

respectively, and BW ,n is some non-negative non-vanishing matrix

composed from R0,B0 and Q0. Further, O(f (n)) shall represent a

function of n such that there exist a,b[R,0vaƒbv?, with

af (n)ƒO(f (n))ƒbf (n) for all sufficiently large n[N.

Proposition 3. There exists a real eigenvalue l1[(0,1) of Q0

such that l1wDlj D for any other eigenvalue lj of Q0. Moreover, the

left eigenvector u1 and the right eigenvector v1 associated with l1

can be chosen positive and such that u1’v1~1, where u’ denotes

the transpose of a vector u. Suppose that l2 is an eigenvalue of Q
with multiplicity m2 such that Dl2D§Dlj D for all other eigenvalues

which are different from l1 and l2. Then it holds that
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Qk
0~lk

1v1u1’zO km2{1Dl2Dk
� 	

: ð11Þ

Proof. The matrix Q0 is substochastic and primitive. The latter

property means that Q is both irreducible and aperiodic ([43],

Def.6.1.2). Therefore, the Perron-Frobenius Theorem can be

applied ([43], Thm.6.1.1), which proves the assertion.

A direct consequence is the following theorem.

Theorem 2. The distribution of t is approximately geometric

with parameter l1, that is

P(t§k)~O lk
1

� 	
, ð12Þ

where l1[(0,1) is the eigenvalue of Q0 which is the largest in

absolute value.

Proof. Define n0DT~(n0(f))f[T and 1T (g)~1,g[T . The dis-

tribution of t is computed by

P(t§k)~P(Xk[CW )

~
X
g[T

X
f[T

n0(f)Qk
0(f,g)

~ n0DTð ÞQk
01T

~ n0DTð Þ lk
1v1u1’zO km2{1Dl2Dk

� 	� 
1T ,

k[N0, where the latter equality follows from (11). Since

n0DTð Þv1u1’1T is a constant independent of k which does not

vanish, the assertion is proven.

Thus, the path towards absorption is as follows. If a CPM

started on CW leaves this set, it runs next into one the sets CV ,

V5W ,DV D~DW D{1. Almost surely, this happens within a finite

number of time steps. The distribution of the exit time is

approximately geometric. Once the chain has entered a set CV

with V5W ,DV D~DW D{1, it cannot go back to CW . It stays in CV

until the next cell dies out. In this way it successively visits classes

CV1
,:::,CVn

where W 6V16V26:::6Vn. The differences be-

tween two consecutive classes are singletons. The set CVn
is

absorbing, since it consists only of one constant configuration.

The time until absorption can therefore be estimated by

consecutive application of Theorem 2. Notice that the future

evolution of a CPM which has already entered a class CV with

V[P0(W ) is the same as that of a CPM restricted to

XDV : ~VS5X. To restrict a CPM to the set XDV , consider the

restriction H DXV
of the original Hamiltonian and perform the

modified Metropolis algorithm on XDV . It turns out that the

associated transition probabilities are described by

pV : ~(p(g,f))g,f[XDV . Consequently, the time of exit from CV is

again approximately geometrically distributed and the parameter

of this distribution can be obtained as the leading eigenvalue of

QV : ~(p(g,f))g,f[CV
by applying the above arguments to pDV .

Locality of transition rates
The locality conditions (2-I) and (2-II) stated above represent a

slightly informal interpretation of the finite range conditions for

interacting particle systems (IPS) as defined in ([29], Def.I.4.17).

Notice that IPS are continuous-time models while CPM evolve in

discrete time steps. However, as explained in the section Utility for

spatio-temporal limit procedures, a continuous-time Markov chain

can be constructed from a temporally discrete chain by choosing

the rate matrix q~(q(g,f))g,f[X according to q~p{I. The matrix

entries of q and p differ only in their diagonal entries. The

diagonal entries, however, are determined by the off-diagonal

elements, since, for stochastic and rate matrices, the row sums are

equal to one and zero, respectively. This implies that the locality

conditions, which are stated precisely in the following, can be

examined on the basis of the transition matrix p as well as on the

basis of the corresponding rate matrix q.

Conditions (2-I’) and (2-I’’) as stated below are exactly the finite

range conditions for IPS ([29], Def.I.4.17), however, they are adapted

to the notation of this paper. Notice that locality conditions are

important for ensuring the existence of a process on spatially

unbounded lattices. Therefore, when considering a mechanism on a

finite lattice which shall be extended to an infinite lattice, it is essential

that the constants NI and NII in (2-I’) and (2-I’’), respectively, are

independent from the lattice size. In the following, Condition (2-I) and

(2-II) shall be formalized. For this, define the diameter of a set by

diam(T) : ~ supfDz{yD : z,y[Tg,T5S, with D:D denoting the

metric on S~Zd which is induced by the Euclidian norm on Rd .

The set of points where two configurations g,g’[X differ is given by .

Further, denote by dist(T ,T ’) : ~ minfDx{yD : x[T ,y[T ’g,T ,
T ’5S the distance of to sets. Then the precise locality conditions

are as follows.

(2-I’) There is a NIw0 such that q(g,g’)~0,g,g’[X, unless

diamfx : g(x) 6¼ g’(x)gƒNI .

(2-II’) There is a NIIw0 such that q(g,g’)~q(f,g’) for all

g,g’,f[X with dist(D(g,g’),D(g,f))wNII .

Proposition 4. (1) A CPM mechanism satisfies condition (2-

I’).

(2) A CPM with volume constraint does not satisfy condition (2-

II’)

Proof. (1) The transition rates of the time-continuous CPM

algorithm satisfy (2-I’) since only one site is changed in an

transition. Indeed, q(g,g’)~0,g,g’[X, unless g’~gy
x for suitable

x,y[S with Dx{yD~1. Thus q(g,g’)~0 for g,g’[X with

diamfx : g(x) 6¼ g’(x)gw1.

(2) The rate for a transition g?gy
x is a function of DHy

x ,

q(g,gy
x)~1½0,?)(DHy

x) exp
DHy

x

T

� �
z1({?,0)(DHy

x),

where x,y[S,g[X. Thus the locality properties of q depend on the

properties of H. The typical structure of a CPM-Hamiltonian as

given in (4) includes a volume constraint HV with

HV (g)~
X
w[W

lt(w)(Vw(g){vt(w))
2, g[X:

The difference HV (gy
x){HV (g) must be calculated to deter-

mine the transition rate for a cell-index change at location x. Due

to the quadratic term, this difference depends explicitly on the

volumes Vw(g)~
X

x[S
d(w,g(x)) of the affected cells w and not

solely on the volumes’ increase or decrease. However, to

determine the volume of a cell in a CPM, it is not enough to

scan an appropriate neighborhood of x. Therefore, the constant

NII in condition (2-II’) would depend on the lattice size, which

means that (2-II’) is not satisfied.
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Two remarks are in order. First, it is easy to see by the above

arguments, that any mechanism where the transition probabilities

can be determined only if the configuration on the whole lattice is

examined. This applies, in particular, to a surface constraint, but

also to some proliferation or shape control mechanisms of CPMs.

Second, the rates would be local, if the Hamiltonian H were

constructed solely from a finite range potential. The latter is a family

(WA)A5S of functions

WA : X?R, A5S,

which satisfy for each A5S
(I) WA~0 if diam(A)wN and

(II) WA(g)~WA(f) for all g,f[X? with g(x)~f(x),x[A.

Notice that the constant must be independent of the lattice size,

if a potential on a finite lattice is studied. Given such a potential, a

Hamiltonian can be constructed via

H~
X
A5S

WA:

The Hamiltonians that are used in statistical physics are usually

constructed from finite range potentials. Notice that the surface

interaction term HI of a CPM can be derived from the finite range

potential

WA(g)~

J(t(g(x)),t(g(y))),

ifA~fx,ygwithDx{yD~1,

0, otherwise:

0
B@

However, as soon as there is a non-local function like the

volume constraint added, the CPM does not satisfy (2-II’).

Actually, the locality condition on both the transition rates of an

IPS as well as the finite range condition for the potential can be

slightly relaxed ([19], Thm.I.3.9). Nevertheless the CPM does not

fall into this model class.

Acknowledgments

Discussions with Andreas Deutsch, Walter de Back, Jörn Starruß and Lutz

Brusch are gratefully acknowledged.

Author Contributions

Contributed reagents/materials/analysis tools: AVB. Wrote the paper:

AVB.

References

1. Madras NN (2002) Lectures on Monte Carlo methods. Fields Institute

monographs. American Mathematical Society.

2. Glazier JA, Graner F (1993) Simulation of the differential adhesion driven

rearrangement of biological cells. Phys Rev E 47: 2128–2154.

3. Glazier JA, Balter A, Poplawski NJ (2007) Magnetization to morphogenesis: A

b r i e f h i s t o r y o f t h e g l a z i e r - g r a n e r - h o g e w e g m o d e l .

In A R A Anderson, M A J Chaplain, and K A Rejniak, editors, Single Cell-

Based Models in Biology and Medicine, Mathematics and Biosciences in

Interaction: 79–106.
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Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol 10:

429–436.

6. Merks RMH, Glazier JA (2005) A cell-centered approach to developmental

biology. Physica A 352: 113–130.

7. Ouchi NB, Glazier JA, Rieu J, Upadhyaya A, Sawada Y (2003) Improving the

realism of the cellular Potts model in simulations of biological cells. Physica A

329: 451–458.
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14. Szabo A, Ünnep R, Mehes E, Twal WO, Argraves WS, et al. (2010) Collective

cell motion in endothelial monolayers. Phys Biol 7: 046007.

15. Zhang Y, Thomas GL, Swat M, Shirinifard A, Glazier JA (2011) Computer

simulations. of cell sorting due to differential adhesion. PLoS ONE 6: e24999.

16. Nagai T, Kawasaki K, Nakamura K (1988) Vertex dynamics of two-dimensional

cellular patterns. J Phys Soc Jpn 57: 2221–2224.

17. Weliky M, Oster G (1990) The mechanical basis of cell rearrangement.

Development 109: 373–386.

18. Landsberg KP, Farhadifar R, Ranft J, Umetsu D, Widmann TJ, et al. (2009)

Increased cell bond tension governs cell sorting at the drosophila anteroposterior

compartment boundary. Curr Biol 19: 1950–1955.

19. Newman TJ (2005) Modeling multicellular systems using subcellular elements.

Math Biosci Eng 2: 611–622.

20. Sandersius SA, Weijer CJ, Newman TJ (2011) Emergent cell and tissue

dynamics from subcellular modeling of active biomechanical processes. Phys

Biol 8: 045007+.

21. Marée AFM, Jilkine A, Dawes A, Grieneisen VA, Edelstein-Keshet L (2006)

Polarization and movement of keratocytes: A multiscale modelling approach.

Bull Math Biol 68: 1169–1211.

22. Hogeweg P (2000) Evolving mechanisms of morphogenesis: on the interplay

between differential adhesion and cell di_erentiation. J Theor Biol 203: 317–

333.

23. Zajac M, Jones GL, Glazier JA (2003) Simulating convergent extension by way

of anisotropic differential adhesion. J Theor Biol 222: 247–259.

24. Balter A, Merks RMH, Poplawski NJ, Swat M, Glazier JA (2007) The Glazier-

Graner-Hogeweg model: Extensions, future directions, and opportunities for

further study. In A R A Anderson, M A J Chaplain, and K A Rejniak, editors,

Single Cell-Based Models in Biology and Medicine, Mathematics and

Biosciences in Interaction : 151–167.

25. Saville NJ, Hogeweg P (1997) Modelling morphogenesis: From single cells to

crawling slugs. J Theor Biol 184: 229–235.
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