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Simple Summary: Ovarian clear cell carcinoma (OCCC) is a rare subtype of epithelial ovarian cancer
that has a poor response to chemotherapy. Here, we assessed the immunological features of a series
of 33 OCCCs and identified an immune-related gene expression signature that correlated with a
patient’s risk of recurrence. Additionally, using multiplex immunofluorescence, we assessed the
spatial distribution and abundance of immune cell populations at the protein level and identified
that tumour-associated macrophages (TAM) and regulatory T cells are excluded from the vicinity of
tumour cells in low-risk patients, suggesting that high-risk patients have a more immunosuppressive
microenvironment. We also found that TAMs and cytotoxic T cells were also excluded from the
vicinity of tumour cells in ARID1A mutated OCCCs, suggesting that the exclusion of these immune
effectors could determine the host response in ARID1A mutant OCCCs.

Abstract: Ovarian clear cell carcinoma (OCCC) is a rare subtype of epithelial ovarian cancer charac-
terised by a high frequency of loss-of-function ARID1A mutations and a poor response to chemother-
apy. Despite their generally low mutational burden, an intratumoural T cell response has been
reported in a subset of OCCC, with ARID1A purported to be a biomarker for the response to the
immune checkpoint blockade independent of micro-satellite instability (MSI). However, assessment
of the different immune cell types and spatial distribution specifically within OCCC patients has
not been described to date. Here, we characterised the immune landscape of OCCC by profiling
a cohort of 33 microsatellite stable OCCCs at the genomic, gene expression and histological level
using targeted sequencing, gene expression profiling using the NanoString targeted immune panel,
and multiplex immunofluorescence to assess the spatial distribution and abundance of immune cell
populations at the protein level. Analysis of these tumours and subsequent independent valida-
tion identified an immune-related gene expression signature associated with risk of recurrence of
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OCCC. Whilst histological quantification of tumour-infiltrating lymphocytes (TIL, Salgado scoring)
showed no association with the risk of recurrence or ARID1A mutational status, the characterisation
of TILs via multiplexed immunofluorescence identified spatial differences in immunosuppressive
cell populations in OCCC. Tumour-associated macrophages (TAM) and regulatory T cells were
excluded from the vicinity of tumour cells in low-risk patients, suggesting that high-risk patients
have a more immunosuppressive microenvironment. We also found that TAMs and cytotoxic T
cells were also excluded from the vicinity of tumour cells in ARID1A-mutated OCCCs compared to
ARID1A wild-type tumours, suggesting that the exclusion of these immune effectors could determine
the host response of ARID1A-mutant OCCCs to therapy. Overall, our study has provided new
insights into the immune landscape and prognostic associations in OCCC and suggest that tailored
immunotherapeutic approaches may be warranted for different subgroups of OCCC patients.

Keywords: immune microenvironment; ARID1A; clear cell ovarian cancer; next generation sequenc-
ing; biomarker

1. Introduction

Ovarian clear cell carcinoma (OCCC) is a rare aggressive subtype of epithelial ovar-
ian carcinoma (EOC), characterised by a distinct repertoire of clinical, histological and
molecular features [1–3]. With the exception of early-stage disease, OCCC is associated
with the poorest stage-adjusted prognosis when compared to other EOC subtypes and
shows relative resistance to chemotherapy [4,5]. Thus, there is a clear unmet clinical need
to identify additional treatment for those OCCC patients that show poor responses to
chemotherapy, and identification of biomarkers for OCCC patient stratification.

OCCCs harbor high frequencies of ARID1A (AT rich interactive domain 1A) loss
of function mutations [1,3], which lead to an aberrant cell cycle and loss of prolifera-
tion control [6–8], and are associated with endometriosis [3]. A number of studies have
highlighted potential synthetic-lethal treatment strategies targeting tumours with loss
of ARID1A [9–19]. There is emerging evidence that OCCC may respond to an immune
checkpoint blockade. In the KEYNOTE−100 phase II clinical trial, patients with advanced
recurrent OCCC had a 15.8% overall response rate to pembrolizumab, compared to 8.5%
in unselected recurrent ovarian cancers [20]. Similarly, a smaller phase II clinical trial
assessing the combination of nivolumab and ipilimumab induction followed by nivolumab
maintenance showed a higher response rate and longer progression-free survival (PFS)
when compared with nivolumab alone in platinum-resistant OCCC patients [21].

Mis-match deficient (MMR) microsatellite instability (MSI)-high OCCCs have been
shown to harbor significantly higher CD8+ tumour-infiltrating lymphocytes (TILs), higher
CD8 +/CD4 + ratios and higher PD1+ TILs compared to microsatellite-stable (MSS) OC-
CCs [22], and although MMR deficiency is only seen in around 10% of OCCC, some degree
of tumoural and stromal PD-L1 expression has been reported in around 74% of OCCC [23],
suggesting that additional subsets of OCCC show immunogenicity [20]. Notably, in the
KEYNOTE−100 ovarian cancer trial, there was a trend towards improved response rates
of OCCC to the checkpoint inhibitor pembrolizumab [20]. Indeed, a subgroup of OCCC
with a relatively higher rate of gene mutations in the SWI/SNF complex have been shown
to show an enrichment of immune-related pathway activity and poorer prognosis [24].
ARID1A deficiency is related to a mismatch repair-deficient phenotype with ARID1A
mutant tumours showing an increase in TILs, activation of the immune checkpoint and
sensitization to the PD-L1 checkpoint blockade in ovarian cancer in in vivo mouse models
compared to ARID1A wild-type tumours [18]. This mechanism is thought to occur via
MSH2 recruitment to the chromatin by ARID1A during DNA replication and mismatch
DNA repair [18]. Whilst pan-histological clinical studies have highlighted a significant
treatment benefit for patients with ARID1A-deficient tumours when treated with (PD-
1)/PD-L1 immunotherapy [25], their response rate specifically in OCCC-specific trials,
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such as PEACOCC (NCT03425565) testing pembrolizumab in patients with advanced
gynaecological clear cell cancer, has not been reported to date. Furthermore, the characteri-
sation of immune cell types and spatial distribution within OCCC patients has not been
comprehensively explored.

Here, we sought to comprehensively characterise the immune repertoire of OCCCs at
the RNA and protein level alongside histological assessment of TILs within the immune mi-
croenvironment using multiplex immunofluorescence on tissue sections in order to identify
subgroups of OCCC that may potentially benefit from immune checkpoint blockade.

2. Materials and Methods
2.1. Clinical Samples

A retrospective series of primary untreated OCCC tumours (n = 34) and OCCC-
like primary tumours (EAE n = 4; EAO n = 8) were obtained with appropriate ethical
approval under the Royal Marsden Hospital (RMH) NHS Foundation Trust sponsored
study (ID: CCR3705): “Analysis of tumour specimens for biomarkers in gynaecological
cancers” (Table 1 and Supplementary Table S1). All patients provided written consent
for the use of material for research purposes. Appropriate representative formalin-fixed
paraffin-wax embedded (FFPE) tissue blocks were chosen based upon their histology
reports. Haematoxylin and eosin (H&E) sections of each case were reviewed by two
independent consultant histopathologists in order to confirm the percentage of tumour
content. For each case, if a germline blood sample was unavailable, non-malignant FFPE
blocks were selected and sections cut for DNA extraction. Microsatellite status was assessed
by immunohistochemistry of mismatch repair (MMR) proteins MSH2, MSH6, PMS2 and
MLH1 during routine clinical testing, or by PCR using fluorescent PCR-based microsatellite
loci (MSI Analysis System, Version 1.2, Promega, Madison, WI, USA).

Table 1. Overview of patient characteristics in the study.

Parameter Total
Number (n)

Number of primary tumour samples 43 *
Diagnosis

Ovarian Clear Cell Carcinoma (OCCC) 31
Endometrioid adenocarcinoma of the ovary (EAO) 8

Endometrioid adenocarcinoma of the endometrium (EAE) 4
Grade

I 3
II 7
III 33

FIGO Stage
I 17
II 14
III 10
IV 2

Median age, years (range) 55 (32,75)
Endometriosis

Yes 24
No 15

Unknown 4
* Clinical data excludes 2 of the original 34 OCCC cases which were not analysed (3705–0573, 3705–0611 see
Figure 1 legend). Patient 3705–0435 had both primary and metastatic tumour samples and clinical data relating to
the primary sample are included.

2.2. DNA Extraction and Library Preparation

Genomic DNA was extracted from FFPE tissue sections using the QIAamp FFPE
Tissue Kit (Qiagen, Manchester, UK) based upon the manufacturer’s protocols for both
tumour and non-malignant content. The extraction of genomic DNA from blood samples
was completed using the QIAamp Blood mini kit (manual) or QIAsymphony DNA Midi
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Kit (automated) (Qiagen) using the manufacturer’s protocols. The quality of the extracted
DNA was analysed using the Agilent 2200 Tapestation (Agilent, Stockport, UK) and the
Qubit Fluorometer (Fisher Scientific, Loughborough, UK). Both DNA extraction and next
generation sequencing (NGS) were completed at Good Clinical Laboratory Practice (GCLP)-
accredited laboratories.
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(Abcam, 133616), CD8 (Dako, M710301), PD-L1 (Cell Signaling, 13684), FOXP3 (Abcam, 
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Figure 1. Study workflow. CONSORT diagram showing 34 ovarian clear cell carcinoma (OCCC) cases identified from
the Royal Marsden biomarker study (CCR 3705). The same FFPE block was used for extracting DNA for next generation
sequencing (NGS), RNA for gene expression analysis, immunohistochemistry (IHC) and multiplexed immunofluorescence
(IF). * Case 3705–0573 failed NGS quality control and was not included in further analysis. ** Two of the 34 cases were
not included in histological, NanoString and IF analysis: Case 3705–0573 was omitted having failed sequencing and case
3705–0611 failed IHC due to absence of tumour on tissue section and no further tissue blocks available. *** 3705–0435 had
matched primary and metastatic samples and only the primary sample was analysed for TIL infiltrate. **** Three further
cases had inadequate material for NanoString analysis (3705–0082, 3705–0181, 3705–0713). Three cases failed QC metrics
(3705–0625, 3705–0719, 3705–0459). The cohort of 25 OCCCs was supplemented with a cohort of endometrioid carcinomas
(endometrioid adenocarcinoma of the ovary (EAO) n = 8 and endometrioid adenocarcinoma of the endometrium (EAE)
n = 4, total = 37 cases) for NanoString analysis. ***** Cases 3705–0719 and 3705–0464 had insufficient tissue for MIF analysis.

2.3. Targeted Sequencing

In order to identify common mutations in OCCC, a 59-gene targeted capture panel
(originally established to target 59 genes for the FOrMAT clinical trial (Feasibility of Molec-
ular Characterization Approach to Treatment, CCR3994, Royal Marsden NHS Hospital,
Foundation Trust) (Nimblegen, Roche, Welwyn Garden City, UK)) was applied as previ-
ously described [26]. Detailed methodology regarding preparation and variant calling has
been previously described [26] (Supplementary Table S2). Raw targeted sequencing data
is deposited in the NCBI Sequence Read Archive under the accession PRJNA432413 and
PRJNA432343.

2.4. ARID1A Immunohistochemistry

Immunohistochemistry (IHC) was performed on 3–4 µm thick whole tissue sec-
tions along with H&Es for each specimen with assistance from the Breast Cancer Now
Histopathology Core Facility and the Royal Marsden NHS Foundation Trust Diagnostic
Laboratory. Slides were incubated with anti-ARID1A, rabbit monoclonal antibody (1:1000)
and EPR13501 (Abcam, Cambridge, UK), using the Dako-Autostainer Link 48 with the
EnVision FLEX kit according to the manufacturer’s instructions (Agilent Technologies,
Cheadle, UK). Human breast, tonsil, appendix, prostate and kidney tissues were used as
positive controls and xenograft models were obtained as previously described [19]. Stromal
cells were used as an internal positive control. Cases were scored by two independent
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consultant pathologists for ARID1A protein expression using a modified Allred scoring
system as previously described [26].

2.5. Histological Quantification of Immune Infiltrate

The extent of lymphocytic infiltration in H&E stained tumour sections was assessed
independently by two pathologists. Both were blinded to the ARID1A sequencing and IHC
findings. The Salgado scoring system, a standardised methodology originally designed for
the quantification of tumour-infiltrating lymphocytes (TILs) in breast cancer, was used [27].
TILs were scored as a percentage of the stromal area alone and areas occupied by carcinoma
cells were not included in the total assessed surface area [27]. The mean of the pathologists’
scores was taken to obtain an overall Salgado score for each case.

2.6. NanoString nCounter Profiling with the PanCancer Immune Panel

For discovery, the NanoString nCounter® PanCancer Immune Profiling Panel was
used to quantify mRNA abundance in primary OCCC tumours (n = 25), together with
endometrioid carcinomas (endometrioid adenocarcinoma of the ovary (EAO) n = 8, and en-
dometrioid adenocarcinoma of the endometrium (EAE) n = 4), given the genomic sim-
ilarities of these tumour types to OCCC [28,29] and the small number of OCCC in our
cohort. The panel targets 730 genes from 14 different immune cell types [30]. The input
target amount of RNA was 75–80 ng, adjusted for the degree of fragmentation based upon
the percentage of RNA fragments between 50–300 nucleotides of total RNA in the sample.
RNA samples were hybridised to capture and reporter probes using a Thermo Cycler for
18–22 h at 65 ◦C. Once hybridised, probes were bound and aligned to the nCounter Car-
tridge and counted by the digital analyser. NanoString nCounter data were pre-processed
using R package NanoStringNorm* (v1.2.1) [31], and normalised with Limma voom using
R package Limma (v3.38.3) [32]. All visualisations were created using custom libraries
in R statistical environment (v.3.6.0). NanoString nCounter® gene expression output was
normalised across all samples combined (OCCC n = 25, EAE n = 4 and EAO n = 8), using the
edgeR package (v3.24.3) [33]. Normalisation factors were calculated using the weighted
trimmed mean of M-values (TMM). Batch effects within normalised expression data were
calculated and adjusted across NanoString cartridges.

2.7. Differential Gene Expression Analysis

Normalised gene expression counts were used to perform differential gene expression
analysis. For each gene of the NanoString nCounter® PanCancer Immune panel (n = 730),
differential mRNA abundance analysis was performed using Limma in R statistical envi-
ronment (v.3.6.0). Genes were considered significantly differentially expressed if satisfying
|log2 fold change| > 1 and FDR adjusted p-value < 0.05. A lenient threshold of |log2
fold change| > 1 and p-value < 0.05 was also applied to identify the most statistically
differentially expression genes if no genes satisfied the initial significance criteria.

Tumours from patients with recurrent disease within four years of diagnosis were
assigned as high risk (n = 15) and tumours from patients without recurrent disease within
a follow-up time of four or more years were assigned as low risk (n = 19) at the time of
analysis (November 2020). Censored patients (i.e., samples from patients without recurrent
disease and less than four years of follow-up time) were not assigned a risk category and
were excluded from subsequent model training (n = 3). One further sample was excluded
from model training due to being taken from a metastatic biopsy in a patient already
included in the dataset with her primary disease.

2.8. Risk Predictor

Gene expression profiles of the OCCC and endometroid primary tumours profiled
with the NanoString immune panel described above (Figure 1) from disease recurrence risk
DGE analysis, were used to develop a supervised clustering model for prediction of risk in
further datasets. Samples with a high/low risk label (n = 34) were used as observations
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to train a knn model using the R package Class (v7.3.15). mRNA abundance of training
and validation datasets were scaled to z-scores for training and testing the knn. The num-
ber of neighbours included in majority voting (k) was determined by the square root of
observations followed by ceiling function (k = 7). Three independent studies were used as
validation datasets to validate the predictor including endometrial cancers and clear cell re-
nal kidney cancers given reported genomic similarities between these and OCCC [28,29,34]:
(1) Uehara et al. OCCC samples (n = 25) [35], (2) TCGA UCEC endometrioid endometrial
adenocarcinoma samples (n = 107) [28], 3) TCGA KIRC samples (n = 533) [34]. Kaplan–
Meier estimators were calculated using the R package Survival (v3.1.12) for each validation
dataset using the knn-predicted risk labels as groups. Statistical difference between the
risk groups was estimated using the log-rank test. For TCGA datasets, Disease-Specific
Survival (DSS) was used for outcome analysis. For Uehara et al. [35], both Disease-Specific
Survival (DSS) and Progression Free Survival (PFS) were used for outcome analysis.

2.9. Multiplex Immunofluorescence (MIF)

Multiplex immunofluorescence (MIF) biomarker imaging was performed on 31 OCCC
samples to enable the simultaneous evaluation of six markers in a single FFPE tissue section.
MIF staining was performed by sequential staining of 4 µm FFPE sections from each patient
using an Opal 7−colour reagent kit (Akoya Bioscience, Marlborough, MA, USA). After de-
waxing and rehydrating, the sections underwent heat-mediated antigen retrieval before
staining. Antibodies were stripped after staining by repeat antigen retrieval before each new
antibody was applied. The following antibodies were used: CD4 (Abcam, 133616), CD8
(Dako, M710301), PD-L1 (Cell Signaling, 13684), FOXP3 (Abcam, 20034), Pan–cytokeratin
(Dako, M351501) and CD68 (Dako, M087629). Positive control tonsil tissue samples were
stained for each different marker individually. Multispectral imaging was performed using
the Vectra® 3.0 pathology imaging system (Akoya Bioscience). Cell phenotyping and
density quantification was automated using a custom algorithm developed in the inForm™
image analysis software package (Perkin Elmer, Buckinghamshire, UK).

2.10. Quantitative Tissue Assessment of PD-L1 Expression and Combined Positive Score
Calculation Using HALO® Image Analysis Platform

Assessment of PD-L1 spatial location was performed using the automated High-Plex
FL module in HALO® (Indica Labs) in order to calculate the combined positive score (CPS),
encompassing the number of PD-L1-positive cells (tumour, lymphocytes and macrophages)
in relation to total tumour cells [36].

Eighteen of the thirty cases produced a CPS from the quantification of PD-L1-positive
cells. Nucleated cells were segmented using optimised nuclear detection thresholds (nu-
clear contrast: 0.97; nuclear intensity: 0.15; nuclear segmentation aggressiveness: 0.59;
and nuclear size: 0700.885). Cells were then classified by phenotype based on cytoplasmic-
positive and nuclear-positive detection thresholds. PanCK staining intensity varied across
images and was grouped into 4 categories based on algorithm settings that best segmented
PanCK-positive tumour cells from PanCK-negative cells. An algorithm with PD-L1 detec-
tion thresholds (nucleus: 5; cytoplasm 0.5) and PanCK detection thresholds (nucleus: 5 or
nucleus: 14, and cytoplasm: 0.28/0.478/3.47/7) was applied to the images from 18 cases.

3. Results
3.1. Immune Related Gene Expression Signatures Are Associated with Risk of Recurrence
in OCCC

In order to characterise the immune landscape associations with prognosis in OCCC,
we first used targeted gene expression profiling of 730 immune related genes using the
NanoString nCounter® PanCancer Immune Profiling Panel that were subjected to targeted
DNA sequencing and immunohistochemical assessment of ARID1A protein expression
(Figure 1) (OCCC n = 25). We additionally included OCCC-like primary tumours (n = 12),
given the genomic similarities of these disease types to OCCC [26–28]. Gene expression
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levels were compared between (i) high-risk patients (disease recurrence within 4 years;
n = 15), and (ii) low-risk patients (no disease recurrence with a follow-up time of at least
four years; n = 19). Five genes passed a significance threshold of |log2 fold change| > 1,
p-value < 0.05. The cell surface protein cluster of differentiation 24 CD24 and the HLA
class II beta chain coding gene HLA-DRB3 were under-expressed in the high-risk group
(p = 0.008 and p = 0.012, respectively) and the complement component gene C1S, the
Fos proto-oncogene FOS and the adhesive glycoprotein thrombospondin-1 THBS1 were
over-expressed in the high-risk group (p = 0.007, p = 0.025 and p = 0.031, respectively;
Figure 2A–E, Supplementary Figure S1, Supplementary Table S3).

To evaluate whether these genes were prognostic, we next trained a supervised
k-nearest neighbour (knn) clustering model (Figure 2B) for the prediction of disease-
recurrence risk in independent OCCC and OCCC-like tumour cohorts. This risk predictor
was tested in three independent validation datasets: (1) an independent dataset of 25 OCCC
primary tumours [35]; (2) TCGA UCEC endometrioid endometrial adenocarcinoma sam-
ples (n = 107) [28] and (3) TCGA KIRC samples (n = 533) [34]. Given the lack of clinically
well-annotated OCCC cohorts with survival data, gene expression data available for UCEC
and KIRC were used given their biological similarities to OCCC [1,29,37]. We first predicted
the risk status (high or low) for each sample in the validation datasets (Figure 2C–E). In the
independent Uehara OCCC cohort and TCGA KIRC cohort, the recurrence probability
was statistically significant between the risk groups (Uehara OCCC cohort: p = 6.2 × 10−4,
HR = 17.03 (1.94–149.61) logrank test, TCGA KIRC cohort p = 0.036, HR = 1.5 (1.02–2.19)
Figure 2C,E, Supplementary Figure S2). Of note, estimation of immune cell subpopulations
using mRNA abundance, did not identify any significant associations between the various
immune subpopulations and risk status (Supplementary Table S4).

3.2. ARID1A Mutated OCCC Show Differential Gene Expression of Immune Related Genes
Associated with Lymphocyte Recruitment

We next compared the relative gene expression of immune related genes between
ARID1A mutant compared to ARID1A wild-type tumours. We identified that CC2L0 and
TREM1 were over-expressed in ARID1A mutant cases (p = 0.001 and p = 0.001, respec-
tively), and SERPING1 and CXCL14 were under-expressed in this group (p = 0.004 and
p = 0.02, respectively; Supplementary Figure S3 and Supplementary Table S3). Of note,
CCL20 is involved in lymphocyte attraction and TREM1 and CXCL14 are involved in attrac-
tion of neutrophils and macrophages, respectively. Comparison of immune cell subtype
quantifications inferred from mRNA abundance levels, however, did not identify any
significant differences in immune subpopulations according to ARID1A mutation status
(Supplementary Table S4).

3.3. OCCCs Are Characterised by Histologically Low Levels of Immune Infiltrate

We next sought to ascertain whether the level of immune cell infiltrate was associated
with risk of recurrence or ARID1A mutation status in OCCC. We initially used gross
histological assessment of immune infiltrate and distribution using the Salgado scoring
system [27] in 31 primary OCCC tumours (Figure 1) and correlated TILs with FIGO
tumour stage, clinical risk status and ARID1A mutation status (Supplementary Table S5).
Overall, OCCCs were characterised by low stromal lymphocytic infiltrates, with a median
percentage of TILs of 1.5% (interquartile range: 1–3%), (Figure 3A–D, Supplementary
Table S5). The majority of cases, 87.1% (27/31), had stromal TIL scores of ≤ 5%, whilst
3.2% of cases (1/31) had between 5–10% TILs and 9.7% of cases (3/31) had > 10% TILs.
We observed no significant association between immune infiltrate and FIGO stage, relapse
and ARID1A mutation status (Supplementary Table S5). Additionally, we observed no
associations between relapse at 4 years (risk status) and ARID1A mutation status (p = 0.3777,
Fisher’s exact test, Supplementary Table S6). Of note, all cases with high immune infiltrate
were microsatellite (MSS) stable.
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Figure 2. Gene Expression Profiling shows differential gene expression in low- vs. high-risk patient samples. (A) Heatmap
demonstrating results from NanoString PanCancer Immune Panel gene expression profiling (n = 37, OCCC n = 25 and
endometrioid-EAE and EAO n = 12). (B–E) Kaplan–Meier curves depicting the associations with prognosis of the differential
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gene expression signature in (B) our discovery cohort (all OCCC, EAE and EAO samples (n = 37) and independent validation
cohorts), (C) Uehara et al. OCCC samples (n = 25), (D) TCGA UCEC endometrioid endometrial adenocarcinoma samples
(n = 107), and (E) TCGA KIRC (kidney renal cell carcinoma) samples (n = 533). OS/DFS event 1 = is event and 0 = censored.
Prognostic association (expressed as Hazard ratio ‘HR’) was estimated by fitting Cox proportional hazards model.
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Figure 3. OCCC is characterized by low immune infiltrates. (A) Bar chart showing that the greatest proportion of cases
(87.1%, 27/31) fall within the lowest Salgado score category, whilst lower proportions fall within the intermediate (3.23%,
1/31) and high Salgado score groups (9.68%, 3/31). (B) From left to right: (i) low (1%), (ii) intermediate (12.5%) and (iii) high
(77.5%) Salgado scores represented in H&E sections (arrows indicate TILs, magnification = × 20). (C) Representative
micrographs of ARID1A protein expression in OCCC tumours: (i) H&E and (ii) matched ARID1A IHC for ARID1A
wild-type case 3705–0207, and (iii) H&E and (iv) matched ARID1A IHC for ARID1A mutant case 3705–0346 showing loss of
ARID1A expression. (D) Scatter plot showing Salgado scores in the cohort according to ARID1A mutational status.

3.4. Total Immune Subpopulation Cell Quantifications Are Not Associated with Risk Status and
ARID1A Mutation Status in OCCC

Although OCCC tumours have overall low levels of immune infiltrate, there is emerg-
ing evidence that they may respond well to immune checkpoint blockade [20,38–40].
Moreover, ARID1A mutant tumours have been shown to demonstrate activation of the
immune checkpoint pathway and sensitization to the PD-1/PD-L1 checkpoint blockade
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in ovarian cancer in in vivo mouse models. We thus hypothesised that in-depth quantifi-
cation of various immune subpopulations with a role in the potential immune response
to these agents may identify subgroups of patients associated with clinical outcomes.
To investigate this, we undertook multiplex immunofluorescence using the Opal™ im-
munofluorescence staining system, and Vectra™ imaging systems. In total, 30 OCCCs
were assessed (13 ARID1A mutant and 17 ARID1A wild-type) with antibodies against
CD4 (T-helper cells and regulatory T cells), FOXP3 (regulatory T cells), CD8 (cytotoxic
T cells), CD68 (monocyte and/macrophage cells), PD-L1 and PanCK (Pan Cytokeratin,
which stains tumour cells) (Figure 1) and quantified using a custom algorithm developed
in the inForm™ image analysis software package (see methods). Overall, we observed
a significant correlation between CD8+ staining and Salgado scoring (p = 0.0233, Spear-
man’s rank test, Supplementary Figure S4). Similar to the TIL quantification using Salgado
methodology, we observed no association between overall levels of immune markers and
risk status in this cohort. There were also no significant differences in immune markers
between ARID1A mutant and wild-type tumours (Supplementary Table S7).

The CPS (which assesses the number of PD-L1-positive tumour, lymphocytic and
macrophage cells in relation to total tumour cells) [36] has been identified as a predictive
biomarker of higher overall response rate (ORR) to pembrolizumab in mixed histology
epithelial ovarian cancers. Of the 18 OCCCs where CPS calculations were feasible using
HALO®, no significant association between the CPS scores and risk status was observed
(with 4/11 cases low-risk and the remaining 7/11 cases classed as high-risk, p = 0.4121,
Mann–Whitney U test). In addition, we observed no significant associations between CPS
score and ARID1A mutational status (ARID1A 7 = mutant and 11 = wild-type: p = 0.9503,
p = 0.3734 Mann–Whitney U test, Supplementary Table S8).

3.5. Spatial Distribution of Immunosuppressive Immune Subpopulations Is Associated with Risk
Status and ARID1A Mutational Status in OCCC

We next sought to further interrogate the spatial locations of key immune subpopulations
known to promote an immunosuppressive environment [41–44], including comparison of im-
mune cell location amongst the tumour cells relative to the stroma. We therefore investigated
the spatial locations of tumour-associated macrophages (TAMs) by assessing CD68 + cells,
activated TAMs (PD–L1 + CD68 + cells), regulatory T cells (FOXP3 + CD4 + cells and activated
regulatory T cells; PD–L1 + FOXP3 + CD4 + triple positive cells [45]), stratifying into tumoral
and stromal locations. In low-risk patients, we identified significantly higher numbers of
CD68 +, PD-L1 + CD68 + and PD-L1 + FOXP3 + cells in the stroma relative to tumour (n = 9)
(CD68 +: p = 0.0117, PD-L1 + CD68 +: p = 0.0039, PD-L1 + FOXP3 + CD4 + p = 0.0039, paired
samples Wilcoxon signed-rank test, Figure 4A–H). No significant differences were observed in
the spatial location of these cell types in high-risk patients, however (n = 12) (CD68: p = 0.8501,
PD–L1 + CD68: p = 0.3013, PD–L1 + FOXP3 + CD4 + p = 0.1055, paired samples Wilcoxon
signed rank test, Figure 4A–D, Supplementary Table S9).

Comparing the spatial locations of the immunosuppressive subpopulations with
ARID1A mutation status highlighted that CD68 + cells were significantly more prevalent in
the stroma compared to tumour in the mutant cases (n = 13, p = 0.0007), yet no significant
difference between these two spatial locations was present in wild-type cases (n = 17,
p = 0.1089, paired samples Wilcoxon signed rank test) (Figure 4E–H). There were no
significant differences in the spatial locations of PDL1 + TAMs (PD–L1 + CD68 + cells),
or regulatory T cells (Tregs) (FOXP3 + CD4 + cells and PD–L1 + FOXP3 + CD4 + cells) in
ARID1A mutant tumours, however (Supplementary Table S9).

Taken together, these results are suggestive that the increased presence of TAMs in the
stroma and subsequent exclusion from the tumour cells in low-risk and ARID1A mutant
tumours is indicative of a reduced immunosuppressive environment in these patients.
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OCCC. (A) Representative H&Es and Vectra images in low- and high-risk patients demonstrating differential spatial locations
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of PD-L1 + CD68 cells: (i) H&E and (ii) corresponding Vectra IF image in low-risk case 3705–0468 showing stromal PD-L1 +
CD68 + cells; (iii) H&E and (iv) corresponding Vectra IF image for high-risk case 3705–0435 demonstrating PD-L1 + CD68 +
cells located in a tumour area. (B) Immune cell quantifications subdivided into tumour and stromal locations according
to patient risk status (n = 21). Scatter graphs depicting individual data points for each patient for cell density counts of
(i) CD68 and (ii) PD-L1 + CD68. (C) Representative H&Es and Vectra images in low- and high-risk patients demonstrating
differential spatial locations of PD-L1 + FOXP3 + CD4 + cells; (i) H&E and (ii) corresponding Vectra IF image in low-risk case
3705–0385 showing a stromal PD-L1 + FOXP3 + CD4 + cells; (iii) H&E and (iv) corresponding Vectra IF image for high-risk
case 3705–0559 demonstrating PD-L1 + FOXP3 + CD4 cells located in tumour and stroma compartments. These cells are
highlighted by red annotations. (D) Immune cell quantifications subdivided into tumour and stromal locations according
to patient risk status (n = 21). Scatter graph depicting individual data points for each patient for cell density counts of
PD-L1 + FOXP3 + CD4 + cells showing significantly higher numbers of this immune cell-type in the stroma relative to
tumour in low-risk patients (n = 9). (E) Representative H&E and corresponding Vectra IF images in ARID1A mutant and
wild-type tumours demonstrating CD68 cell findings: (i) H&E for mutant case 3705–0459 and (ii) corresponding Vectra IF
image demonstrating CD68 cells located within the stroma and excluded from the tumour cells; (iii) H&E for wild-type case
3705–0379 and (iv) corresponding Vectra IF image demonstrating CD68 cells located in both the stroma and the tumour.
(F) Scatter graph depicting individual data points depicting CD68 cell density counts in the tumour and stroma for each
patient (n = 30). (G) Representative H&E and corresponding Vectra IF images in ARID1A mutant and wild-type cases
demonstrating CD8 + cell findings: (i) H&E of mutant case 3705–0669 and (ii) corresponding Vectra IF image demonstrating
CD8 + cells located within the stroma and excluded from the tumour cells; (iii) H&E for wild-type case 3705–0514 and
(iv) corresponding Vectra IF image demonstrating CD8 + cells located in both the stroma and the tumour. (H) Scatter graph
depicting individual data points for cell density counts of CD8 + cells in the tumour and stroma for each individual patient
(n = 30), (** p < 0.01, *** p < 0.001, Wilcoxon matched pairs-signed rank test).

3.6. Spatial Distribution of Cytotoxic T Cells Is Associated with ARID1A Mutational Status

Previous work has highlighted that ARID1A deficiency is related to a mismatch repair
phenotype and increased TILs in ovarian cancer mouse models. Given that we did not
identify higher TILs in ARID1A mutant cases at the histological level, and also found no
differences in the total quantifications of various immune subpopulations assessed through
multiplex immunofluorescence, we sought to further clarify if there was any difference
in the spatial locations of cytotoxic T-lymphocyte subpopulations that mediate tumour
cell killing (dual positive CD4 + CD8 + cells) between ARID1A mutant and wild-type
cases. We found that CD8 + cells (cytotoxic T cells) were significantly more prevalent
in the stroma of the ARID1A mutant cases relative to the tumour (p = 0.0034), and this
coexisted with significantly higher stromal CD68 + cells (p = 0.0007), whilst the wild-
type cases showed no significant differences between the spatial location of this cell type
(p = 0.0984) (Figure 4E–H). There were no differences, however, between ARID1A mutant
and wild-type cases in terms of the locations of CD4 + T cells (Supplementary Table S9).

4. Discussion

By comprehensively characterising a cohort of OCCC, we have gained novel in-
sights into the immune landscape of this histologically rare ovarian epithelial malignancy.
Our study identified that although OCCCs have low levels of immune infiltrate, there is
a subset of immune-related genes associated with clinical outcome in OCCC patients.
Although derivation of this signature was supplemented with endometroid cancers to
increase the power of the survival modelling, the signature validated in additional inde-
pendent OCCC, endometrial and clear cell kidney cancers, highlighting the interoperability
of the immune-related prognostic signature in cancers with reported genomic similari-
ties [28–34]. Three of five genes that we identified as associated with disease recurrence
(CD24, C1S and THBS1) were also found to be prognostic in a recent study by Tan and
colleagues, which identified two prognostic OCCC gene expression subtypes in a large
cohort of OCCCs [24], and may thus represent useful biomarkers for identification of poor
prognosis OCCC tumours.

We further identify that the spatial location of immune subpopulations, rather than
their gross quantification, is associated with patient risk of relapse and ARID1A muta-
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tion status. Our finding of relatively higher numbers of important immunosuppressive
subpopulations, CD68 + and PD-L1 + CD68 + (TAMs) and PD-L1 + FOXP3 + CD4 +
(T-regulatory) cells in the stroma relative to tumour in low-risk patients, suggests that
the ‘tumour-exclusion’ of these cells is important in maintaining an effective anti-tumour
immune response and preventing tumour progression. Recent studies have suggested
that increased intratumoral PD-L1 + macrophages and T-regs are associated with a worse
outcome in lung cancers [46,47]. High FOXP3 expression has additionally been associated
with worse progression-free survival in high-grade serous epithelial ovarian cancer pa-
tients [48]. Whilst we did not identify this direct association in OCCC, likely due to low
numbers, we provide new insights into the spatial significance of T-regulatory cells with
relation to prognosis in OCCC.

When ARID1A mutation status was considered, we identified that mutant cases
showed the simultaneous ‘tumour-exclusion’ of both CD68 + TAMs and CD8 + cytotoxic
T cells. Previous studies have also demonstrated that stromal TAMs have long-lasting
interactions with stromal T cells, ‘trapping’ them in the stroma and preventing them from
gaining access to the tumour cells [49]. Our findings suggest that the therapeutic targeting
of TAMs may be important in enabling CD8 + cells to access the tumour, further enhancing
and synergising current immune checkpoint-based immunotherapy in ARID1A mutant
patients [42–50]. Known synthetic-lethal targeting strategies associated with ARID1A
deficiency, such as ATR inhibitors and/or PARP inhibitors [19–51], may also help prime the
immune system and synergise the immune checkpoint blockade. Results from the ongoing
ENGOT/GYNI/ATARI (ATr Inhibitor in Combination With Olaparib in Gynaecological
Cancers With ARId1A Loss or no Loss (ATARI)) trial will be useful to assess this.

Our study has a number of limitations, namely, the small numbers of patient samples
analysed within the cohort. Evaluation of our findings in larger cohorts and in the context
of OCCC-specific clinical trials assessing the effectiveness of immunomodulatory agents
(e.g., PEACOCC) will be important. In our cohort, no OCCCs harbored microsatellite
instability. MSI has been reported in OCCC at a frequency of approximately 10% [22] and
immunotherapy is now FDA approved for patients with MSI tumours, regardless of the
primary tumour site [52]. This is thought to occur due to the high tumour mutational
burden of cancers with defective mis-match repair. A recent pan-cancer analysis (not
including OCCC) showed an increased mutational load in ARID1A-mutated tumours [53],
suggesting that ARID1A mutant OCCCs may have a higher TMB, and thus potentially
respond better to anti-PD-L1 therapies. We were unable to formally assess the TMB in
this study due to the small size of the sequencing panel used, and this therefore warrants
further assessment in future studies.

5. Conclusions

In summary, we have identified and validated an immune-related gene expression
profile that is associated with a risk of recurrence that could be incorporated in future
clinical trials. We have also provided new insights into the spatial significance of various
immune subpopulations in OCCC, whereby tumour-associated macrophages (TAM) and
regulatory T cells are excluded from the vicinity of tumour cells in low-risk patients,
and TAMs and cytotoxic T cells are also excluded from the vicinity of tumour cells in
ARID1A-mutated OCCCs. Together these findings suggest that the exclusion of these
immune effectors could determine the host response of ARID1A mutant OCCCs to therapy.
As such, ARID1A mutant patients may derive additional benefits from treatments targeting
TAMs to further enhance the response to immunotherapy by facilitating the access of CD8
cells into the vicinity of the tumour. Together our findings provide a framework for the
spatial assessment of immune subpopulations in prospective immunotherapy trials in
OCCC and highlights the importance of considering combinatorial treatment approaches
to improve responses to immunotherapy and overall clinical outcomes in OCCC.
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