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Programmed cell death (PCD) is an essential process for the immune system’s

development and homeostasis, enabling the remotion of infected or unnecessary cells.

There are several PCD’s types, depending on the molecular mechanisms, such as

non-inflammatory or pro-inflammatory. Hemocytes are the main component of cellular

immunity in bivalve mollusks. Numerous infectious microorganisms produce toxins that

impair hemocytes functions, but there is little knowledge on the role of PCD in these

cells. This study aims to evaluate in vitro whether marine toxins induce a particular

type of PCD in hemocytes of the bivalve mollusk Crassostrea gigas during 4 h at

25◦C. Hemocytes were incubated with two types of marine toxins: non-proteinaceous

toxins from microalgae (saxitoxin, STX; gonyautoxins 2 and 3, GTX2/3; okadaic

acid/dynophysistoxin-1, OA/DTX-1; brevetoxins 2 and 3, PbTx-2,-3; brevetoxin 2,

PbTx-2), and proteinaceous extracts from bacteria (Vibrio parahaemolyticus, Vp; V.

campbellii, Vc). Also, we used the apoptosis inducers, staurosporine (STP), and

camptothecin (CPT). STP, CPT, STX, and GTX 2/3, provoked high hemocyte mortality

characterized by apoptosis hallmarks such as phosphatidylserine translocation into

the outer leaflet of the cell membrane, exacerbated chromatin condensation, DNA

oligonucleosomal fragments, and variation in gene expression levels of apoptotic

caspases 2, 3, 7, and 8. The mixture of PbTx-2,-3 also showed many apoptosis features;

however, they did not show apoptotic DNA oligonucleosomal fragments. Likewise,

PbTx-2, OA/DTX-1, and proteinaceous extracts from bacteria Vp, and Vc, induced a

minor degree of cell death with high gene expression of the pro-inflammatory initiator

caspase-1, which could indicate a process of pyroptosis-like PCD. Hemocytes could

carry out both PCD types simultaneously. Therefore, marine toxins trigger PCD’s signaling

pathways in C. gigas hemocytes, depending on the toxin’s nature, which appears to be

highly conserved both structurally and functionally.
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INTRODUCTION

Pacific oyster Crassostrea gigas (Thunberg, 1793) (Bivalvia,
Mollusk) shows the highest aquaculture production in the
world and is one of the best-studied bivalve mollusks (1,
2). These benthic invertebrates filter high volumes of water
through their gills and accumulate pathogenic microbes and
environmental toxins that continuously challenge their normal
functions (3–5). To cope with this challenge, these animals have
developed effective systems to detect and discriminate beneficial
microorganisms from potentially harmful and pathogenic ones
and are capable of keeping infections under control (6–8).
Bivalve’s innate immunity consists of humoral components
of hemolymph (agglutinins, lysosomal enzymes, opsonizing
molecules, and antimicrobial peptides) and the cellular defense
that the hemocytes perform (9). Hemocytes represent the first
line of internal defense against parasites, pathogens, and non-
self-materials in bivalve mollusks and play a significant role
in the immune system homeostasis and disease prevention.
They are capable of phagocytosis, encapsulation, and enzymatic
digestion (9–14), and participate in other processes, such
as wound and shell repair, nutrient digestion, transport,
and excretion (10, 15). Injury, toxic substances, or invasion
by pathogenic microorganisms activates internal hemolymph
factors such as hormones, cytokines, and other humoral factors
that regulate hemocyte’s function and migration to promote
localized responses (14, 16, 17).

Hemocyte death is a naturally occurring phenomenon in
bivalve mollusks due to internal and external stimuli, as
in other multicellular organisms. There are two types of
cell death: 1) programmed/regulated cell death (PCD), most
commonly known as apoptosis, but including also autophagy,
necroptosis, pyroptosis, and 2) necrosis, a kind of accidental
cell death due to non-physiological states such as infection
or injury (18, 19). PCD is a natural part of the animal cell
cycle and an essential factor in animal disease progression.
In a healthy animal, PCD occurs when a cell is damaged,
infected, senescent, or otherwise of little use to the animal
and plays crucial roles in immune system homeostasis and
function, defense against parasite and pathogens, and self/non-
self recognition (20–24). Hemocytes’ enhanced PCD could
conceivably create immunosuppression that in turn would
reduce disease’s resistance, increase opportunistic infections, and
decline mollusk’s population (25–31).

PCD involves activating a family of cysteine proteases called
caspases (32, 33), that can be pro-apoptotic or pro-inflammatory.
The pro-apoptotic subfamily includes the initiator caspases -2,
-8, -9, and -10 that respond to the apoptotic signals and cleave
and activate the effector caspases -3, -6, and -7, which in turn
cleave target proteins to orchestrate apoptotic cell death (21,
28, 31, 32, 34). Apoptotic cell death is an immunologically
silent death that does not induce inflammation but allows the
orderly degradation and recycling of cellular components. The
pro-inflammatory caspases -1, -4, -5, and -11 play a significant
role in innate immune responses by inducing pyroptosis, an
inflammatory cell death that clear infections by removing
pathogen replication niches and releasing pro-inflammatory

cytokines and danger signals (21, 34–38). Caspases induce
profound changes in cells, including the hallmarks of apoptosis:
phosphatidylserine (PS) translocation from the cytosolic to
the exoplasmic leaflet of the plasma membrane, cell shrinkage
and blebbing, chromatin condensation, and DNA nuclear
fragmentation (39–41). Pyroptosis also exhibits PS translocation,
resulting from plasma membrane rupture, nuclear condensation,
and DNA cleavage, but nuclear integrity is maintained (42–45).
Table 1 summarizes the features of apoptosis and pyroptosis.

A wide variety of pathogenic microorganisms like viruses,
bacteria, protozoan, and microalgae, cause mollusk hemocyte
cell death, either as a consequence of infecting host cells or
producing toxic products. The study of these effects has raised
interest to solve the economic, ecologic, and health challenges
of mollusk’s aquaculture (5, 25, 30, 46–62). The objective of
this study was to demonstrate whether marine toxins induce
PCD in hemocytes. We exposed C. gigas hemocytes in vitro to
non-proteinaceous microalgae marine toxins saxitoxin (STX),
gonyautoxins 2 and 3 (GTX2/3), brevetoxins 2 and 3 (PbTx-
2,-3), brevetoxin 2 (PbTx-2), okadaic acid/dynophysistoxin 1
(OA/DTX-1), as well as proteinaceous toxins from the bacteria
Vibrio parahaemolyticus (Vp) and V. campbellii (Vc). Little is
known, about how PCD processes regulates bivalve’s immune
defenses, and if the pathogens or xenobiotics induce hemocyte’s
PCD to unbalance cellular homeostasis toward higher mortality.

MATERIALS AND METHODS

Source of Oysters
Crassostrea gigas (Thunberg, 1793) oysters (11 ± 1.2 cm)
cultivated in suspended cages at Rancho Bueno, Mexico
(24◦32N, 111◦42W), were collected and transported to
CIBNOR. The specimens were placed in 40 L plastic tanks
containing filtered (1µm) seawater (35 psu) pumped directly
from the sea. The water was maintained with constant aeration
through air stones. The water was replaced every 2 days. During
acclimation (10 days), oysters were fed a mixture of microalgae
(Chaetoceros calcitrans, C. muelleri, and Isochrysis galbana;
1:1:1) obtained at CIBNOR. C. calcitrans (CHCAL-7) and C.
muelleri (CHM-8) were cultured in 20-L plastic bags in F/2
growth medium at 22◦C under constant illumination at a
salinity of 32 PSU. I. galbana (ISG-1) was grown in MA-F/2
medium at the same temperature, salinity, and volume under
continuous illumination, and were harvested in the stationary
growth phase.

Toxins and Apoptosis Inducers
Obtention, Extraction, and Quantification of Marine

Toxins

Non-proteinaceous Toxins
Paralyzing Shellfish Toxins. Saxitoxin (STX) FDA Reference
Standard Saxitoxin was obtained from the US National Institute
of Standards and Technology (NIST, RM 8642). The saxitoxin
dihydrochloride concentration is nominally 100µg mL−1

in a solution of 80% acidified water (pH 3.5) and 20%
ethanol (volume fractions) and provided by Marine Toxins
and Amino acids Laboratory from CIBNOR. Gonyautoxins
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TABLE 1 | Generalized features of apoptosis and pyroptosis.

Features Apoptosis Pyroptosis

Outcome Evolutionary conserved Yes Yes

Programmed Yes Yes

Regulated process Yes Yes

Inflammatory No Yes

Signaling pathway Specific Specific

Activated by Intrinsic or

extrinsic

PAMPs

and

DAMPs

Intermediate

signaling

Mitochondrial disfunction Yes Yes

Cytochrome-c release Yes No

Caspase-1 No Yes

Caspase-2 Yes No

Caspase-3 Yes Yes*

Caspase-7 Yes No

Caspase-8 Yes Yes*

Phenotype Membrane intact Yes No

Pore formation No Yes

Membrane blebbing Yes No

Cell lysis No Yes

Cell swelling No Yes

PS exposure Yes Yes

Chromatin condensation Yes Yes

DNA fragmentation Yes Yes

DNA laddering Yes No

*Variable according to cell type.

epimers 2 and 3 (GTX 2/3) were obtained according to
Estrada et al. (58) from cultured dinoflagellate G. catenatum
(Strain GCQM-2) (https://www.cibnor.gob.mx/investigacion/
colecciones-biologicas/codimar). Identity and quantification of
STX and GTX 2/3 were subjected to HPLC analysis, using the
post-column oxidative fluorescence method (63, 64), and the
biological activity was performed by mouse bioassay (MBA)
according to AOAC (65) standards.

Diarrheic Shellfish Toxins. A mixture of okadaic acid (OA) and
dinophysistoxin 1 (DTX-1) were obtained from cultured of the
dinoflagellate Prorocentrum lima (Strain PRL1) isolated from the
Gulf of California (66), and provided by Marine Toxins and
Amino acids Laboratory from CIBNOR. The cells were cultured
in f/2+Se medium (67, 68) with filtered (0.45µm) seawater and
grown in monoalgal cultures in 500mL Erlenmeyer flasks for
12-h light:12-h dark photocycle at 25◦C under 70W fluorescent
lamps and anaerobic conditions. The concentration of OA/DTX-
1 in the extract semi-purified (69) was calculated as log Mouse
Unit (MU) = 2.6 log (1 + t−1); MU = 4 µg of OA (70). The
DST content (OA + DTX-1) was determined by LC–MS/MS
method (71).

Neurotoxic Shellfish Toxins. The brevetoxin 2 (PbTx-2) extract
and themixture of brevetoxin 2 and 3 (PbTx-2,−3) were obtained

by cultivation of the dinoflagellate Karenia brevis (Strain Kb-
3) originally isolated from the Gulf of Mexico and donated to
CIBNOR by Dr. Tracy Villareal from the University of Austin,
Texas, USA. The cells were cultured in GSe medium (72) with
filtered (0.45µm) seawater and grown in monoalgal cultures
in 2.8 L Fernbach flasks for 12-h light:12-h dark photocycle, at
25◦C under 70W fluorescent lamps and anaerobic conditions.
Extraction and semi-purification of PbTx2 and PbTx-2,-3 were
performed and provided by Marine Toxins and Amino acids
Laboratory from CIBNOR (73). PbTxs were identified and
measured by LC-MS/MS (pers. comm. Dr. Andrew Turner,
CEFAS, United Kingdom), andMBAmeasured biological activity
according to the American Public Health Association (74).

We made aliquots for these non-proteinaceous marine
toxins, and the solvents were removed by evaporation to
dryness in vacuo and stored at −80◦C. Before experiments
toxins were suspended in 1% dimethyl-sulfoxide (DMSO),
diluted in 0.22µm sterile saline solution (Cs PiSA NaCl 0.9%,
pH 7.2), prepared immediately before use for the desired
working concentration.

Proteinaceous Toxins
Crude Extracts of Bacteria Vibrio parahaemolyticus and V.
campbellii. V. parahaemolyticus (Strain VpM) and V. campbellii
(VcA1) were isolated from white-leg shrimp (Litopenaeus
vannamei) and Pacific oyster (C. gigas), respectively, with
signs of illness and growth in Luria-Bertani agar (LB), and
then transferred to Miller’s LB Broth (37◦C). Ten liters of
each strain (1 × 109 cell mL−1) was centrifuged at 600× g,
10min at 4◦C, and freeze. To confirm the strains’ identity,
we extracted DNA by the organic extraction method (75),
and DNA was resuspended by the addition of TE Buffer
10mM pH 8.0. DNA purity and concentration were estimated
using the Nanodrop 1000 spectrophotometer (Thermo Fisher
Scientific). DNA integrity was visualized in 1.5% agarose
gel electrophoresis, under UVP Biodoc-It 2 imaging system
(Analytik Jena), stained with the fluorescent dye GelRed R©

Nucleic Acid Gel Stain (Biotium 41003). Endpoint PCR was
performed to identify the bacterial species and identify some
virulence factors in the strains. The primers used are shown
in Supplementary Table 1. PCR reactions were performed with
GoTaq R© Flexi DNA Polymerase (Promega M829) according
to the manufacturer’s instructions. The PCR products were
electrophoresed and sequenced by Genewiz (South Plainfield,
NJ, USA). The sequences were analyzed by Blast-NCBI (https://
blast.ncbi.nlm.nih.gov/Blast.cgi). Supplementary Table 2 shows
the genes identified in bacterial strains. To obtain the protein
crude extract, centrifuged bacteria were re-suspended in filtered
(0.2µm) sterile saline solution (CS PiSA NaCl 0.9%, pH 7.2),
with 1X protease inhibitor (Sigma P1860), and 0.5% Triton
X-100. Cells were homogenized with glass beads (300µm)
in a vortex, and the extract was centrifuged at 1,200× g,
15min, 4◦C. Protein was determined by BCA Protein Assay Kit
(bicinchoninic acid, 23227, Thermo Fisher Scientific) according
to the manufacturer’s instructions with bovine albumin as
a standard.
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Commercial Apoptosis Inducers
Camptothecin (CPT, C-9911, Sigma–Aldrich, St. Louis, MO)
was dissolved in DMSO and made into a stock 1mM solution.
Staurosporine (STP, 81590, Cayman Chemical, Ann Harbor, MI)
was dissolved in DMSO and made into a 1mM stock solution.

Hemolymph Extraction
Oyster shells were surface-cleaned with 70% ethanol, and
hemolymph (4–5 pools of 10–30 animals) extracted from the
adductor muscle using a 26-gauge hypodermic needle making
a small hole in the valves of the animals close to the muscle,
and immediately put on ice. No oyster was subjected to more
than one sampling. Immediately after hemolymph collection,
the total number of hemocytes was determined using TC20TM

Automated Cell Counter (BioRad). The mean cell concentration
for the hemocyte oyster population was 1.9 ± 0.5 × 106 cell
mL−1. When necessary, hemocytes’ concentration in the solution
was adjusted by adding centrifuged hemolymph (600× g, 10min,
4◦C) without hemocytes.

Biological Activity of Toxins and Commercial

Apoptosis Inducers
To assess toxins and commercial apoptosis inducer’s biological
activity, we carried out a hemocyte viability test with resazurin
sodium salt (C-62758-13-8, Sigma-Aldrich). Each hemocyte
pooled subgroup was subdivided into three aliquots (each 100µL
at densities of 1 × 106 cell mL−1) for each treatment. Aliquots
were placed in a 96-well sterile microplate and allowed to attach
and spread for 1 h at 25◦C. Samples were exposed to three
different concentrations of STP, CPT, toxins, negative control
(hemocytes exposed to sterile saline Cs PiSA NaCl 0.9%, pH 7.2),
or positive control (hemocytes exposed to 10mM HCl pH 2).
Not more than 10 µL of toxins or apoptosis inducer’s working
concentration were added for every 100mL of hemolymph to
obtain the final concentrations studied. Control tests with DMSO
were assayed and showed no effect on cell viability (data not
shown). Hemocytes were incubated in the dark for 4 h at 25◦C,
in a humid chamber in triplicate. Preview studies have shown
that incubation for 4–6 h is enough to induce apoptosis in bivalve
hemocytes exposed to marine toxins such as PST and DST (56,
58). Following the incubation time, cell viability was measured
with the resazurin reduction cell viability assay (76). From this
experiment, final concentrations close to 50% mortality were
chosen for the rest of the tests (Table 2).

Neutral Comet Assay
Neutral comet assay detects the breakage of double-stranded
DNA (58, 77). Aliquots of 150 µL of hemolymph, with a
cellular concentration of 1.5 × 106 cells mL−1, were placed in
Eppendorf tubes. The cells were exposed to toxins or apoptosis
inducers, according to Table 2. Hemocytes were incubated for
4·h at 25◦C, in a dark, humid chamber in triplicate. Hemocytes
were harvested using 0.25% trypsin in filtered (0.2µm) sterile
seawater (pH 7, 33 PSU) and washed and resuspended in the
same sterile volume seawater. The suspension was added to
0.75% low-temperature melting agarose at a ratio of 1:10 (v/v)
and spread on glass slides that were pre-coated with 0.7% regular

agarose and then air-dried. Slides with double-layered agarose
were submerged in pre-cooled lysis solution (154mM NaC1,
10mM Tris, 10mM EDTA, and 0.5% SLS at pH 10) at 4◦C
for 30min, washed briefly to remove detergent and salt, and
electrophoresed at∼7V cm−1 for 3min in TBE solution (40mM
Tris-boric acid, 2mM EDTA at pH 8.3) and then stained for
10min with propidium iodide (PI; 10 µg mL−1). DNA damage
was quantified by measuring displacement between the nucleus’s
genetic material (comet head) and the resulting tail, according to
Estrada et al. (58); the comet tail’s intensity, relative to the head,
reflects the number of DNA breaks.

Annexin V Assay
To identify PS exposure on the outer leaflet of the plasma
membrane, we used the Annexin V–FITC apoptosis kit
(BioVision, K101). Each of the pooled subgroups was subdivided
into three aliquots (aliquots of 200 µL at densities of 1× 106 cell
mL−1) for each treatment, put directly on a coverslip and allowed
to attach and spread for 1 h at room temperature. The cells were
exposed to toxins or apoptosis inducers, according to Table 2.
Hemocytes were incubated for 4 h at 25◦C, in a dark, humid
chamber in triplicate. Following exposure to toxins or apoptosis
inducers, hemocytes were washed with filtered (0.2µm) sterile
seawater (pH 7, 33 PSU). The hemocytes were processed
with Annexin-V according to the manufacturer’s instructions.
Following incubation, the coverslip was inverted on a glass slide
and observed under a phase-contrast microscope (Nikon Eclipse
Ni-U) coupled with fluorescence for characterization using a
dual filter set for FITC and rhodamine. At least 100 cells were
counted in each sample. Categories were assigned based on the
total number of hemocytes counted. Viable cells are stained for
annexin V (FITC green) but not for propidium iodide (PI, red).
Cells in early PCD are stained by FITC-annexin V but not by PI.
Late PCD or already dead cells are stained both by FITC-annexin
V and PI, or only by PI, respectively.

Chromatin Condensation
We used adherent cells stained with 4′,6-Diamidino-2-
Phenylindole (DAPI, ThermoFisher D1306) to evaluate
chromatin’s condensation. Hemocytes (200 µL at densities of
1 × 106 cell mL−1) were allowed to attach and spread onto a
glass coverslip for one h at room temperature. Then they were
exposed to toxins or apoptosis inducers for 4 h at 25◦C, washed
with filtered (0.2µm) sterile seawater (pH 7, 33 PSU), and fixed
with methanol. Fixed hemocytes were immersed in PBS buffer
(137mM NaCl, 2mM KCl, 10mM Na2HPO4, 1.8mM KH2PO4,
pH 7.2) for 5min and then treated with a DAPI solution in PBS
(1:1,500) for 5min. Hemocytes were washed with PBS, and the
coverslip was inverted andmounted on a glass slide and observed
under a fluorescence microscope (365 nm) (Nikon Eclipse Ni-
U). The percentage of nuclei with chromatin condensation
was estimated by examining 200 cells per sample. Cells with
intact DNA show weak fluorescence signals; in contrast, cells
with condensed chromatin exhibit stronger fluorescence when
observed under a fluorescence microscope. Also, condensed
chromatin could be kept in the periphery of the nuclei or small
fragments dispersed.
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TABLE 2 | Final concentration of apoptosis inducers or marine toxins used for the

experiments.

Apoptosis inducers or marine toxins Concentration

STP 1.5 µg mL−1

CPT 1.2 µg mL−1

STX 5 µg STX eq mL−1

GTX 2/3 1.25 µg STX eq mL−1

OA/DTX-1 3 µg AO eq mL−1

PbTx2 5 µg PbTx eq mL−1

PbTx-2,3 4 µg PbTx eq mL−1

Vp 6.25 µg protein mL−1

Vc 5 µg protein mL−1

CPT, Camptothecin; STP, Staurosporine; STX, Saxitoxin; GTX, Gonyautoxin; OA, Okadaic

acid; DTX, Dynophysistoxin; PbTx, Brevetoxin; Vp, Vibrio parahaemolyticus extract; Vc, V.

campbellii extract.

DNA Fragmentation Assay
Aliquots of 2mL of hemolymph, with a cellular concentration of
2 × 106 cells mL−1, were placed in Eppendorf tubes in triplicate.
The cells were exposed to toxins or apoptosis inducers, according
to Table 2. Each hemocyte triplicate was pooled to extract DNA
with the Apoptotic DNA-Ladder Kit (Merck 11835246001),
according to themanufacturer’s instructions. DNAwas visualized
in 2% agarose gel electrophoresis, under UVP Biodoc-It 2
imaging system (Analytik Jena), stained with the fluorescent dye
GelRed R© Nucleic Acid Gel Stain (Biotium 41003).

Gene Expression Analysis by Quantitative
Real-Time PCR
RNA Extraction and cDNA Synthesis
To perform RT-qPCR analysis, after hemolymph extraction,
2mL of hemolymph with a cellular concentration of 1.5 × 106

cells mL−1 were placed in Eppendorf tubes and exposed to
the desired final concentration of toxins or apoptosis inducers
according to Table 2. Hemocytes were incubated for 4 h at
25◦C, in a humidity chamber in triplicate. Following incubation
hemocytes were centrifuged 600× g, 15min, 4◦C, and washed
in filtered (0.2µm) sterile seawater (pH 7, 33 PSU). The
hemocyte pellet obtained was stored to −80◦C for further
analyses. For total RNA extraction pooled hemolymph samples
were lysed in 1mL of FastRNA R© Pro Green Kit solution (MP
Biomedicals) and processed according to the manufacturer’s
instructions. The extracted RNA concentration was measured
by spectrophotometer (Nanodrop 1000 R© Thermo Scientific) at
260 nm. The purity of RNA was determined as the 260/280 nm
ratio with acceptable values > 1.8. RNA concentration was
estimated using the Nanodrop 1000 spectrophotometer (Thermo
Fisher Scientific). A total of 1 µg total RNA was treated with
1U DNase I (SIGMA AMPD1) for 2 h at 37◦C and then heat-
inactivated at 65◦C for 10min before reverse transcription to
eliminate genomic DNA contamination. The integrity of total
RNA was analyzed by 1% agarose gel electrophoresis under
UVP Biodoc-It 2 imaging system (Analytik Jena), stained with
the fluorescent dye GelRed R© Nucleic Acid Gel Stain (Biotium

41003). A sample of 2.5 µg RNA was used to synthesize cDNA
from each pooled sample using an oligo dT and Superscript
III first-strand synthesis system for RT-PCR kit (Invitrogen,
USA 11904018), according to the manufacturer’s instructions.
The resulting cDNA was stored at −80◦C until use. cDNA
synthesis was confirmed by endpoint PCR amplification of the
beta actin gene (Forward 5′-CCACACCCGTAAGGGAAAG-
3′; Reverse 5′-GGTTACCACCACCATGAGG-3′) with GoTaq R©

Flexi DNA Polymerase (PromegaM829), and PCR products were
electrophoresed in 1% agarose gel with GelRed R© Nucleic Acid
Gel Stain (Biotium 41003).

Quantitative Real-Time PCR
cDNAs were used for qPCR analysis to determine the relative
expression of mRNA coding five caspases (caspase 1, 2, 3, 7, and
8) and two endogenous controls (RPL7 and RPL36). Primers
were obtained from preview reports (Supplementary Table 1),
and the primers were ordered from T4 Oligo (Irapuato, Gto,
Mexico). Primers efficiency was tested using the standard curve
method. For this purpose, a serial dilution (1:5, 1:10, 1:20, 1:40,
1:80) was made from a single cDNA sample consisting of a pool
of all cDNAs different treatments (0.5 µg µL−1). Only primers
that showed efficiencies between 1.8 and 2.2 were used. The qPCR
analysis was performed in tube strips in triplicate using the Rotor-
Gene Q (Quiagen TM) with a total reaction volume of 10 µL.
Each reaction had 5 µL of 2X SsoFastTMEvaGreen R©Supermix
(Bio-Rad, Hercules, CA, 1725201), 0.3mM of each primer, and
1 µL of each diluted cDNA (100 ng µL−1). Amplification
conditions were enzyme activation at 95◦C for 1min, followed by
40 cycles of denaturation 10 s at 95◦C and annealing/extension
30 s at 59◦C. The qPCR product’s specificity was analyzed
by a dissociation curve performed after amplification (65–
95◦C continuous-time), observing a single peak at the expected
Tm. Relative quantification of the expression of the analyzed
genes was calculated using REST 2009 (Relative Expression
Software Tool) software v2.0.13 with RG mode (http://www.
qiagen.com/rest), using the pair-wise fixed randomization test
(78). Normalization using the housekeeping genes RPL7 and
RPL36 were used to identify the expression levels of the caspase’s
genes. Using the take-off values obtained from Rotor-Gene Q,
the program performed 3,000 iterations to determine whether
there are significant differences between samples and controls
while considering issues of reaction efficiency and reference gene
normalization. This program’s expression values are a ratio such
that values above 1 denote an upregulation of gene expression
in the treated group while values <1 indicate a downregulation
(∗P < 0.05; ∗∗P < 0.01). Expression variation for each gene is
visualized in a whisker-box plot.

Statistical
For all experiments, means and SD were calculated, and
results are expressed as the means ± SD of three independent
experiments, except for RT-qPCR analysis as mentioned above.
Comparisons between control and treatments were assessed with
Student’s t distribution or Wilcoxon test, according to results
obtained with Shapiro-Wilk (distributions normality) and Fisher
(homoscedasticity) tests. Statistical significance was set at P <
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0.05. All analyses were performed using the SPSS for Windows
statistical package (version 16.0).

RESULTS

Cytotoxicity of Hemocytes
To investigate if marine toxins cause hemocyte toxicity, we
measured cell viability after 4 h of exposure to proteinaceous
and non-proteinaceous toxins and apoptosis inducers (Figure 1).
Control cells in sterile saline NaCl, 0.9% (Neg) showed negligible
cell viability changes, while hemocytes treated with 10mM
HCl pH 2 (Pos) showed the expected cell death of 97%.
Staurosporine (STP), camptothecin (CPT), saxitoxin (STX),
gonyautoxin epimers 2 and 3 (GTX2/3), and the mixture of
brevetoxins 2 and 3 (PbTx-2,-3) provoked a dose-dependent
effect, with hemocyte mortality above 50% for the highest
concentrations. The mixture of okadaic acid and dinophysistoxin
1 (AO/DTX-1) was not toxic at the concentration range tested,
and brevetoxin 2 (PbTx-2) exerted minor toxicity only at
5 µg mL−1. Crude extracts of Vibrio parahaemolyticus (Vp) and
V. campbellii (Vc) increased cell death only at a marginal level
of 5–10%, at 6.25 and 5 µg mL−1, respectively. These results
demonstrate that marine toxins induce hemocytes’ cell death.

Phosphatidylserine Translocation
We used Annexin V to identify PS’s translocation from the
cytoplasmic to the exoplasmic leaflet of the hemocyte plasma
membrane, through the binding of fluorescent annexin V at
4 h post challenged. Figure 2A showed hemocytes observed by
fluorescence microscopy to detect viable or no measurable PCD
cells (green and red staining negative, v), PCD cells (green, anexin
V-bound, a), and cells in end stage of PCD and dead (red,
propidium iodide stained cells, and green anexin V-bound cells,
d). We measured the percentage of hemocytes at each of these
different stages, after 4 h of incubation in media with marine
toxins. We choose the lowest concentration of marine toxins
that provoked 50% of hemocyte death, or the concentration
that caused the highest response, to perform this experiment
(Table 2). We observed 2% of PCD (red column) in sterile
saline solution NaCl 0.9% (Figure 2B, SS). Incubation with CPT,
STP, STX, and epimers GTX 2/3, increased PCD by ∼15–30%
(Figure 2B), demonstrating that these toxins induce PCD.

Breakage of Double-Stranded DNA and
Chromatin Condensation
A late stage of PCD pathway is the breakage of double-
stranded DNA. To confirm that marine toxins induce PCD and
analyze bivalves’ and vertebrates’ PCD pathway similitudes, we
measure marine toxins’ effect in double-stranded DNA breakage.
Hemocytes were incubated with toxins as described above and
analyzed by neutral single-cell gel electrophoresis (comet) assay.
Broken DNA migrates electrophoretically faster than complete
DNA material, a phenomenon that results in the formation of a
“tail” susceptible to stain a measure in fluorescence images. More
DNA breakage produces longer tails susceptible to categorize in
the classes shown in Figure 3A. The statistical analysis shown
in Figure 3B indicates that hemocytes incubated with CTP, STP,

STX, GTX 2/3, and PbTx-2,-3 developed higher DNA breakage
than the observed in control hemocytes exposed to sterile saline
solution NaCl 0.9% (P < 0.05). Besides DNA breakage, PCD cells
develop nuclear hyperchromasia and chromatin condensation,
observable by fluorescence. We stained hemocytes incubated
in the absence or presence of marine toxins with DAPI, as
indicated before and measured the number of hyperchromatic
and peripheral chromatin condensation nuclei following the
characteristics illustrated in Figure 4A. The quantitative analysis
presented in Figure 4B proves that CTP, STP, STX, and GTX
2/3, induced hyperchromasia and chromatin condensation in
hemocytes (P < 0.05). Analyses of DNA breakage, nuclear
hyperchromasia, and chromatin condensation confirm that CTP,
STP, STX, and GTX 2/3 induce PCD and that bivalve mollusk and
vertebrates’ PCD signaling pathways are fundamentally similar.
We also tested the nuclear DNA fragmentation, and Figure 5

shows DNA laddering visualized in a 2% agarose gel. We used
as a positive control (C+), DNA from U937 apoptotic cells
provided by the kit. A clear DNA-ladder pattern is visible when
hemocytes are treated with CPT, STP, STX, and epimers GTX 2/3.
None oligonucleosomal fragments were observed in the rest of
the samples.

Caspase Gene Expression
Once confirmed that some marine toxins induce PCD, we
investigated what kind of PCD these substances trigger. Based on
what is known in vertebrates, we hypothesized that marine toxins
induce either apoptosis, a process characterized by the activation
of caspases−2,−3,−7, or−8, or pyroptosis-like, identified by
the increment in the expression of the proinflamatory caspase-
1. We measured the amount of mRNA of these caspases by
RT-qPCR, in the absence or presence of marine toxins and
vertebrates’ apoptosis inducers, as described before (Figure 6
and Table 3). Caspase-1 mRNA underwent the most drastic
downregulation in hemocytes treated with STX, GTX2/3, and
PbTx-2, and a significant upregulation in the cells treated with
CPT, AO/DTX1, PbTx-2,−3, Vc, and Vp. Caspase-2 mRNA
decreased in hemocytes exposed to STP, GTX2/3, PbTx-2,
PbTx-2,-3, while caspase-3 mRNA increased under GTX2/3
treatment and decreased with PbTx-2 incubation. Caspase-7
mRNA increased in hemocytes exposed to AO/DTX-1 and,
finally, caspase-8 mRNA decreased in hemocytes incubated with
CPT, and STX, and increased in hemocytes exposed to Vc crude
extract. Table 3 is a matrix that summarizes the graphical data
of RT-qPCR, representing the value of significance (P) for each
sample with a colorimetric scale (green, up-regulated; red down-
regulated; yellow, no-differences).

DISCUSSION

The PCD concept applies broadly to several intracellular
pathways involved in cell’s self-destruction (21). PCD exhibit
unique morphological characteristics and energy-dependent
biochemical mechanisms, and occurs when a cell is damaged,
infected, senescent, or otherwise of little use to the animal (20–
24). PCD participates in the immune system (79–81), and marine
toxins modulated mollusk’s immune response (9, 25, 28, 29,
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FIGURE 1 | Percentage of cell death evaluated through the resazurin assay in hemocytes treated with different concentrations of inducers of apoptosis or marine

toxins during 4 h at 25◦C. Hemolymph from 10 to 30 oysters was pooled to have a total of 1.5 × 106 cells mL−1. Bars represent mean ± standard deviation of two

independent experiments. *P < 0.05. Neg, negative control; Pos, positive control; CPT, camptothecin; STP, staurosporine; STX, saxitoxin; GTX, gonyautoxin; OA,

okadaic acid; DTX, dynophysistoxin; PbTx, brevetoxin; Vp, Vibrio parahaemolyticus extract; Vc, V. campbellii extract.

31, 46–52, 55, 56, 58–62, 82–87). Hemocytes are the first line
of defense in bivalve mollusks immune system, and here we
evaluated how marine toxins modulate PCD in hemocytes from
C. gigas. The fact that control hemocytes exhibit high PCD level
indicates that this process is vital for molluscan immunity (25, 26,
88–90). Here we show that marine toxins increase hemocyte’s cell
mortality with PCD phenotype.

We first analyzed the cell death characteristics induced by CPT
and STP, two bona fide PCD inducers. CPT is a potent inhibitor
of topoisomerase I extracted from the Chinese tree Camptotheca
acuminata (91). STP is a non-selective protein kinase inhibitor
obtained from the bacteria Streptomyces staurospores (92). Both
substances induce apoptosis in vitro in various cell types and
therefore they are standard positive controls in bioassays (92–
96). Both substances caused high mortality in C. gigas hemocytes
and helped to describe how death is carried out in bivalve
hemocytes, as previously shown for Nodipecten subnodosus (58).
Like STP and CPT, hemocyte death was evident with paralyzing
toxins (STX and epimers GTX2/3), and to a lesser extent,
with the mixture of brevetoxins (PbTx-2,-3). The inducers and
these marine toxins, showed a marked translocation of PS to
the extracellular leaflet and breakage of double-stranded DNA.
Early PS exposure is closely associated with plasma membrane
rupture during PCD for attracting engulfing cells (43, 45, 97–
99). We observed many cells expressing annexin V and PI
labels and considered them to be in late PCD or result from

secondary necrosis, but we thought them for the analysis only
as dead cells, and it was not the study’s object of this work.
Recent studies showed that mammalian cell lines undergoing
programmed necrosis (necroptosis), as well as necrotic cells in
the nematode Caenorhabditis elegans, translocates PS to their
outer surfaces before cell lysis to recruit phagocytes (100, 101).
Chromatin condensation and DNA fragmentation are important
criteria to identify PCD in terminal stages. We observed
both characteristics consistently in hemocytes treated with STP,
CPT, STX, and epimers GTX2/3, which induced a clear death
ladder pattern. During apoptosis and pyroptosis, cells undergo
chromatin condensation and DNA fragmentation, but only in
apoptosis the nucleus breaks into multiple chromatin bodies,
in a process called nucleosomal fragmentation, while remains
intact in pyroptosis (39–44). In previous work we observed
that paralyzing toxins, epimers GTX2/3, provokes nucleosomal
fragmentation and apoptosis in N. subnodosus (58).

Caspases are a family of cysteine proteases, which play an
essential role in apoptosis and inflammation, distinguishing
between many cell death possibilities. Caspases involved in
apoptosis are human caspase -2, -3, -6, -7, -8, -9, and -10;
those participating primarily in pyroptosis are human caspase -
1, -4, -5, -13, and -14, as well as murine caspase -11 and -12
(21, 28, 32, 102).C. gigas expresses executer caspases -1, -3, and -7
and initiator caspases -2 and -8 (30, 37, 55, 103, 104). Given that
mRNA increase generally indicates the synthesis of a particular
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FIGURE 2 | In vitro phosphatidylserine translocation to the extracellular leaflet in hemocytes exposed to apoptosis inducers or marine toxins during 4 h at 25◦C. (A1)

Hemocytes observed by fluorescence, to detect viable or no measurable programmed cell death (PCD, green and red staining negative), (A4) PCD cells (green,

annexin V-bound), and (A2 and A3) cells in end stage of PCD and dead (red, propidium iodide stained cells, and green annexin V-bound cells). (B) The graph shows

percentages of different stages of cells of (A). Results are expressed as the mean ± standard deviation. A, annexin V positive; d, dead; v, viable. Scale bar = 5µm.

SS, saline solution; CPT, camptothecin; STP, staurosporine; STX, saxitoxin; GTX, gonyautoxin; OA, okadaic acid; DTX, dynophysistoxin; PbTx, brevetoxin; Vp, Vibrio

parahaemolyticus extract; Vc, V. campbellii extract.
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FIGURE 3 | In vitro DNA double-strand breakage in hemocytes exposed to apoptosis inducers or marine toxins for 4 h at 25◦C. (A) Image of hemocyte nuclei with

different DNA damage grades, assessed by neutral comet assay, stained red with propidium iodide. DNA damage categories: undamaged, low damaged, medium

damage, high damage, and complete damage, using a scale of 0–4, respectively. Scale bar = 5µm. (B) Frequency distribution of DNA damage in hemocytes. Data

were obtained from 400 scored nuclei. Results are expressed as the mean ± standard deviation. *P < 0.05. SS, saline solution; CPT, camptothecin; STP,

staurosporine; STX, saxitoxin; GTX, gonyautoxin; OA, okadaic acid; DTX, dynophysistoxin; PbTx, brevetoxin; Vp, Vibrio parahaemolyticus extract; Vc, V. campbellii

extract.

gene product (105), we resorted to use mRNA quantitation to
measure caspase expression. CPT induced upregulation of the
pro-inflammatory caspase-1 and down regulation of caspase 8.
Caspase-1 is a cysteine protease that cleaves and activates the
pro-forms of host inflammatory cytokines, IL-1β, and IL-18
(106). On vertebrates, caspase-1 acts in pyroptosis, a pathway
of host cell death stimulated by a range of microbial infections
and non-infectious stimuli, associated with plasma membrane
rupture and release of pro-inflammatory intracellular content
(35, 38, 107, 108). Therefore, we show here that CPT could
induces pyroptosis-like in C. gigas hemocytes, in addition
to cause apoptosis. Caspase-1 mediated pyroptosis has been
observed in other invertebrates such as sea cucumbers (109)
and crustaceans (110). C. gigas hemocytes express cytoplasmic
and nuclear caspase-1, capable to induce cell death (37, 111).
In oysters, caspase-1 is a homolog of executioner caspase-
3/7, which can activate itself, bind to other caspases and
lipopolysaccharides (111). On the other hand, STP induces

caspase-2 down-regulation in hemocytes of C. gigas. Caspase-
2 keeps a high similarity among animal species (37, 51) and
the pathogen-associated molecular patterns (PAMPs) provoke
its downregulation in Mytilus edulis mussel (51). Nevertheless,
STP provoked apoptosis in bivalve hemocytes of N. subnodosus
dependent of caspases (58), which indicates that the type of
PCD that STP induces depends on the species studied. The
low level of variation of caspases mRNA induced by CPT and
STP seems to be sufficient to induce PCD in C. gigas, either by
apoptosis or pyroptosis-like, given that both substances induced
clear morphological alterations such as the breakage of double-
stranded DNA, induction of the characteristic DNA ladder
pattern, and the translocation of PS to the extracellular leaflet of
the plasma membrane.

Paralyzing shellfish toxins (PST) are tricyclic tetrahydropurine
derivatives with potent hydrophilic neurotoxic activity. In
vertebrates, PSTs inhibit the voltage gated-sodium channel with
high affinity and, thus blocking action potentials in excitable
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FIGURE 4 | In vitro chromatin condensation in nuclei of hemocytes exposed to apoptosis inducers or marine toxins for 4 h at 25◦C. (A) DAPI staining (blue) of

representative nuclei: observe the normal nuclei (n), hyperchromasia (arrow) characteristic of condensed chromatin, and nuclei with condensation of chromatin in the

periphery (arrow head). (B) Percentages of the nuclei with condensed chromatin. In each sample, at least 100 nuclei were counted. Scale bar = 5µm. Results are

expressed as the mean ± standard deviation. *P < 0.05. SS, saline solution; CPT, camptothecin; STP, staurosporine; STX, saxitoxin; GTX, gonyautoxin; OA, okadaic

acid; DTX, dynophysistoxin; PbTx, brevetoxin; Vp, Vibrio parahaemolyticus extract; Vc, V. campbellii extract.

membranes of neurons and muscles (112). PSTs are present
in some genera of dinoflagellates such as Alexandrium sp.,
Pyrodinium bahamense,Gymnodinium catenatum,Centrodinium
punctatum and cyanobacteria (113–116). There are more than
57 analogs of these toxins that differ in their toxicity (117),
and has been stated that PSTs provoke apoptosis in vivo e in
vitro in bivalve mollusks (55, 58, 87). In C. gigas hemocytes the
epimers GTX2/3 increased expression of executioner caspase-
3 and with STX a down-regulated caspase-8 was observed.
Caspase-3 and caspase-8 have been previously identified in

Crassostrea sp. (30, 37, 100, 118). These results could indicate
that hemocytes are in a late stage of apoptosis, consistent with the
observed oligonucleosomal fragmentation. These results further
corroborate that marine toxin induce PCD by apoptosis in
hemocytes of C. gigas. When STX is injected in the mussel
M. chilensis, hemocytes involve numerous pattern recognition
receptors (PRRs) that, subsequently, trigger a cellular response
apoptotic or autophagic death (87). When epimers GTX2/3
are exposed with the hemocytes of the pectinid N. subnodosus,
the induction of apoptosis is linked directly to caspases (58).
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FIGURE 5 | In vitro DNA ladder in nuclei of hemocytes exposed to apoptosis inducers or marine toxins for 4 h at 25◦C. Electrophoresis was performed on 2%

agarose gel. M, kb marker; C+, Positive control (DNA from apoptotic U937 cells); SS, Saline solution; CPT, camptothecin; STP, staurosporine; STX, saxitoxin; GTX,

gonyautoxin; OA, okadaic acid; DTX, dynophysistoxin; PbTx, brevetoxin; Vp, Vibrio parahaemolyticus extract; Vc, V. campbellii extract.

When C. gigas fed with the PST producer A. catenella there
was a significant increase of the number of hemocytes in
apoptosis after 29 h of exposure, with overexpression of two
caspase executor genes (caspase-3 and caspase-7) (55). STX and
GTX 2/3 also showed the down-regulation of caspase-1 in C.
gigas, which indicates that PST inhibits pyroptosis-like processes,
similar to what happens with other pathogens, conferring some
ability to persist and cause disease in the host (35). On the
other hand, this inhibition of caspase-1 could permit hemocytes
perform apoptosis in an orderly manner, thus avoiding the
inflammatory damage.

Brevetoxins (PbTxs) represent a group of polyether
compounds that bind to and stimulate sodium flux through
voltage-gated sodium channels in nerve and muscle, leading
to uncontrolled sodium influx into the cell (119). PbTxs
are produced by the marine dinoflagellate Karenia brevis
(119, 120). The mixture of PbTx-2,-3 triggered DNA alterations,
PS translocation, and mortality in C. gigas hemocytes. PS
translocation and chromosomal DNA cleavage are observed in
apoptosis and pyroptosis (35, 42–45). After hemocyte exposure
to a mixture of these toxins, we did not observe the DNA ladder
characteristic of apoptosis, and together with the up-regulation
of caspase-1 and the absence of nuclear disintegration, suggest

a PCD by a pyroptosis-like mechanism. In human lymphocytes
exposed to PbTx-2,-3, results indicate a high mortality rate and
extensive genotoxic damage with both toxins (121). On the
contrary, when we exposed hemocytes of C. gigas to PbTx-2,
caspase-1, initiator caspase-2, and effector caspase-3 expression
decreased, and cell death was low, in agreement with the
experiments carried out by Mello et al. (52), where at 4 h, high
viability was observed with the same toxin in C. gigas. They
concluded that this viability correlated with the activation of
detoxification and stress genes CYP356A1, FABP and Hsp70,
but not with immune or to antioxidant ones BPI, IL-17, EcSOD,
Prx6, GPx, and SOD.

Diarrheic shellfish toxins (DST) are heat-stable polyether
and lipophilic compounds isolated from various species
of dinoflagellates, mainly of the genus Dynophysis and
Prorocentrum (114). Among these toxins, okadaic acid (OA) and
its derivatives named dinophysistoxins (DTX1-10) are the best
known. These compounds inhibit protein phosphatase-1 and
-2A in vitro, provoking inflammation of the intestinal tract and
diarrhea in humans (122, 123). They are also tumor promoters
in animal test systems (124, 125). OA and its analogs DTXs did
not seem to cause the same harmful effects in bivalve hemocytes
as in other studied vertebrate cell lines, where OA induced
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FIGURE 6 | Real-time PCR (qRT-PCR) of caspases (Casp) in hemocytes exposed to in hemocytes exposed to apoptosis inducers or marine toxins for 4 h at 25◦C.

Whisker-box plots of the relative expressions calculated by the REST 2009 Software of the caspase-1, caspase-2, caspase-3, caspase-7, and caspase-8 genes.

(Continued)
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FIGURE 6 | Boxes represent the interquartile range, or the middle 50% of observations. The dotted line inside the box represents the median gene expression.

Whiskers represent the minimum and maximum observations. The proportions over 1 indicate genes that increase expression, while proportions <1 indicate genes

decrease in expression. *P < 0.05; **P < 0.01. Casp, Caspase; CPT, Camptothecin; STP, Staurosporine; STX, Saxitoxin; GTX, Gonyautoxin; OA, Okadaic acid; DTX,

Dynophysistoxin; PbTx, Brevetoxin; Vp, Vibrio parahaemolyticus extract; Vc, V. campbellii extract.

TABLE 3 | P-value of relative expression of caspase transcripts in hemocytes of

Crassostrea gigas exposed to apoptosis inducers or marine toxins.

Toxin caspase-1 caspase-2 caspase-3 caspase-7 caspase-8

CPT 0.025 0.051 0.968 0.083 0.030

STP 0.326 0.013 0.142 0.146 0.223

STX 0.001 0.055 0.396 0.586 0.015

GTX2/3 0.000 0.033 0.047 0.534 0.158

OA/DTX-1 0.028 0.074 0.486 0.014 0.093

PbTx2 0.026 0.000 0.030 0.437 0.200

PbTx2/3 0.019 0.000 0.088 0.308 0.574

Vp 0.020 0.968 0.390 0.800 0.105

Vc 0.021 0.173 0.459 0.273 0.014

CPT, Camptothecin; STP, Staurosporine; STX, Saxitoxin; GTX, Gonyautoxin; OA, Okadaic

acid; DTX, Dynophysistoxin; PbTx, Brevetoxin; Vp, Vibrio parahaemolyticus extract; Vc, V.

campbellii extract. Red= down regulated; Green= up-regulated; Yellow=No differences

comparing with control.

cytotoxicity and apoptosis (126–136). Our analyses with the
mixture of OA and DTX-1, showed no evident cytotoxic effects
in vitro in hemocytes of C. gigas. It has been demonstrated in C.
gigas that ingestion of the strain of P. lima cells that produces
OA and DTX1, provokes a clear mRNA modulation expression
of the genes involved in cell cycle regulation and immune system
(137). Several authors have pointed out that the low percentage
of dead hemocytes in bivalve mollusks and apoptotic processes,
seem to indicate in vivo and in vitro, that these organisms
have protective mechanisms and resistance against harmful
effects of OA and/or DTX-1, that involves OA’s storage into
the lysosomal system (50, 56, 60, 138). Despite low hemocyte
death in our work, there was a significant increase in caspase-1
and caspase-7 when hemocytes were exposed to OA/DTX1.
Caspase-1 can process proteolytically the apoptotic effector
caspase-7, and both can activate simultaneously (36, 139).
There are vertebrate cell types that express caspase-1 but do not
undergo PCD (140). It has been described that the low level of
cell death when exposed to OA indicates protective mechanisms
by the presence of caspase inhibitors, which can inhibit PCD
pathways (141).

Bacteria of the genus Vibrio sp. produce many pathogenic
factors, including enterotoxins, hemolysins, and cytotoxins.
V. campbellii and V. parahaemolyticus are extensively studied
species because they are the causative agent of the often lethal
effects in aquaculture organisms, such as fish, bivalves, and
crustacean (142–145). In this study, hemocytes were exposed
to the crude protein extract of V. parahaemolyticus, and V.
campbellii, two bacteria that had shown high virulence against
shrimp postlarvae, and were isolated from shrimp and oyster,
respectively (146). The crude extracts of these bacteria showed
hemolytic activity in human erythrocytes (147). Still, we did
not find a cytotoxic effect at 4 h post challenged. We previously

identified genes related to some protein toxins as part of
this virulence, and their genomes showed many pathogenic
factors such as hemolysin, enterotoxins, cytotoxins, proteases,
siderophores, adhesive factors, and hemagglutinin (148). Some

studies with mollusks have demonstrated the role of caspase-8 in
anti-bacterial response (51, 118, 149–151), and it has been proved
in Haliotis discus discus and C. hongkongensis that caspase-8

mRNA expression in hemocytes was significantly up-regulated
by exposure to Vibrio species (118, 150). Similar results we
obtained with proteinaceous extract from V. campbellii in C.

gigas hemocytes. Caspase-8 was cloned and characterized in C.
hongkongensis and C. gigas and showed that it is ubiquitously
expressed in oysters, suggesting a role in apoptosis (100,

118). Likewise, Vibrio extracts showed the over-expression of
caspase-1 in hemocytes from C. gigas. It has been recognized
that moderate activity levels of caspase-1 stimulate cell host’s
survival responses, modulate intracellular growth of bacteria, and

promote inflammatory cytokines production. When caspase-1
passes a threshold level, the cell undergoes PCD by pyroptosis,
characterized by plasma-membrane pore formation, which leads
to cell lysis and release of pro-inflammatory intracellular contents
(35, 42, 152, 153). Pore-forming toxins are the most common
Vibrio cytotoxic proteins, are required for virulence, and have
been implicated in pyroptosis cell death (154, 155). Also,
several studies have identified novel roles for caspase-8 in
modulating IL-1β, inflammation, and caspase-1 processing, in
response on the stimulus or stimuli that initiate the signaling
cascade (156–163). In C. gigas a pyroptosis-like PCD could be
playing a role in bacteria clearance, by removing intracellular
replication niches and enhancing the host’s immune responses.
Also it has been documented that caspase-1 activation fails
to trigger pyroptosis in many vertebrate cell lines in response
to bacterial pore-forming toxins, which in turn promote cell
survival upon toxin challenge possibly by facilitating membrane
repair (164), a similar scenario could be relevant for infectious
with Vibrio extracts in C. gigas hemocytes. It is controversial
whether pyroptosis, which can also be triggered by non-bacterial
pathological stimuli, truly represents a cell modality in bivalve
hemocytes or whether it constitutes a special case of apoptosis
or necrosis, but the activation of caspase-1 in cells could has
unquestionable pathophysiological implications.

Finally, we do not rule out the importance of different cell
death types that could be causing misbalance of hemocytes, such
as necrosis, necroptosis, autophagy, pyroptosis, pironecrosis, etc.
The marine non-proteinaceous STX, GTX2/3, and PbTx-2,-3
trigger signaling pathways that promote apoptotic cell death,
as the apoptotic inducers CPT and STP, but PbTx-2,-3 did
not show oligonucleosomal fragmentation. Vp and Vc extracts,
OA/DTX-1, and PbTx-2 increased pro-inflammatory caspase-1
indicative of signaling pathways leading to PCD by a pyroptosis-
like process; still, protective mechanisms could influence in
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the low cell death observed. The results presented illustrate
the complexity of the hemocyte response to marine toxins.
Nevertheless, they are consistent with the role of PCD to preserve
a healthy and balanced immunity, keeping hemocytes at normal
levels for the systematic and regulated dismantling elimination of
damaged cells in C. gigas.
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