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Tardigrades are microscopic animals well-known for their stress tolerance, including the
ability to survive desiccation. This survival requires cytosolic abundant heat soluble (CAHS)
proteins. CAHS D protects enzymes from desiccation- and lyophilization-induced
inactivation in vitro and has the potential to stabilize protein-based therapeutics,
including vaccines. Here, we investigate whether purified recombinant CAHS D causes
hemolysis or a toxic or immunogenic response following intraperitoneal injection in mice.
CAHS D did not cause hemolysis, and all mice survived the 28-day monitoring period. The
mice gained weight normally and developed anti-CAHS D antibodies but did not show
upregulation of the inflammatory cytokines interleukin-6 and tumor necrosis factor alpha.
In summary, CAHS D is not toxic and does not promote an inflammatory immune
response in mice under the conditions used here, suggesting the reasonability of further
study for use as stabilizers of protein-based therapeutics.

Keywords: cytosolic-abundant heat-soluble proteins, immunogenicity, intrinsically disordered proteins, protein-
based therapeutics, tardigrades, toxicity
INTRODUCTION

The emergence of the novel coronavirus SARS-CoV-2 has caused a global outbreak in coronavirus
disease 2019 (Ahn et al., 2020). There is an acute need for a vaccine for this virus, and
formulations are currently under development (Ahn et al., 2020; Shanmugaraj et al., 2020).
However, once a vaccine is available, production challenges will be accompanied by difficulties in
distribution, especially in developing countries. The preservation of protein structure and activity
requires careful handling and low temperatures, which increases storage and transportation costs
(Lee et al., 2017).
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The 2018 Ebola outbreak in the Democratic Republic of
the Congo illustrated the hurdles that must be overcome for
refrigeration during storage, transport, and distribution of
peptide-based therapeutics (Ashok et al., 2017). The Ebola
vaccine must be stored at −60°C or below to prevent spoilage,
and an emergency increase in cold chain capacity has been a
priority since 2014 (Jusu et al., 2018).

In addition to vaccines, there are more than 200 FDA-
approved protein- and peptide-based therapeutics on the
market, including treatments for type 2 diabetes, breast cancer,
and prostate cancer (Fosgerau and Hoffmann, 2015; Usmani
et al., 2017). To stabilize proteins and increase shelf life, sugars,
polymers, amino acids, globular proteins, and osmolytes have
been investigated as excipients (Piszkiewicz and Pielak, 2019).
Even in the presence of excipients, proteins must be kept at low
temperatures. Lyophilization and desiccation can increase the
shelf life of some proteins but may lead to problems such as
aggregation and denaturation (Piszkiewicz and Pielak, 2019).

Efforts to stabilize proteins for dehydration and long-term
storage at ambient temperatures have shown success with the
tardigrade cytosolic-abundant heat soluble D (CAHS D) protein
(Boothby and Pielak, 2017; Boothby et al., 2017; Piszkiewicz
et al., 2019). CAHS D is intrinsically disordered, unique to
tardigrades, and protects the activity of lipoprotein lipase and
lactate dehydrogenase from desiccation, heat, and lyophilization
(Piszkiewicz et al., 2019). The ability of CAHS D to protect both
lipases and dehydrogenases suggests that the protection
mechanism is generic and may be applicable to protein vaccine
antigens such as hemagglutinin.

The application of CAHS proteins as excipients would be
financially important and allow areas with little to no electricity
infrastructure access to life-saving protein-based therapeutics.
There are, however, a number of potential problems with using
proteins from foreign organisms in therapeutic formulations,
including allergic reactions and acute inflammation
following administration.

Interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFa)
are inflammatory cytokines whose expression increases within 2 to
4 h following activation of the innate immune response (Papadakis
and Targan, 2000; Zganiacz et al., 2004; Grivennikov et al., 2005;
U.S. Department of Health and Human Services (DHHS), 2014;
Francisco et al., 2015). IL-6 is produced in response to
inflammation and stresses such as infection (Tanaka et al.,
2014). Changes induced by IL-6 expression are often monitored
in routine tests for inflammation and include increases in platelet
release and induction of proteins such as C-reactive protein
(Tanaka et al., 2014). TNFa is a pro-inflammatory cytokine
secreted by macrophages that mediates acute inflammation
(Chu, 2013). TNFa is also highly expressed in response to
endotoxins. In contrast to the acute immune response,
activation of the adaptive immune response is less immediate
and involves the production of anti-drug antibodies that can
interfere with drug action and reduce efficacy (De Groot and
Scott, 2007; Baker et al., 2010). We injected CAHS D into mice to
identify potential adverse responses, including weight loss and
expression of IL-6 and TNFa.
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MATERIALS AND METHODS

Protein Purification
The expression and purification of CAHS D was carried out as
described (Piszkiewicz et al., 2019). To summarize, the pET-28b
plasmid encoding CAHS D (Boothby et al., 2017) was
transformed into BL21 (DE3) E. coli. The bacteria were
grown at 37°C until the optical density reached 0.6 at 600 nm.
CAHS D expression was induced with 1 mM isopropyl-b-D-
thiogalactoside (final concentration) for 3 h, after which cells
were centrifuged at 4,500g for 25 min at 10°C. The supernatant
was discarded, and the pellet was resuspended in 20 mM Tris pH
7.5. and stored at −20°C. Samples were thawed at 37°C and the
cells were lysed by heat shock in boiling H2O for 15 min and then
cooled to room temperature. Cooled suspensions were
centrifuged at 15,000g for 45 min. The supernatant was diluted
with an equal volume of buffer containing 8 M urea and 50 mM
sodium acetate, pH 4.0, filtered through a 0.45 mm filter, and
loaded onto a 5-ml FPLC cation exchange column (HiTrap SP
HP, GE Healthcare). CAHS D was eluted over 29 column
volumes with a salt gradient of 0 to 0.4 M NaCl in 8 M urea,
50 mM sodium acetate, pH 4.0. Fractions were analyzed by SDS-
PAGE. Those containing pure CAHS D were pooled, transferred
to 3,500 MWCO dialysis tubing (Fisher 68035), and dialyzed
once against 20 mM Tris-HCl pH 7.5 for 4 h and then six
additional times against deionized H2O. Purified CAHS D was
once again sterile filtered through a 0.45-µm filter, flash frozen,
and lyophilized. Lyophilized CAHS D was resuspended in
endotoxin-free PBS to a concentration of ~20 g/L and then
underwent two rounds of endotoxin removal by mixing with
High Capacity Endotoxin Removal Resin (Pierce) overnight. The
final endotoxin level was <10 EU/ml (<1 EU/injection) as
quantified with the Chromogenic Endotoxin Quant Kit
(Thermo Scientific Pierce). Purified CAHS D was analyzed by
mass spectrometry, and a single peak was identified at m/z of
25353 Da (Supplementary Figure 1). The expected m/z is
25485.3 Da. The removal of the N-terminal methionine during
expression in E. coli explains the difference between the expected
and observed molecular mass (Wingfield, 2017). The final
protein concentration was verified with a Bradford assay.
Animals
C57BL/6 mice were purchased from Jackson Laboratory (Bar
Harbor, Maine) and housed under standard laboratory
conditions. Mice were bred and maintained in a temperature-
controlled room with a 12-h light/dark cycle and provided
standard chow and water ad libitum. Male and female
mice were used indiscriminately. The welfare of all laboratory
mice was monitored daily. All experiments were approved
by the Appalachian State Institutional Animal Care and
Use Committee.

Statistical Analysis
Responses were compared using a homoscedastic two-tailed t-test
(* indicates p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001).
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Hemolysis
Blood from 3-month-old mice was collected by cardiac puncture
under anesthesia with isoflurane and transferred to heparinized
tubes (BD). Red blood cells from whole blood were pelleted at
1,000g for 10 min and washed twice with 10 times the pellet
volume of Lactated Ringer’s solution (100 mM NaCl, 30 mM
sodium lactate, 4 mM KCl, 1 mM CaCl2, VetOne). The red blood
cell pellet was resuspended in Lactated Ringer’s solution to a final
volume of 0.8% (v/v).

Equal volumes of Lactated Ringer’s solution, CAHSD (1.25 g/L,
2.5 g/L, 5 g/L, 10 g/L), or 1% Triton X-100 (MilliporeSigma) were
mixed with the 0.8% red blood cell suspension for 30 min with
rotation. The range of concentrations used was chosen based on
the amount of CAHS D required to stabilize enzymes in vitro
(Piszkiewicz et al., 2019). Lactated Ringer’s solution was used as a
negative control because it is considered safe and causes minimal
hemolysis (Ansel and Gigandet, 1976). Triton X-100 (1% weight/
volume) was used as a positive control because it lyses red blood
cells (Deibler et al., 1959). The suspensions were pelleted at
1,000g for 10 min, the pellets were discarded, and the absorbance
of the supernatant was measured at 404 nm in the plate reader.
The hemolysis experiment was performed in triplicate with blood
from each of three mice. Comparisons between Lactated Ringer’s
solution or CAHS D and Triton X-100 were performed.

Toxicity of CAHS D and Anti-CAHS D
Antibody Production
Mice were divided into four groups of six each and given 100 µL
intraperitoneal injections at day 0 and day 21. The first group
was given Lactated Ringer’s solution as a negative control. The
next two groups were given low (1.25 g/L) or high (15 g/L) doses
of CAHS D. The final group was given 0.05 g/L recombinant
hemagglutinin protein (HA) from the influenza A H1N1 (A/
Puerto Rico/8/1934) flu virus (Sino Biological 11684-V08H). The
protein HA is often used in flu vaccines to induce anti-HA
antibody production without toxicity (Henry et al., 2019). The
HA injections were negative controls to show the specificity of
the anti-CAHS D antibodies. All mice were monitored over a 28-
day period for signs of toxicity, including weight loss, hunched
posture, or changes in respiration. Blood was collected by
submandibular vein puncture at day 0, 14, 21, and 28, and
serum was purified with serum separator tubes (Sarstedt) and
stored at −80°C. Antibodies against CAHS D were determined by
ELISA assay as described below. The experiment was repeated
twice more, for a total of 18 mice per treatment group. For anti-
CAHS D antibody production and weight changes, values from
18 biological replicates of each CAHS D or HA sample were
compared to PBS.

Innate Immune Response
Mice were divided into seven groups of two to three each and
given 100 µL intraperitoneal injections of Lactated Ringer’s
solution, 1.25 g/L CAHS D, 2.5 g/L CAHS D, 5.0 g/L CAHS D,
10 g/L CAHS D, 15 g/L CAHS D, or 1 g/L lipopolysaccharides
(LPS) from E. coli O127:B8 (MilliporeSigma L3129). Lactated
Ringer’s solution was used as a negative control, and LPS was
Frontiers in Pharmacology | www.frontiersin.org 3
given as a positive control. LPS induces IL-6 and TNFa (Beurel
and Jope, 2009). Four hours post injection, blood was collected
by submandibular vein or cardiac puncture under anesthesia
using isoflurane. Serum was purified with serum separator tubes
and stored at −80°C. Serum was analyzed for IL-6 and TNFa by
ELISA assay as described below. IL-6 and TNFa are markers of
the proinflammatory cascade and indicators of inflammatory
stress (Institute of Medicine (U.S.). Committee on Military
Nutrition Research. et al., 1997). The experiment was repeated
for a total of five to seven mice per treatment. Values for each
assay were compared to values of the LPS positive control.

ELISA Assay
To detect anti-CAHS D antibodies, each well in a MaxiSorp high
binding ELISA plate (Invitrogen) was coated with 50 mL of 11mg/L
CAHS D in 0.1 M NaHCO3 buffer, pH 9.6, for 4 h and then
blocked with 200 mL of 1% (v/v) casein (MilliporeSigma) overnight
at 4°C. Mouse serum was diluted 1:200, and 50 mL of each sample
was added to the plate in triplicate. The plate was incubated at 37°C
for 1 h then washed four times with Dulbecco’s Phosphate Buffered
Saline containing 1% (v/v) Tween 20 (PBS-T, MilliporeSigma).
Donkey anti-mouse HRP antibody (GE Healthcare) was diluted
1:4000 and 50 mL was added to each well. The plate was incubated
at 37°C for 30 min and washed four times with PBS-T. 1-Step™

Ultra 3,3′,5,5′-tetramethylbenzidine ELISA Substrate Solution
(ThermoFisher Scientific) was warmed to room temperature and
50 mL was added to each well. The substrate was developed for 15
min in the dark and the reaction stopped with 50 mL of 2MH2SO4.
The absorbance was measured at 450 nm in the plate reader.

Levels of TNFa were quantified from serum samples with
Mouse TNFa ELISA Kits (Boster and Invitrogen). Serum
dilutions ranged from 1:5 to 1:10. The analytical sensitivity of
the assay was 8 pg/ml (Invitrogen) and <1 pg/ml (Boster). Levels
of IL-6 were quantified from serum samples with Mouse IL-6
ELISA Kits (Boster and Invitrogen). Serum dilutions ranged
from 1:5 to 1:80. The analytical sensitivity of the assay was 4
pg/ml (Invitrogen) and <1 pg/ml (Boster).
RESULTS

Hemolysis
All CAHS D concentrations tested resulted in hemolysis at levels
less than or similar to the negative control (Figure 1), Lactated
Ringer’s solution. Lactated Ringer’s solution and all CAHS D
concentrations elicited values less than the positive control,
TX-100.

Production of Anti-CAHS D Antibodies
and Animal Health
Mice were injected with CAHS D (1.25 or 15 g/L) at day zero and
given a second injection at day 21, designed to mimic a vaccine
booster. Over the 28-day monitoring period, CAHS D at 1.25 g/L
and 15 g/L was recognized by the mouse immune system
following injection and elicited anti-CAHS D antibodies in
serum at levels higher than PBS (Figure 2A). Anti-CAHS D
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antibody levels decreased at day 21, then increased following the
booster injection. No significant difference in antibody levels was
observed between the injection of 1.25 and 15 g/L CAHS D. No
anti-CAHS D antibodies were produced in response to injection
of buffer alone or the H1N1 hemagglutinin protein (HA), thus
confirming the specificity of the ELISA assay (Figure 2A). No
mice died during the study, had changes in ambulation, or lost
weight due to CAHS D injection (Figure 2B).

Production of Inflammatory Cytokines
Neither TNFa (Figure 3A) nor IL-6 (Figure 3B) were detected
in levels above the limit of quantification. As a positive control,
lipopolysaccharide (purified endotoxin) injection resulted in an
inflammatory response that was higher than that elicited by PBS
or CAHS D.
DISCUSSION

CAHS D caused less hemolysis than Lactated Ringer’s solution,
which is known to be safe for intravenous injection (Figure 1)
(Iqbal et al., 2018). Hemolysis of red blood cells can be dangerous
and is induced by toxins such as those secreted from bacteria or
present in snake venom (Condrea et al., 1964; Sogawa et al.,
2018). The lack of hemolysis by CAHS D suggests it does not
harm the structural integrity of red blood cells.

The production of dose dependent anti-CAHS D antibodies
suggests that CAHS D was recognized by the mouse immune
system following injection. Although antibody levels began to
Frontiers in Pharmacology | www.frontiersin.org 4
decline by 21 days post-injection, re-injection of CAHS D caused
a second rise in antibody levels (Figure 2A). The development of
anti-drug antibodies can interfere with the action of protein-
based therapeutics but antibodies against CAHS D would not
interfere with its intended purpose because CAHS D is not
intended for use as a therapeutic; it would be used only to
stabilize other therapeutic proteins during transport and storage,
prior to injection. A BLASTp search of non-redundant protein
sequences shows that CAHS D shares insignificant identity
(<5%, E value <10) with any human or mouse protein,
suggesting a low likelihood that antibodies to CAHS D will
cross-react with endogenous proteins.

One measure of the toxicity of pharmaceuticals is whether
they cause stress to animals. For example, the chemotherapeutic
drug topotecan causes mice to lose as much as 30% of their body
A

B

FIGURE 2 | CAHS D injection produces anti-CAHS D antibodies but does
not lead to weight loss. Anti-CAHS D antibody production (A) and weight
changes (B) following CAHS D injection. Syringes indicate injection of CAHS
D on day 0 and day 21. Mice were injected with 100 mL of phosphate
buffered saline (PBS) buffer (blue), 1.25 g/L CAHS D (orange), 15 g/L CAHS D
(gray), or 0.05 g/L hemagglutinin (HA) protein (yellow) from the H1N1 flu virus
strain. Six mice were treated for each concentration, and the experiment was
performed three times using a total of 18 mice per treatment. Each point
represents the average of 18 data points. Error bars represent the standard
error of the mean. For anti-CAHS D antibody production and weight changes,
values from each CAHS D or HA sample were compared to PBS. At day 2
and 28, mice injected with HA showed more weight gain than mice injected
with PBS. * indicates p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
FIGURE 1 | CAHS D does not causes hemolysis of mouse red blood cells.
Lactated Ringer’s solution (LR, blue), CAHS D (1.25 - 10 g/L, orange), or 1 %
Triton X-100 (yellow) was incubated with mouse red blood cells with rotation
for 30 min. Intact red blood cells were pelleted, and released hemoglobin was
measured at 404 nm. The hemolysis experiment was conducted using three
technical replicates for each concentration. Additionally, the experiment was
performed three times using blood from a new mouse each time. The
technical replicates from each mouse were averaged. Error bars represent the
standard error of the mean. Comparisons between Lactated Ringer’s solution
or CAHS D and Triton X-100 were performed. **** indicates p ≤ 0.0001.
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weight (Shah and Balthasar, 2014). In this study, mice were
monitored for 28 days following injection of CAHS D and were
re-injected at day 21. No mice died during the study, had changes
in ambulation, or lost weight due to CAHS D injection (Figure
2B). All mice, including those injected with buffer alone, showed
a 5% to 10% weight gain over a one-month period, which is
Frontiers in Pharmacology | www.frontiersin.org 5
typical for C57Bl/6J mice (Gargiulo et al., 2014) and consistent
with changes in body weight with age for such mice maintained
at The Jackson Laboratory, as stated in the Mouse Phenome
Database, (http://www.jax.org/phenome). The typical weight
gain and lack of obvious signs of stress suggest that CAHS D is
safe for injection in mice.

The absence of TNFa and IL-6 induction following injection
of CAHS D means that the mice did not initiate an inflammatory
response to CAHS D and that efforts to remove endotoxins from
the purified protein were successful. Taken together with the lack
of hemolysis or weight loss induced by CAHS D, these results
confirm that CAHS D does not illicit toxic or acute inflammatory
immune responses in mice.

To be cost effective, the purification of CAHS D must be easy
and have a high yield. One L of Escherichia coli expressing
recombinant CAHS D can produce as much as 20 mg of purified
CAHS D. However, removal of endotoxin is costly and time-
consuming. It might be beneficial to optimize purification of
CAHS D in insect cells or in endotoxin-free bacteria (Mamat
et al., 2015; Planesse et al., 2015).

In conclusion, this study demonstrates that CAHS D does not
cause hemolysis, notable distress, or an acute inflammatory
response in mouse models. In vitro studies with enzymes
indicate that lyophilization or desiccation with CAHS D can
protect activity upon desiccation (Piszkiewicz et al., 2019).
Future studies are needed to demonstrate that therapeutics
stabilized with CAHS D remain effective following injection.
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