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Abstract

Background: Among the primary goals of microarray analysis is the identification of genes that could distinguish between
different phenotypes (feature selection). Previous studies indicate that incorporating prior information of the genes’
function could help identify physiologically relevant features. However, current methods that incorporate prior functional
information do not provide a relative estimate of the effect of different genes on the biological processes of interest.

Results: Here, we present a method that integrates gene ontology (GO) information and expression data using Bayesian
regression mixture models to perform unsupervised clustering of the samples and identify physiologically relevant
discriminating features. As a model application, the method was applied to identify the genes that play a role in the
cytotoxic responses of human hepatoblastoma cell line (HepG2) to saturated fatty acid (SFA) and tumor necrosis factor
(TNF)-a, as compared to the non-toxic response to the unsaturated FFAs (UFA) and TNF-a. Incorporation of prior knowledge
led to a better discrimination of the toxic phenotypes from the others. The model identified roles of lysosomal ATPases and
adenylate cyclase (AC9) in the toxicity of palmitate. To validate the role of AC in palmitate-treated cells, we measured the
intracellular levels of cyclic AMP (cAMP). The cAMP levels were found to be significantly reduced by palmitate treatment and
not by the other FFAs, in accordance with the model selection of AC9.

Conclusions: A framework is presented that incorporates prior ontology information, which helped to (a) perform
unsupervised clustering of the phenotypes, and (b) identify the genes relevant to each cluster of phenotypes. We
demonstrate the proposed framework by applying it to identify physiologically-relevant feature genes that conferred
differential toxicity to saturated vs. unsaturated FFAs. The framework can be applied to other problems to efficiently
integrate ontology information and expression data in order to identify feature genes.
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Introduction

Current methods of feature selection can be classified into two

major categories: data-based and prior information-based. The

data-based techniques rely primarily on the microarray data and

sophisticated modeling or machine trained under the conditions of

supervised classification to identify the distinguishing features

(genes). The simpler ‘filtering’ techniques classify the subgroups by

maximizing the ratio of between-group to within-group variance.

Examples of filtering techniques include the Wilcoxon’s rank sum

test [1], Fisher’s Discriminant Analysis (FDA) [2,3], discriminative

partial least squares (PLS) [4] or genetic algorithm (GA)- [5] based

classification and clustering [6,7]. However, these techniques

suffer from certain drawbacks, e.g., many among them are based

on methods that require the genes to be independent and

uncorrelated, which microarray data is not [8]. Therefore,

improvements to the filtering techniques have been made, such

as ‘‘minimum redundancy and maximum relevance (mRMR)’’

[8]. Additionally, sophisticated ‘wrapper’ techniques have been

developed, which employ a trained learning machine to identify

the relevance of genes to a phenotype. Examples of wrapper

techniques include support vector machines (SVM) [9] and the

generalized least absolute shrinkage and selection operator

(LASSO) [10,11]. The wrapper methods are considered better

than the filter methods because they can incorporate the inter-

correlation of genes and can also determine the optimal number of

variables. A third set of techniques are also being developed which

combine the wrapper and the filter techniques (e.g. the kernel

Fisher discriminant analysis, KFDA) [12] or multi-layer percep-

trons [13]. There are two major shortcomings with the existing
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feature selection approaches. First, these approaches do not

incorporate the vast amount of information already available on

the functions of the genes. Typically, the functional information of

the genes is employed only in the post-processing of the selected

genes. The incorporation of prior knowledge of genes is

particularly important when the expression data is noisy. Second,

most of the feature selection approaches belong to a family of

supervised discriminative analysis and therefore require labeling

information of the phenotypes (i.e., which phenotypes are in the

same group) to identify feature genes.

In order to address the first issue, alternative analysis methods

are being developed which incorporate prior information of the

genes [14–16]. In these knowledge-based methods, the association

of a pre-defined gene ontology (GO) category to a phenotype is

statistically evaluated, and used to identify the discriminating

cellular processes [17–19]. Such GO-based techniques identify the

gene sets and subsets which have significant association to a

phenotype. Individual genes which may be significantly altered

and have important association with the phenotype may not be

selected if the gene-group they belong to is not enriched. Even

among the subsets that are identified as important, the

identification of a few (one or two) targets can be difficult and

subjective. Another major drawback of these approaches is the

tedious manual preparation and updating of the data sets. While

data sets are available for Affymetrix chip for some species, for

other platforms, such as the custom cDNA microarrays, one would

need to manually define the gene sets, which can delay

procurement of downstream information or introduce errors.

Therefore, such techniques are useful when the expressions of

many genes of an important, causative pathway change. For other

situations where there is change of only a few, rate-controlling

genes, such approaches may not be as informative. Nevertheless,

applications of these techniques have lent support to the notion

that incorporation of prior knowledge could either improve the

classification efficiency or identify more relevant biological

processes. Regarding the second issue, a few recent studies have

aimed to combine unsupervised data clustering with feature

selection. In [20], the authors proposed altering the procedure of

data clustering and feature selection iteratively. In each iteration,

the data points are first clustered according to the selected features,

and then FDA is applied to identify a new set of features according

to the cluster labels. In [21,22], the iterative procedure is improved

by converting the original problem into a convex optimization

problem. However, none of these studies are able to exploit the

prior knowledge of the data, which is important with microarray

data analysis.

Here, we present a general framework for feature selection that

is able to overcome the two shortcomings simultaneously. The

proposed framework integrates the ontology information of the

genes with their expression data (X) to (a) perform unsupervised

data clustering to group similar cellular responses (Y) into clusters,

and (b) to identify the genes that are most discriminative among

the clusters of cellular responses. Mixture regression models are

first applied to cluster the multiple experimental conditions.

Important genes with high correlation to each group of

experimental conditions are then found by a regression model

that automatically incorporates the GO information. The key

genes that differentiate the groups of conditions are identified to

provide insight into the differences among the biological processes.

A major advantage of this method is the easy assimilation and

update of the functional information of the genes. Another major

advantage of the proposed method is that it unifies unsupervised

data clustering with supervised feature selection into a single

framework. This combination allows us to identify genes relevant

to multiple biological processes without having to know, a priori,

which experimental condition is related to which biological

process. This is important when conditions are difficult to classify

or the classification of conditions are unknown a priori.

Finally, the proposed method allows for parallel identification of

genes relevant to multiple cellular responses, which makes it an

efficient high-throughput analysis.

We demonstrated the proposed method by applying it to

identify the genes that are likely involved in the toxicity of FFAs, in

particular saturated (SFA), palmitate, and TNF-a. Our experi-

mental results showed that our proposed method is able to (a)

identify the group of toxic experimental conditions, and (b) identify

the genes that are relevant to the toxic conditions.

Methods

Bayesian Regression Model
The central assumption behind this method is that the genes

within a GO category would have similar effect on a cellular

response. Therefore, genes belonging to the same GO category

were constrained to have similar regression weights. The above

assumption may not always hold, by employing a restrictive

assumption, we aim to significantly reduce the hypothesis space of

the regression model. We believe that given a large number of

genes and a small number of experimental conditions, it is more

important to restrict the hypothesis space for data fitting. This

decision is also supported by our experimental results (below).

Additionally, in order to circumvent the noise typically associated

with microarray data, the gene expressions were approximated by

a multivariate Gaussian distribution and the regression weights

were estimated by minimizing the regression error that was

averaged over the Gaussian distribution.

Let X = (x1, x2,…, xm) denote the gene expression data for m

different experimental conditions, where xk = (x1, x2,…, xn)

represents the expression data of n genes under the kth condition.

Let y = (y1, y2,…, ym) denote the corresponding cellular responses

for the m conditions. By assuming that the conditional probability

Pr(y|X, w) follows the Gaussian distribution N(XT w, s2 I), the

regression error could be computed as

err wð Þ~
Xm

i~1

yi{xT
i w

� �2
~ y{X T w
�� ��2

2
ð1Þ

where, w = (w1, w2,…, wn) are the regression weight assigned to the

n genes. The optimal solution for w that minimizes the above

regression error is

w~ XX T
� �{1

Xy ð2Þ

Now, consider multiple replicates of the gene expression data

under each experimental condition. Let x1
k, x2

k,…, xr
k denote the r

replicates of the gene expression data under the kth condition. We

can approximate the distribution of gene expression data under

the kth condition, i.e., Pr(xk), by a Gaussian distribution N(x̄k, Sk)

where x̄k and Sk are calculated as follows:

�xxk~

Pr
i~1 xi

k

r
, Sk~

Xr

i~1

xi
k{�xxk

� �
xi

k{�xxk

� �T ð3Þ

Due to the limited number of replicates (i.e., r is small for most

conditions), we simplify Sk as a diagonal matrix by setting the off-

diagonal elements of Sk to be zero. This is particularly important

GO Based Mixture Models
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for our study since there are thousands of genes involved in the

process, and the number of replicates is only two, which makes it

impossible to estimate any off diagonal elements in Sk. Using x̄k

and Sk in (3), instead of regressing the cellular response to the

averaged gene expression data x̄k, the Bayesian regression model

will search for the regression weights w that minimize the

following expected regression error:

Serr wð ÞT~
Xm

i~1

ð
yi{xT

i w
� �2

Pr xið Þdxi~ y{ �XX T w
�� ��2

2
z

wT
Xm

i~1
Sk

� �
w

ð4Þ

where, X̄ = (x̄1, x̄2,…, x̄m). The optimal solution for the Bayesian

regression model is

w~ �XX �XX TzS
� �{1 �XXy ð5Þ

where, S~
Pm

i~1 Sk. Comparing the above expression for w to

the expression in (2), we see that the primary difference between

the two expressions is that (5) incorporates covariance matrix S

into its denominator. The introduction of S will assign smaller

regression weights to the genes whose expression data exhibit large

variance compared to the genes with small variance. Finally, genes

with the largest absolute regression weights are deemed to be the

most important genes and are selected for analysis. Note that

equation (5) is essentially similar to the ridge regression model. As

suggested by several studies (Roth, 2004), Lasso regression using

L1 norm tends to achieve better performance for feature selection.

However, the ridge regression is computationally more efficient

compared to Lasso regression. This is particularly important since

our approach employs an iterative algorithm to approximate the

optimal regression weights, and therefore efficient computation is

essential to our approach.

Mixture Model
The main idea behind the mixture models is to cluster the

experimental conditions into an optimal number of subgroups and

build a different regression model that relates the gene expression

data (X) to a cell response (Y) for each subgroup. The clustering of

experimental conditions, however, is based on their regression

weights. For example, two experimental conditions will be

grouped into the same cluster if they share similar regression

weights. However, the regression weights of each experimental

condition would also depend on the clustering results because a

regression model can be built only for a group of experimental

conditions. Hence, the technical challenge of regression mixture

model lies in resolving this dilemma. We applied Expectation

Maximization (EM) algorithm to effectively resolve this problem.

The key idea behind the EM algorithm is to iteratively alternate

the clustering and the regression procedures. At the very beginning

of the EM algorithm, experimental conditions are randomly

assigned to clusters and a regression model is built for each cluster.

Then, the regression weights obtained for the genes are used to

regroup the experimental conditions into a new set of clusters, and

the new clustering results are used to generate new regression

weights for the genes. The clustering and the regression

procedures alternate until a stable solution is reached where the

parameters no longer change with further iterations. It can be

shown that the EM algorithm described above will indeed

maximize the log-likelihood of the gene expression data.

Furthermore, the iterative procedure is guaranteed to converge

to a solution that is a local maximum [23].

In the regression mixture model, we don’t assume that all the

experimental conditions share the same regression weights w.

Instead, we assume that there are K (K,m) different sets of

regression weights, one for each sub-population. Each experimen-

tal condition will choose the most suitable set of regression weights.

Below, we outline the key idea behind the variational EM

algorithm that is used in our calculation.

We model the conditional probability Pr(y|X, w) by

log Pr yjXð Þ~
Xm

i~1

log Pr yijxið Þ~
Xm

i~1

log
XK

k~1

pkN xT
i wk,s2

� � !
ð6Þ

In order to incorporate the variance in the gene expression data,

similar to the Bayesian regression model, we compute the expected

log Pr(y|X) that is averaged over the distribution of the gene

expression data X. More specifically, the expected log Pr(y|X) is

computed as

Slog Pr yjXð ÞT~
Xm

i~1

ð
log

XK

k~1

qkN xT
i wk,s2

� � !
Pr xið Þdxi ð7Þ

Where qk is the prior for choosing the kth regression model. To

facilitate the computation, we follow the idea of variational

method by introducing a variational distribution wi,k = Pr(k|yi, xi),

i = 1,…,m, k = 1,…, K and approximate the log-likelihood

expression in (7) as follows:

Slog Pr yjXð ÞT§

Xm

i~1

XK

k~1

wi,k log qk{
1

2
log 2ps2
� �

{
1

2s2

ð
yi{xT

i wk

� �2
Pr xið Þdxi

� �

~
Xm

i~1

XK

k~1

wi,k log qk{
1

2
log 2ps2
� �

{
yi{�xxT

i wk

� �2
zwT

k Siwk

2s2

 !

ð8Þ

Thus, we have the following updating equations to compute wi,k,

qk, wk, and s2

wi,k!qk exp {
yi{�xxT

i wk

� �2
zwT

k Siwk

2s2

 !

qk~
1

m

Xm

i~1

wi,k

wk~
Xm

i~1
wi,k �xxi�xx

T
i zSi

� 	� �{1 Xm

i~1
wi,kyi�xxi

� �

s2~
Xm

i~1

XK

k~1

wi,k yi{�xxT
i wk

� �2
zwT

k Siwk

h i

ð9Þ

We further improved the robustness of the model by introducing

the prior for the regression weights Pr(wk) as a Gaussian

distribution N(0, l21). Then, instead of maximizing the log-

likelihood, we will maximize the logarithm of the posterior

probability, i.e.,

log Pr W jX ,yð Þ~log Pr yjX ,Wð Þzlog Pr Wð Þ ð10Þ

where, W = (w1, w2,…, wK). The updating equations in (9) are

unchanged except that the equation for wk is changed to the

following
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wk~
Xm

i~1
wi,k �xxi�xx

T
i zSi

� 	
zlI

� �{1 Xm

i~1
wi,kyi�xxi

� �
ð11Þ

Evidently, the introduction of the uninformative prior is in general

to reduce the magnitude of the regression weights. As a result, the

small weights will become smaller and even zero, which could

result in a sparse solution for W.

We summarize the EM algorithm used in our calculation as

follows:

For t = 1, 2, …

1. E-step: compute wi,k in (9) for each condition and every mixture

model

2. M-step: compute qk and s in (9), and wk in (11)

Incorporation of GO information into the similarity matrix
To incorporate the GO information into the regression model,

we first represent each gene by the set of GO terms that are

associated with the gene. We further expand the GO profile of

each gene by including the parent nodes of each associated GO

code. We then compute the similarity between two genes based on

the overlap between their GO profiles. Since some GO codes may

be more important than others, we adopt the term frequency

independent document frequency (TF.IDF) weighting scheme of

information retrieval and weigh each GO code by the IDF factor

when computing the gene similarity. The IDF factor for a GO

code g is computed as

IDF gð Þ~log
Nz0:5

N gð Þ

� �
ð12Þ

where N is the total number of genes and N(g) is the number of

genes whose profile include the GO code g. The advantage of

using the IDF weight is that it down weighs the common GO

codes while computing gene similarity. This is based on the

assumption that a GO code is likely to be less important in

deciding the similarity between two genes if it is commonly shared

by a large number of genes. For example, the GO code

‘mitochondrial genes’ has many genes which belong to mitochon-

dria but may not be functionally related. We denote the pairwise

gene similarity by the matrix T = [Ti,j]n6n where element Ti,j

represents the similarity between the ith gene and the jth gene. We

would like to emphasize that the above assumption may not hold

in some biological processes. In particular, two genes sharing a

large similarity in their GO functions may show opposite effects on

regulating a phenotype. The situation could be even more

complicated when one gene up-regulates the expression levels of

certain genes under some conditions and down-regulates their

expression levels under other conditions.

Based on this assumption, we can construct an energy function

to measure the consistency between the assigned regression

weights w and the gene similarity T, as shown below:

l w,Tð Þ~
Xn

i,j~1

Ti,j wi{wj

� �2
~wT Lw ð13Þ

where L is the graph Laplacian of similarity matrix T. Evidently,

the smaller the l(w, T) is, the more consistent the regression weight

w is to the gene similarity T. We can then incorporate the gene

similarity T into the regression model as a Bayesian prior for

regression weights W, i.e.,

Pr wð Þ!exp {l
Xn

i~1

w2
i {t

Xn

i,j~1

Ti,j wi{wj

� �2

 !
~

exp {wT lIztL½ �w
� � ð14Þ

Note that in the above, in addition to the prior for the gene

similarity T, we also include the uninformative prior through the

factor lI. The updating equations for the integrated Bayesian

regression mixture model are almost identical to the ones in (10)

except that the equation for wk is changed to the following:

wk~
Xm

i~1
wi,k �xxi�xx

T
i zSi

� 	
zlIztL

� �{1 Xm

i~1
wi,kyi�xxi

� �
ð15Þ

User-specified parameters of the Integrative Mixture GO
(IMGO) model

The two user-specified parameters to our mixture model are l
and t. Parameter l is related to the uninformative prior and its

role is to reduce the variance in the regression weights. Given that

we have a large number of genes and relatively small number of

experimental conditions, there can be an infinite number of ways

to regress the cell response that are equally valid. The introduction

of the uninformative prior lI will allow us to distinguish among the

regression models that have the same regression error. In

particular, by increasing the value of the parameter l, we require

the regression model to assign large weights to only a small

number of genes and most genes are assigned very small or even

zero weights. In other words, l is used to control the volume of the

solution space for the regression weights. A large l will lead to a
smaller solution space and vice versa. The parameter t defines

the weight that is assigned to the GO information. The larger
the t, the more we require the regression weights to be
consistent with the GO information.

In addition to l and t, we also have to determine the number of

clusters when applying the mixture model. In our case, the number

of clusters is decided by the application. In particular, we have prior

knowledge that the experimental conditions can be classified into

toxic vs. non-toxic conditions. Hence, the experimental conditions

clustered naturally into two groups, in this application.

Extension to the Case When the Classification of
Experimental Conditions is Given

In the framework proposed above, we assume that the

classification of experimental conditions is unknown, which is

automatically discovered by the mixture model. In this section, we

demonstrate that the proposed framework can be easily extended

to scenarios where the classification of experimental conditions is

provided. We denote by ki,k the classification of the experimental

conditions: ki,k = 1 indicates that the i-th experimental condition

belong to the k-th group of conditions, and zero otherwise. We

modify equation (15) by replacing wi,k, the group assignment

computed by the mixture model, with ki,k, the given classification

information for the experimental conditions. The resulting

expression for the regression weights is

wk~
Xm

i~1
ki,k �xxi�xx

T
i zSi

� 	
zlIztL

� �{1 Xm

i~1
ki,kyi�xxi

� �
ð16Þ

We refer to this method as the ‘‘simpler method’’ to

differentiate it from the mixture regression model that is proposed

above.

GO Based Mixture Models
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Results

Application to identify genes associated with fatty acid
toxicity to human hepatoma cell line

Free fatty acids and TNF-a have been suggested to play

important role in lipotoxicity. Yet, it is not clear which genes may

play a role in lipotoxicity in hepatocytes. Additionally, it is not

clear whether this interaction is affected by the type of free fatty

acids. It is known that exposure to elevated FFAs could cause

lipotoxicity, i.e., cell death associated with excessive lipid

accumulation or exposure. It has been also discovered that

saturated FFAs are more cytotoxic at elevated physiological

concentrations than the unsaturated FFAs. However, the under-

lying changes associated with the differential toxicity of saturated

and unsaturated FFAs are not clearly known. Additionally, TNF-a
is another factor that has been implicated in obesity-associated

disorders. We treated human hepatoma cell line, HepG2 cells,

with elevated physiological level (0.7 mM) of different types of

FFAs (saturated, monounsaturated and polyunsaturated)

‘‘crossed’’ with 3 different levels of TNF-a, 0, 20 and 100 ng/ml

for 24 h. Global gene expressions were measured by microarray

analyses. LDH release was measured as a marker of lipotoxicity. It

was observed that saturated FFA was much more toxic than

unsaturated FFAs and TNF exposure further increased the toxicity

of the saturated FFA (Figure 1A). Cells exposed to saturated FFAs

also had significantly higher ketone body release as compared to

Figure 1. The cytotoxicity and ketone body production in response to various treatments. Confluent HepG2 cells were treated for 24 h
with 0.7 mM of the indicated FFA complexed to 4% (w/v) BSA, in the presence or absence of TNF-a (0, 20 or 100 ng/ml). (A) Cytotoxicity of the
treatments. The cytotoxicity was measured as the % LDH released, as defined in the methods section. (B) Ketone body production. Acetoacetate and
beta-hydroxybutyrate release into the media were measured by enzymatic assays. Ketone body release was calculated as the sum of acetoacetate
and beta-hydroxybutyrate release. Data presented as mean6s.d. of three independent experiments. w, significant FFA effect, p,0.01, #, significant
TNF-a effect, p,0.01.
doi:10.1371/journal.pone.0003860.g001
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cells treated with unsaturated FFAs (Figure 1B). We applied

IMGO model to automatically identify the cytotoxic and

ketogenic conditions and the underlying gene changes that may

be associated with the differential cytotoxic response of liver cells

to the different types of FFAs and TNF-a.

We first conduct experiments using the simpler method by

assuming the classification of the experimental conditions is given.

We manually define the cytotoxic conditions and select the genes

using the computational model. The top five genes identified by

this analysis are shown in Table 1. We found that caspase 6, one of

the selected genes has been shown to play a role in the toxicity of

saturated FFAs to other cell type but not with our cell type (data

not shown). However, for the other four genes identified by the

simpler method, they have not been shown to play a direct role in

lipotoxicity according to existing literature [24–28]. Overall, the

results with the simpler method are mixed.

In the second experiment, we examined the proposed

framework without a priori knowledge of the classification of the

experimental conditions. First, we showed that the proposed

framework is able to identify the group of cytotoxic and ketogenic

conditions and the group of non-toxic conditions. This is

illustrated in Figure 2, in which a ‘‘separation’’ score, computed

based on the difference between the probabilities of assigning to

the two groups, is plotted for each experimental condition. We

clearly see that for all the cytotoxic and ketogenic conditions, their

separation scores are much larger than that of the non-toxic

conditions, indicating a clear separation between the two groups of

experimental conditions. This result indicates that the unsuper-

vised clustering method proposed in this paper is able to

automatically identify the experimental conditions that are in the

same group. The parameter values used for this analysis were:

lambda = 0.5 and tau = 3. The details of the selection of the

parameter values are provided in the supplementary file S1 and

supplementary figure S1.

Second, we examine the genes identified by the proposed

framework that are listed in Table 2. Lysosomal ATPases were

selected as the top genes. This identified an important role of

lysosomes in the toxicity of palmitate to the HepG2 cells. A

previous study [29] has shown that the cytotoxicity by palmitate to

hepatocytes could be reduced by reducing lysosomal permeabili-

zation. Another important gene identified by the analysis is

adenylate cyclase 9 (AC9). The selection of AC9 only for the cases

with high separation suggested that cAMP levels should be

differentially modulated by palmitate treatment and not by

unsaturated FFAs. This was indeed found to be the case

(Figure 3). Thus, the model was able to identify the genes that

are altered by saturated FFAs and play a role in the toxicity.

Discussion

Incorporation of functional information of the genes in the

microarray analysis is an active area of research. However, most of

the currently available methods utilize the prior functional (GO)

information to generate pre-defined sets of genes [17,18]. The

Table 1. Top 5 genes identified by supervised clustering-based model (‘‘simpler method’’).

Parameter Values LL id Name

l= 0.5 3486 (gC) insulin-like growth factor binding protein 3 (IGFBP3), mRNA. (AA598601,NM_000598,Hs.77326)

t= 3 3632 (gN) inositol polyphosphate-5-phosphatase, 40 kDa (INPP5A), mRNA. (T58773,NM_005539,Hs.124029)

10537 (gC) ubiquitin D (UBD), mRNA. (N33920,NM_006398,Hs.44532)

839 (gN) caspase 6, apoptosis-related cysteine protease (CASP6), transcript variant beta, mRNA. (W45688,NM_032992,Hs.3280)

51704 (gC) G protein-coupled receptor, family C, group 5, member B (GPRC5B), mRNA. (W35153,NM_016235,Hs.242407)

doi:10.1371/journal.pone.0003860.t001

Figure 2. Discrimination of cytotoxic conditions by the IMGO analysis. The ability of the two-population model for cytotoxicity to
distinguish the cytotoxic (high LDH release) conditions was tested.
doi:10.1371/journal.pone.0003860.g002

GO Based Mixture Models

PLoS ONE | www.plosone.org 6 December 2008 | Volume 3 | Issue 12 | e3860



underlying assumption in these analyses is that a phenotype is

altered by concerted changes in the expression of many genes of a

GO-category [17]. Though the approach presented here is

conceptually similar to these approaches, there are some major

differences. (a) Unlike most existing studies that are based on

supervised feature selection, our study applies unsupervised feature

selection. Specifically, we unified unsupervised data clustering with

supervised feature selection under the same framework, which

allows us to identify the feature genes even though the

classification of the experimental conditions is unknown. (b) The

similarity matrix employed in the analysis is based on the overlap

in the GO profiles among every pair of genes in the dataset.

Therefore, there are no strict gene sets and the possibility of

interaction/ coregulation of any pair of genes is incorporated as

well as weighted, i.e., genes with greater overlap in their GO-

profile have a greater coefficient in the similarity matrix and vice

versa. (c) One can control the contribution of the GO information

in the model. In our study, the contribution of the similarity matrix

(GO information) is weighted by the factor t, which can be varied.

This is in contrast to other methods where the GO information

takes precedence over the subsequent analysis. One disadvantage

of methods based centrally on GO information is that the prior

knowledge is typically generated for certain sets of conditions and

cell-types, so that the information generated may not be

universally valid (for every cell type and treatment condition).

Our experience has shown that there exists an optimal value of the

GO-contribution (t), beyond which the separation deteriorates.

This method allows one to take this into consideration and control

the GO-contribution to achieve the best discrimination among the

subpopulations.

As a representative application, we applied the model to identify

the genes associated with toxicity of saturated FFAs to human

hepatoma cells. We compared two alternatives for the proposed

framework- automatic (unsupervised) clustering and gene selec-

tion, and user-defined (supervised) classification and gene

selection. The latter is denoted above as the simpler method. As

Table 2. Top 5 identified genes by IMGO for various values of separation.

Parameter Values Separation LL id Names

l= 0.5 0.9208 535 (gN) ATPase, H+ transporting, lysosomal V0 subunit a isoform 1 (ATP6V0A1), mRNA.
(AA430654,NM_005177,Hs.267871)

t= 3 115 (gF) adenylate cyclase 9_(H64281,_,Hs.20196)

4792 (g) nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (NFKBIA), mRNA.
(W56300,NM_020529,Hs.81328)

9550 (gC) ATPase, H+ transporting, lysosomal 13 kDa, V1 subunit G isoform 1 (ATP6V1G1), mRNA.
(AA608567,NM_004888,Hs.90336)

1183 (gC) chloride channel 4_(AA019316,_,Hs.199250)

Mixture model with two sub-populations were fitted to the data for the values of the parameters l and t shown, and the difference in the probabilities of the two
models that fit the P-0 condition was calculated. For the choice of the parameters shown, the two models had very different probabilities that fit the palmitate
condition, whereby one model had a much greater probability than the other in fitting the palmitate results. For such scenario, genes with the greatest difference of
weights for the two populations are shown as they represent genes that have the greatest differential effect on the toxicity, or are responsible for differentiating the
toxic condition.
doi:10.1371/journal.pone.0003860.t002

Figure 3. Effect of FFA-treatments on intracellular cAMP levels. Cells were treated for 24 h with 0.7 mM of different types of FFA and the
levels of intracellular cAMP were measured. H = Control medium, O = 0.7 mM oleate, L = 0.7 mM linoleate, and P = 0.7 mM palmitate. w, p,0.01 by a
two-tailed t-test.
doi:10.1371/journal.pone.0003860.g003
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expected, the genes identified by the two methods are different,

even though the equations identifying the genes (equations 15 and

16) are fairly similar. The key different between the unsupervised

method and the supervised one is that the unsupervised method

automatically computes probability wi,k in (15), which weights the

i-th experimental condition for the k-th group. As indicated in

Figure 2, this probability varies significantly across the experi-

mental conditions that are in the same group. On the other hand,

for the supervised method, the a priori classification information of

conditions is encoded by a binary variable ki,k, which gives the

same weight for all the experimental conditions that are in the

same group. We believe that the ability to weigh experimental

conditions in the same group differently leads to better gene

selection with the unsupervised method.

In conclusion, IMGO is a novel method to integrate prior

information and gene expression to identify feature genes which

play important role in a cellular phenotype/response as well as

those that are affected differently under different conditions.
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