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1 Abstract6

Computational cognitive models have been used extensively to formalize cognitive processes. Model parameters offer7

a simple way to quantify individual differences in how humans process information. Similarly, model comparison8

allows researchers to identify which theories, embedded in different models, provide the best accounts of the data.9

Cognitive modeling uses statistical tools to quantitatively relate models to data that often rely on computing/estimating10

the likelihood of the data under the model. However, this likelihood is computationally intractable for a substantial11

number of models. These relevant models may embody reasonable theories of cognition, but are often under-explored12

due to the lack of tools required to relate them to data. We propose to fill this gap using artificial neural networks13

(ANNs) to map data directly onto model identity and parameters, bypassing the likelihood estimation. Our results show14

that we can adequately perform both parameter estimation and model identification using our new ANN approach,15

including for models that cannot be fit using traditional likelihood-based methods. Our new ANN approach will16

greatly broaden the class of cognitive models researchers can quantitatively consider.17

Computational modeling is an important tool for studying behavior, cognition, and neural processes. Computational18

cognitive models translate scientific theories into algorithms using simple equations with a small number of inter-19

pretable parameters to make predictions about the cognitive or neural processes that underlie observable behavioral or20

neural measures. These models have been widely used to test different theories about cognitive processes that shape21

behavior and relate to neural mechanisms (Lee and Webb, 2005; Montague et al., 2012; Palminteri et al., 2017; Shultz,22

2003). By specifying model equations, researchers can inject different theoretical assumptions into models, and, for23

most models, simulate synthetic data to make predictions and compare against observed behavior. Researchers can24

quantitatively arbitrate between different theories by comparing goodness of fit (Akaike, 1998, Wei and Jiang, 2022)25

across different models. Furthermore, by estimating model parameters that quantify underlying cognitive processes,26

researchers have been able to characterize important individual differences (e.g. developmental: Eppinger et al., 2013;27

Hauser et al., 2015; Nussenbaum et al., 2022; Rmus et al., 2023; clinical: Chen et al., 2015; Collins et al., 2014; Gillan28

et al., 2016; Peterson et al., 2009; Zou et al., 2022) as well as condition effects (Sheynin et al., 2015; Weber et al.,29

2022).30

Researchers’ ability to benefit from computational modeling crucially depends on the availability of methods for31

model fitting and comparison. Such tools are available for a large group of cognitive models (such as, for exam-32

ple, reinforcement learning and drift diffusion models). Examples of model parameter fitting tools include maximum33

likelihood estimation (MLE, Myung, 2003), maximum a-posteriori (MAP, Cousineau and Helie, 2013), and sampling34

approaches (Baribault and Collins, 2023; Lee, 2011).Examples of model comparison tools include information criteria35

such as AIC and BIC (Akaike, 1998; Schwarz, 1978), and Bayesian group level approaches, including protected ex-36

ceedance probability (Piray et al., 2019; Rigoux et al., 2014). These methods all have one important thing in common37

- they necessitate computing the likelihood of the data conditioned on models and parameters, thus limiting their use38

to models with tractable likelihood. However, many models do not have a tractable likelihood. This severely limits the39

types of inferences researchers can make about cognitive processes, as many models with intractable likelihood might40
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offer better theoretical accounts of the observed data. Examples of such models include cases where observed data41

(e.g. choices) might depend on latent variables - such as the unobserved rules that govern the choices (Eckstein and42

Collins, 2020; Frank and Badre, 2012; Solway et al., 2014), or a latent state of engagement (e.g. attentive/distracted,43

Ashwood et al., 2022; Findling et al., 2021) a participant/agent might be in during the task. In these cases, computing44

the likelihood of the data often demands integrating over the latent variables (rules/states) across all trials, which grows45

exponentially and thus is computationally intractable. This highlights an important challenge - computing likelihoods46

is essential for estimating model parameters, and performing fitness comparison/model identification, and alternative47

models are less likely to be considered or taken advantage of to a greater extent.48

Some existing techniques attempt to bridge this gap. For example, Approximate Bayesian Computation (ABC,49

Lintusaari et al., 2017; Palestro et al., 2018; Sunnåker et al., 2013; Turner et al., 2013; Turner and Sederberg, 2014)50

approximates the likelihood empirically based on summary statistics of a large number of simulations. Other approx-51

imation methods include Inverse Bayesian Sampling (van Opheusden et al., 2020), particle filtering (Djuric et al.,52

2003), and assumed density estimation (Minka, 2013). ABC-like approaches have recently been extended by using53

artificial neural networks (ANNs) to amortize the computational cost of such approaches (Boelts et al., 2022; Fengler54

et al., 2021); it is important to note that these more recent approaches still rely on likelihood approximation methods.55

As such, these methods are limited in the research they can support: they either require advanced mathematical ex-56

pertise for effective use and adaptation to specific models, making them less accessible to most researchers, or make57

assumptions violated by a broad class of models (e.g models with strong inter-trial dependencies). Furthermore, some58

of these tools are customized for a specific problem, and might not extend to broader application.59

To address these limitations we propose to leverage advances in machine learning, in particular artificial neural60

networks (ANNs) to develop a general method that can be used to estimate parameters and perform model identifica-61

tion for models with and without tractable likelihood, entirely bypassing the likelihood estimation step. ANNs have62

been successfully used to fit intractable models in different fields, including weather models (Lenzi et al., 2023) and63

econometric models (Wei and Jiang, 2022). We develop similar approaches to specifically target the intractability64

estimation problem in the field of computational cognitive science, and to extend it from parameter estimation only to65

also model identification.66

Our approach relies on the property of ANNs as universal function approximators. The ANN structure we im-67

plemented was an RNN with feed-forward layers inspired by Dezfouli et al., 2019 (Fig: 1) that is trained to estimate68

model parameters, or identify which model most likely generated the data based on input data sequences simulated by69

the cognitive model.70

To validate and benchmark our approach, we first compared it against standard model parameter fitting methods71

(MLE, MAP, ABC) in cognitive models from different families (reinforcement learning, Bayesian Inference) with72

tractable likelihood. Next, we demonstrated that neural networks can be used for parameter estimation of models73

with intractable likelihood, and compared it to standard approximation method (ABC). Finally, we showed that our74

approach can also be used for model identification. Our results showed that our method is highly successful and75

robust at parameter and model identification while remaining technically lightweight and accessible. We highlight the76

fact that our method can be applied to standard cognitive data sets (i.e. with arbitrarily small number of participants,77

and normal number of trials per participant), as the ANN training is fully done on a large simulated data set. Our78

work contributes to the ongoing research focusing on leveraging artificial neural networks to advance the field of79

computational modeling, and provides multiple new avenues for maximizing the utility of computational cognitive80

models.81

2 Results82

We focused on two distinct artificial neural network (ANNs) applications in cognitive modeling: parameter estimation83

and model identification. Specifically, we built a network with a structure suitable for sequential data/data with time84

dependencies (e.g. recurrent neural network (RNN); Dezfouli et al., 2019). Training deep ANNs requires large training85

data sets. We generated such a data set at minimal cost by simulating a cognitive computational model on a cognitive86

task a large number of times. Model behavior in the cognitive task (e.g. a few hundred trials of stimulus-action pairs or87

stimulus-action-outcome triplets (depending on the task) for each simulated agent) constituted ANN’s training input;88

true known parameter values (or identity of the model) from which the data was simulated constituted ANNs’ training89

targets. We evaluated the network’s training performance in predicting parameter values/identity of the model in a90

separate validation set, and tested the trained network on a held out test set. We tested RNN variants and compared91
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their accuracy against traditional likelihood-based model fitting/identification methods using both likelihood-tractable92

and likelihood-intractable cognitive models. See Methods section for details on the ANN training and testing process.93

Figure 1: Artificial neural network (ANN) approach. A) Traditional methods rely on computing likelihood of the data
under the given model, and optimizing the likelihood to derive model parameter estimates. B) The ANN is trained to
map parameter values onto data sequences using a large simulated data set; the trained network can then be used to
estimate cognitive model parameters based on new data without the need to compute or approximate likelihood. C) The
ANN structure inspired by Dezfouli et al., 2019 is suitable for data with strong inter-trial dependencies: it consists of
an RNN and fully connected feed-forward network, with an output containing ANN estimates of parameter values the
data was simulated from for each agent. D) As in parameter estimation, traditional tools for model identification rely on
likelihood to derive model comparison metrics (e.g. AIC, BIC) that are used to determine which model likely generated
the data. E) ANN is instead trained to learn the mapping between data sequences and respective cognitive models the
data was simulated from. F) Structure of the ANN follows the structure introduced for parameter estimation, with the
key difference of final layer containing the probability distribution over classes representing model candidates, with
highest probability class corresponding to the model the network identified as the one that likely generated the agent’s
data.

2.1 Parameter recovery94

2.1.1 Benchmark comparison95

First, we sought to validate our ANN method and compare its performance to existing methods by testing it on standard96

likelihood-tractable cognitive models of different levels of complexity in the same task: 2-parameter (2P−RL) and97

4-parameter (4P−RL) reinforcement learning models commonly used to model behavior on reversal tasks (Gläscher98

et al., 2009; Hampton et al., 2006; Hauser et al., 2015; Peterson et al., 2009), as well as Bayesian Inference model (BI)99

and Bayesian Inference with Stickiness (S−BI) as an alternative model family that has been found to outperform RL100

in some cases (Costa et al., 2015; Perfors et al., 2011; Särkkä and Svensson, 2023). We estimated model parameters101

using multiple traditional methods for computing (maximum likelihood and maximum a-posteriori estimation; MAP102

and MLE) and approximating (Approximate Bayesian Computation; ABC) likelihood. We used the results of these103

tools as a benchmark for evaluating the neural network approach. Next, we estimated parameters of these models104

using two variants of RNNs: with gated recurrent units (GRUs) or Long-Short-Term-Memory units (LSTM).105
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We used the same held out data set to evaluate all methods (the test set the ANN has not observed yet, see106

simulation details). For each of the methods we extracted the best fit parameters, and then quantitatively estimated107

the method’s performance as the mean squared error (MSE) between estimated and true parameters across all agents.108

Methods with lower MSE indicated better relative performance. All of the parameters were scaled for the purpose of109

loss computation, to ensure comparable contribution to loss across different parameters. To quantify overall loss for a110

cognitive model we averaged across all individual parameter MSE scores; to calculate fitting method’s MSE score for111

a class of cognitive models (e.g. likelihood tractable models) we averaged across respective method’s MSE scores for112

those models (See Methods for details about method evaluation).113

First, we examined the performance of standard model-fitting tools (MLE, MAP and ABC). The standard tools114

yielded a pattern of results that are expected based on noisy, realistic-size data sets (with several-hundred trials per115

agent). Specifically, we found that MAP outperformed MLE (Fig. 2A, average MSEs: MLE = .69,MAP = .37), since116

the parameter prior applied in MAP regularizes the fitting process. ABC was also worse compared to MAP (Fig. 2A,117

average MSE: ABC = .55). While fitting process is also regularized in ABC, worse performance in some models can be118

attributed to signal loss that arises from approximation to the likelihood. Next, we focused on the ANN performance;119

our results showed that for each of the models, ANN performed better than or just as well as the traditional methods120

(Fig. 2A, average MSEs for different RNN variants: GRU = .32,LST M = .35). Better network performance was more121

evident for parameter estimation in more complex models (e.g. models with higher number of parameters such as 4P-122

RL and S-BI; average MSE across these 2 models: MLE = .98,MAP = .46,ABC = .74,GRU = .37,LST M = .44).123

Next, we visualized parameter recovery. We found that for each of the cognitive models the parameter recovery124

was largely successful (Spearman ρ correlations between true parameter values and estimated values: β ρMAP,ρGRU =125

[.88, .91], α+ ρMAP,ρGRU = [.51, .54], α− ρMAP,ρGRU = [.87, .87], κ: ρMAP,ρGRU = [.68, .78], Fig. 2B; all correlations126

were significant at p < .001). For conciseness, we only show recovery of the more complex model parameters from127

the RL model family (and only MAP method as it performed better compared to ABC and MLE, as well as only GRU128

since it performed better than LSTM), as we would expect a more complex model to emphasize superiority of a fitting129

method more clearly compared to simpler models. Recovery plots of the remaining models (and respective fitting130

methods) can be found in supplementary materials. Our results suggest that 1) ANN performed as well or better than131

traditional methods in parameter estimation based on the MSE loss; 2) more complex models may limit accuracy of132

parameter estimation in traditional methods that neural networks appear to be more robust against. We note that for133

the 4P−RL model, parameter recovery was noisy for all methods, with some parameters being less recoverable than134

others (e.g. α+ , Fig. 2B). This is an expected property of cognitive models applied to realistic-sized experimental135

data as found in most human experiments (i.e. a few hundred trials per participant).136
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Figure 2: A) Parameter recovery loss from the held out test set for the tractable-likelihood models (2P-RL, 4P-RL, BI,
S-BI) using each of the tested methods. Loss is quantified as the mean squared error (MSE) based on the discrepancy
between true and estimated parameters. Bars represent loss average for each parameter across all agents, with errorbars
representing standard error. B) Parameter recovery from the 4P-RL model using MAP and GRU. ρ values represent
Spearman ρ correlation between true and estimated parameters. Red line represents a unity line (x = x) and black line
represents a least squares regression line. All correlations were significant at p < .001.

2.1.2 Testing in cognitive models with intractable likelihood137

Next, we tested our method in two examples of computational models with intractable likelihood. As a compari-138

son method, we implemented Approximate Bayesian Computation (ABC), alongside our ANN approach to estimate139
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parameters. The two example likelihood-intractable models we used had in common the presence of a latent state140

which conditioned sequential updates: RL with latent attentive state (RL− LAS), and a form of non-temporal hier-141

archical reinforcement learning (HRL, Eckstein and Collins, 2020). Since we cannot fit these models using MAP142

or MLE we used only ABC as a benchmark. Because we found LSTM RNN to be more challenging to train and143

achieve similar results when compared to GRU, we focused on GRU for the remainder of comparisons. We found144

that average MSE was much lower for the neural network compared to ABC for both RL-LAS (Fig. 3A, average145

MSEs: ABC = .62,GRU = .21) and HRL (Fig. 3A, average MSEs: ABC = .28,GRU = .19). Spearman correla-146

tions were noisier for ABC compared to GRU in both models ( Fig. 3B, RL-LAS : β ρABC,ρGRU = [.72, .91], α147

ρABC,ρGRU = [.83, .95], T ρABC,ρGRU = [.5, .81]; HRL : β ρABC,ρGRU = [.86, .89], α ρABC,ρGRU = [.85, .9]; all cor-148

relations were significant at p < .001). Furthermore, some parameters were less recoverable than others (e.g. the T149

parameter in RL-LAS model, which indexed how long participants remained in an inattentive state); this might be in150

part due to less straightforward effect of T on behavior; see supplementary materials (Fig. S6). Note that in order to151

obtain our ABC results we had to perform an extensive exploration procedure to select summary statistics - ensuring152

reasonable ABC results. Indeed, the choice of summary statistics is not trivial and represents an important difficulty153

of applying ABC (Sunnåker et al., 2013), that we can entirely bypass using our new neural network approach.154

Figure 3: A) Parameter recovery loss from the held out test set for the intractable-likelihood models (RL-LAS, HRL)
using ABC and GRU network. Loss is quantified as the mean squared error (MSE) based on the discrepancy between
true and estimated parameters. Bars represent MSE average for each parameter across all agents, with errorbars rep-
resenting standard error. B) Parameter recovery from the RL-LAS and HRL models using ABC (green) and GRU
network (yellow). ρ values represent Spearman ρ correlation between true and estimated parameters. Red line repre-
sents a unity line (x = x) and black line represents a least squares regression line.All correlations were significant at
p < .001.

2.2 Model identification155

We also tested the use of our ANN approach for model identification. Specifically, we simulated data from different156

cognitive models, and trained the network to make a prediction regarding which model most likely generated the157
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data out of all model candidates. The network architecture was identical to the network used for parameter estimation,158

except that the last layer became a classification layer (with one output unit per model category) instead of a regression159

layer (with one output unit per target parameter).160

For models with tractable likelihood, we performed the same model identification process using AIC (Akaike,161

1998) that relies on likelihood computation, penalized by number of parameters, to quantify model fitness as a bench-162

mark. We note that another common criterion, BIC (Wei and Jiang, 2022), performed more poorly than AIC in our163

case.The best fitting model is identified based on the lowest AIC score - a successful model recovery would indicate164

that the true model has the lowest AIC score compared to other models fit to that data. To construct the confusion165

matrix, we computed best AIC score proportions for all models, across all agents, for data sets simulated from each166

cognitive model (Fig: 4; see methods).167

As shown in Figure 4A, model identification performed using our ANN approach was better compared to the AIC168

confusion matrix, with less ”confusion” - lower off-diagonal proportions compared to diagonal proportions (correct169

identification). Model identification using AIC is likely in part less successful due to some models being nested in170

others (e.g. 2P−RL in 4P−RL, BI in S−BI). Specifically, since AIC score represents a combination of likelihood171

and penalty incurred by the number of parameters it is possible that the data from more complex models is incorrectly172

identified as better fit by a simpler version of that model (e.g. the model with fewer parameters; an issue which would173

be more pronounced if we used a BIC confusion matrix). The same phenomenon is observed with the network, but174

to a much lesser extent, showing better identification out of sample - even for nested models. Furthermore, the higher175

degree of ANN misclassification observed for BI/S−BI was driven by S−BI simulations with stickiness parameter176

close to 0, which would render the BI and S−BI non-distinguishable (Fig. S7).177

Because we cannot compute the likelihood for our likelihood-intractable models, there is no standard metric for178

model comparison; thus, we only report the confusion matrices obtained from our ANN approach. In the first confusion179

matrix we performed model identification for 2P−RL and RL− LAS, as we reasoned these two models differ by180

only one mechanism (occasional inattentive state), and thus could potentially pose the biggest challenge to model181

identification. In the second confusion matrix, we included all models used to simulate data on the HRL task (HRL182

model, Bayesian inference model, Bayesian inference with stickiness model). In both cases, the network successfully183

identified the correct models as true models, with a very small degree of misidentification, mostly in the nested models.184

Based on our benchmark comparison to AIC, and the proof of concept identification for likelihood intractable models,185

our results indicate that the ANN can be leveraged as a valuable tool in model identification.186
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Figure 4: Model identification results.A) Confusion matrix of likelihood-tractable models from PRL task based on
1) likelihood/AIC metric, and 2) ANN identification. AIC confusion matrix revealed a much higher degree of mis-
classification (e.g. true simulated model being incorrectly identified as a different model). B) Confusion matrix of
likelihood-intractable models using ANN (2P-RL and RL-LAS models were simulated on the PRL task; HRL, BI and
S-BI models were simulated on the HRL task).

2.3 Robustness test: influence of different input trial lengths187

ANNs are sometimes known to fail catastrophically when data is different from the training distribution in minor ways188

(Liang et al., 2017; Moosavi-Dezfooli and Alhussein Fawzi, 2017; Nguyen et al., 2015; Szegedy et al., 2013). Thus,189

we investigated the robustness of our method to differences in data format we might expect in empirical data, such190

as different lengths of trials across participants. Specifically, we conducted robustness experiments by varying the191

number of trials in each individual simulation contributing to training or test sets, fixing the number of agents in the192

training set.193

To evaluate the quality of parameter recovery, we used the coefficient of determination score (R2) which normalizes194

different parameter ranges. We found that the ANNs trained with a longer trial length reach high R2 scores in long test195

trials. However, their performance suffers significantly with shorter test trial lengths. The results also show a similar196

trend in model identification tasks except that training with longer trial lengths doesn’t guarantee a better performance.197

For instance, the classification accuracy between HRL task models of the ANN trained with 300 trials reaches 87%198

while the ANN trained with 500 trials is 84%.199

Data-augmentation practices in machine learning increase robustness of models during training (Shorten and200
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Khoshgoftaar, 2019) by introducing different types of variability in the training data set (e.g. adding noise, differ-201

ent data sizes). Specifically, slicing time-series data into sub-series is a data-augmentation practice that increases202

accuracy (Iwana and Uchida, 2021). Thus, we trained our ANN with the fixed number of simulations of different trial203

lengths. As predicted, we found that the ANNs trained with a mixture of trial lengths across simulations (purple line)204

consistently yielded better performance across different lengths of test trials for both parameter recovery and model205

identification (Fig. 5A,B).206

We also tested the effects of incorrect prior assumptions about the parameter range on method performance. Specif-207

ically we 1) trained the network using data simulated from a narrow range of parameters (theoretically informed) and208

2) trained the network based on broader range of parameter values. Next, we tested both networks in making out-of-209

sample predictions for test data sets that were simulated from narrow and broad parameter ranges respectively. The210

network trained using a narrow parameter range made large errors at estimating parameters for data simulated outside211

of the range it was trained on; training the network on a broader range overall resulted in smaller error, with some212

loss of precision for the parameter values in range of most interest (e.g. the narrow range of parameters the alternative213

network is trained on). We observed similar results with MAP, where we specified narrow/broad prior (where narrow214

prior would place high density on a specific parameter range). Notably, training the network using a broader range215

of parameters while oversampling from a range of interest yielded more accurate parameter estimation compared to216

MAP with broad priors (Approach described in Fig. S9).217

Figure 5: Robustness checks using different training (different line colors) and testing (x-axis) trial lengths. A) Pa-
rameter estimation in both RL-LAS and 2P-RL show that training with a mixture of trial lengths (purple line) yields
more robust out-of-sample parameter value prediction compared to fixed trial lengths. B) Best model identification
results, performed on different combinations of model candidates, were also yielded by mixed trial length training.
The number of agents/simulations used for training was kept constant across all the tests (N agents = 30k).
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3 Discussion218

Our results demonstrate that artificial neural networks (ANNs) can be successfully and efficiently used to estimate219

best fitting free parameters of likelihood-intractable cognitive models, in a way that is independent of likelihood220

approximation. ANNs also show remarkable promise in successfully arbitrating between competing cognitive models221

in model identification. While our method leverages “big data” techniques, it does not require large experimental222

data sets: indeed, the large training set used to train the ANNs is obtained purely through efficient and fast model223

simulation. Thus, our method is applicable to any standard cognitive data set with normal number of participants and224

trials per participants. Furthermore, while our method requires some ability to work with ANNs, it does not require any225

advanced mathematical skills, making it largely accessible to the broad computational cognitive modeling community.226

Our method takes a different approach from other attempts at using neural networks for fitting computational227

cognitive models. Work by Fengler et al., 2021 showcased Likelihood Approximation Networks (LANs) as a method228

that approximates likelihood of sequential sampling models, and recovers posterior parameter distributions with high229

accuracy; more recently, Boelts et al., 2022 used a similar approach with higher data efficiency. These methods attempt230

to estimate the likelihood of the cognitive models, and consequently need to train the ANNs on an approximation of231

the likelihood, obtained through ABC-like approaches. While their approach has the benefit of enabling researchers232

to leverage the broad set of likelihood-dependent tools (including for example hierarchical Bayesian modeling) –233

something our approach doesn’t afford– the need for an approximate likelihood for training makes their approach234

impractical or inapplicable in many instances of likelihood intractable models. Unlike the work by Fengler et al., 2021235

and Boelts et al., 2022, our approach focused on bypassing likelihood approximation entirely, training the network to236

derive parameter estimates based on data sequences alone. Thus, our approach should be applicable in a broader class237

of models.238

Other approaches have used ANNs for different purposes than fitting cognitive models (Thompson et al., 2022).239

For example, Dezfouli et al., 2019 leveraged flexibility of RNNs (which inspired our network design) to map data240

sequences onto separable latent dimensions that have different effects on decision-making behavior of agents, as an241

alternative to cognitive models that make more restrictive assumptions. Similarly, work by Ger et al., 2023 also used242

RNNs to estimate RL parameters and make predictions about behavior of RL agents. Our work goes further than this243

approach in that it focuses on both parameter recovery and model identification of models with intractable likelihood,244

without relying on likelihood approximation. Furthermore, multiple recent papers (Eckstein et al., 2023; Ji-An et al.,245

2023) use ANNs as a replacement for cognitive models, rather than as a tool for supporting cognitive modeling as we246

do, demonstrating the number of different ways ANNs are taking a place in computational cognitive science.247

It is important to note that while ANNs may prove to be a useful tool for cognitive modeling, one should not expect248

that their use immediately fixes or overrides all issues that may arise in parameter estimation and model identification.249

For instance, we have observed that while ANNs outperformed many of the traditional likelihood-based methods,250

recovery for some model parameters was still noisy (e.g. Fig. 2). This is a property of cognitive models when applied251

to experimental applied to data sets that range in hundreds of trials. Similarly, often times model parameters are252

not meaningful in certain numerical ranges, and sometimes model parameters trade off in how they impact behavior253

through mathematical equations that define the models - making the parameter recovery more challenging. This is254

to say ANNs should be treated as a useful tool that is only useful if the researchers apply significant forethought to255

developing appropriate, identifiable cognitive models.256

Relatedly, we have shown that the parameter estimation accuracy varies greatly as a function of the parameter257

range the network was trained on, along with whether the underlying parameter distribution of the held out test-set is258

included in that range or not. This is an expected property of ANNs that are known to underperform when the test data259

systematically differs from training examples (Liang et al., 2017; Nguyen et al., 2015; Szegedy et al., 2013). As such,260

the range of parameters/models used for inputs constitutes a form of prior that constrains the fit, and it is important261

to carefully specify it with informed priors (as is done with other methods, such as MAP). We found that training the262

network using a broader parameter range, while heavily sampling from a range of interest (e.g. plausible parameter263

values based on previous research) affords both accurate prediction for data generated outside of the main expected264

range, with limited loss of precision within the range of interest. This kind of practice is also consistent with practices265

in computational cognitive modeling, where a researcher might specify (e.g. using a prior) that parameter might range266

between two values, with most falling within a certain, more narrow range.267

We compared our artificial neural network approach against existing methods that are commonly used to estimate268

parameters of likelihood-intractable models (e.g. ABC, Sisson et al., 2018; Sunnåker et al., 2013). While ABC269

provides a workaround solution, it also imposes significant limitations. Specifically, it is more suitable for data with270
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no sequential-dependencies, and the accuracy of parameter recovery is largely contingent on selection of appropriate271

summary statistics, which is not always a straightforward problem. Alternative approximation methods (e.g. particle272

filtering (Djuric et al., 2003); density estimation (Minka, 2013)) may prove to be more robust, but frequently require273

more advanced mathematical knowledge. Thus, developing more accessible and robust methods is critical for advances274

in computational modeling and cognitive science, and the rising popularity of deep learning puts neural networks275

forward as useful tools for this purpose. Our method also offers an advantage of requiring very little computational276

power. The aim of the project at its current state was not to optimize our ANN training in terms of time and computing277

resources; nevertheless, we used Nvidia V100 GPUs with 25 GB memory and required at most 1 hour for model278

training and predictions. This makes the ANN tool useful, as it requires a low amount of computing resources and can279

be done fast and inexpensively. All of our code will be shared on GitHub.280

Since we aimed to provide a proof of concept and comparison to traditional methods, our experiments focused281

mainly on extensive tests using synthetic data. A critical next step will be to further validate our approach using282

empirical data (e.g. participant data from the tasks). Similarly, we relied on RNNs due to their flexibility and capacity283

to handle sequential data. However, it will be important to explore different structures, such as transformers (Devlin284

et al., 2018), for potentially improved accuracy in parameter recovery/model identification, as well as alternative uses285

in cognitive modeling. Furthermore, we included both RL and Bayesian inference models to demonstrate our approach286

can work with different classes of computational models. Future work will include additional models (e.g. sequential287

decision making models) to further test robustness of our approach.288

In conclusion, we propose a novel, accessible method to perform parameter and model identification across a289

broad class of computational cognitive models for which existing methods were inapplicable. Our work should have290

important impact on allowing researchers to quantitatively test a broader family of theories than previously possible.291

4 Methods292

4.1 Tasks293

Probabilistic reversal learning task. We have simulated data from different models (see the Models section) on294

a simple probabilistic reversal learning task (PRL; Cools et al., 2002). In the task, an agent chooses between two295

actions on each trial, and receives binary outcome (r = 1 [reward] or r = 0 [no reward]). One of the two actions is296

correct for a number of trials; a correct action is defined as the action that gets rewarded with higher probability (e.g.297

p(r = 1|action = correct) = 0.80), with 1− p probability of getting no reward if selected. After a certain number of298

trials, the correct action reverses; thus the action that was previously rewarded with low probability becomes the more299

frequently rewarded one (Fig: 1). This simple task (and its variants) have been extensively used to provide mechanistic300

insights into learning from reinforcement, inferring probabilistic structure of the environment, and people’s ability (or301

failure) to update the representation of a correct choice.302

Hierarchical reinforcement learning task. We developed a novel task environment that can be solved using a simple303

but plausible model with intractable likelihood. In this task, an agent observes N arrows (in different colors), each304

pointing at either left or right direction. The agent needs to learn which arrow is the correct one, by selecting an305

action that corresponds to either left or right side (consistent with the direction the arrow is pointing at) in order to get306

rewarded. Selecting the side the correct arrow is pointing at rewards the agent with high probability (p = .9); choosing307

an action by following direction of other arrows leads to no reward (r = 0) with same high probability. The correct308

arrow changes unpredictably in the task, which means that the agent must keep track of which arrow most reliably309

leads to the reward, and update accordingly upon the change. We refer to this task structure as hierarchical because310

the choice policy (left/right) depends on the higher-level rule (color) agents choose to follow.311

4.2 Cognitive Models312

4.2.1 PRL task models313

.314

We implemented multiple models of the PRL task to test the artificial neural network (ANN) approach to parameter315

estimation. First, we cover the benchmark models; these are the models that we can fit using traditional methods316
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(MLE, MAP), as well as the ANN, to ensure that we can justify using the ANN if it performs at least just as well as317

(or better than) the traditional methods.318

Reinforcement learning models family.319

Two-parameter reinforcement learning model. We simulated artificial data on the PRL task using a simple 2-320

parameter reinforcement learning model (2P-RL). The model assumes that the agent tracks the value of each action321

contingent on the reward history, and uses these values to inform the action selection on each trial.322

The model uses simple delta rule to update action values on each trial upon outcome observation, by first computing323

the reward prediction error (RPE, δ) as the discrepancy between the expected and the observed outcome, and then324

adjusting the value of the chosen action using the RPE scaled by the learning rate (α) (Sutton and Barto, 2018):325

δ = r−Qt(a)

Qt+1(a) = Qt(a)+αδ
(1)

We also allowed for counterfactual updating, where the value of the non-chosen action also gets updated on each trial326

(Eckstein et al., 2022; Hauser et al., 2015):327

δunchosen = (1− r)−Qt(1−a)

Qt+1(1−a) = Qt(1−a)+αδunchosen
(2)

The action values are transformed into action probabilities using the softmax function, thus defining a policy where328

actions with higher value are chosen with higher probabilities. The β parameter controls how deterministic the choices329

are with higher values of β corresponding to more deterministic choices:330

P(a) =
exp(β Qt(a))

∑
nA
i=1 exp(β Qt(ai))

(3)

The 2p-RL model contained following free parameters: learning rate (α) and softmax beta (β).331

Four-parameter reinforcement learning model. The four parameter RL (4P-RL) model follows the same updating332

and policy structure as the 2-parameter RL, with 2 main differences. The 4P-RL model differentiates between positive333

and negative feedback (Niv et al., 2012), by using different learning rates - α+ and α− for updating action values after334

positive and negative outcomes respectively:335

Qt+1(a) =

{
Qt(a)+α+ δ if δ > 0
Qt(a)+α− δ if δ ≤ 0

Furthermore, 4P-RL model also includes the stickiness parameter κ which captures the tendency to repeat choice from336

the previous trial:337

P(a) ∝ exp(βQ+κ same(a,at−1)) (4)

Like in the 2P-RL we also included counterfactual updating of values for non-selected actions. The 4P-RL model338

included following free parameters: positive learning rate (α+), negative learning rate (α−), softmax beta (β) and339

stickiness (κ).340

Bayesian models family.341

342

Bayesian inference model. Bayesian inference model (BI) assumes that an agent infers the latent state in the environ-343

ment, updates the latent state based on new observations, and uses the inference process to make rewarding choices.344

For instance, in the PRL task, the agent infers a latent state corresponding to the correct action (Ct : aright = cor or345

Ct : ale f t = cor) at time t. The agent tracks and updates their belief over which one of the two actions is currently the346

correct one based on 1) their estimate of the switch frequency (pswitch) and 2) how noisy the reward is (preward) from347

the history of observations up to the previous trial Ht−1. On each trial, the belief is updated according to the Bayes348

rule - based on the prior belief (agent’s model of the task) and likelihood of observed evidence (the outcome given the349

choice):350
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p(Ct = i|rt ,at ,H1:t−1) =
P(rt |Ct = i,at)P(Ct = i|H1:t−1)

∑ j(P(rt |Ct = j,at)P(Ct = j|H1:t−1)

where i and j are in [left/right], p(Ct = i|H1:t−1) is the prior probability, and p(rt |Ct = i,at) is the likelihood of outcome351

given the action. The likelihood is defined in accordance to whether the choice matches the latent state:352

p(rt = 1|at = i,Ct = i) = preward

where preward is the parameter controlling the probability of receiving the reward given the choice of correct action.353

Posterior belief for the correct action is updated to a prior belief for the upcoming trial in accordance with the pswitch354

parameter, which determines the probability that the correct action might have reversed on the current trial:355

p(Ct+1 = i|H1:t−1) = (1− pswitch)p(Ct = i|H1:t−1)+ pswitch(1− p(Ct = i|H1:t−1))

Like in the RL models, the action selection in Bayesian models also followed the softmax policy; however, instead of356

being informed by the Q values the action probabilities were determined by the belief W given the choice and reward357

history H and the choice parameter β:358

Wt+1 = p(Ct+1 = i|H1:t)

P(at+1) =
exp(β Wi(t +1))

∑i= j exp(β Wj(t +1))

The BI model included following parameters: inferred probability of reward given the action determined by the current359

belief (preward), likelihood of the correct action reversing (pswitch) and softmax beta (β).360

Bayesian inference model with stickiness. We also added a variation of the Bayesian inference model that accounts361

for sticky choice behavior (e.g. repeating actions) by introducing a stickiness parameter κ that augments the belief362

associated with the action chosen on the previous trial:363

Wt+1 = p(Ct+1 = i|H1:t)+κ(i = at)

Intractable likelihood364

365

As a proof of concept, we implemented a simple model that assumes a latent state of agent’s attention (engaged/disengaged).366

This model can’t be fit using methods that rely on computing likelihood. While models can have intractable likelihood367

for a variety of reasons, we focused on leveraging latent variables (e.g. attention state), that are not readily observable368

in the data. Thus, in the data that is being modeled, only the choices are observed - but not the state the agent was in369

while executing the choices. The learned choice value which affects the choice likelihood depends on the trial history,370

including which state the agent was in. Thus, if there are 2 such states, there are 2N possible sequences that may result371

in different choice value estimates after N trials. To estimate choice values and likelihood on any given trial one must372

integrate over the uncertainty of an exponentially increasing latent variable - thus making the likelihood intractable.373

RL and latent engagement state . We simulated a version of a 2p-RL model for a probabilistic reversal learning374

(PRL) task that also assumes that an agent might occupy two of the latent attention states — engaged or disengaged—375

during the task (RL-LAS). The model assumes that in the engaged state an agent behaves in accordance with the376

task structure (e.g. tracks and updates values of actions, and uses action values to inform action selection). In the377

disengaged state, an agent behaves in a noisy way, in that 1) it does not update the Q value of actions , and 2) chooses378

between the two actions randomly (e.g. uniform policy) instead of based on their value (e.g. through softmax). 1 The379

agent can shift between different engagement states at any point throughout the task, and the transition between the380

states is controlled by a parameter τ. Specifically, for each agent we initialized a random value T between 10 and381

30 (which roughly maps onto approximately how many trials an agent spends in a latent attention state), and then382

1Note that assumption 1) is different from a previous version of the model our group considered (Li, Shi, Li, and Collins, 2023; Li, Shi, Li, and
Collins, 2023), and is the core assumption that renders the likelihood intractable.
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used a non-linear transformation to compute τ: 1-(1/T). The value of τ, thus quantifies the probability of transitioning383

between the two states. The agent was initialized to be in an attentive state at the onset of trials.384

The likelihood of this model can be computed:385

L(θ) =
T

∑
t=1

logIP(at |ht ,ht−1,θ)

=
T

∑
t=1

log
(
∑

l
IP(at |ht , lst = l;θ)IP(lst = l,ht−1;θ)

)
where ls = latent state, l ∈ { 0 = disengaged state, 1 = engaged state }, ht−1 corresponds to the history of actions386

and rewards up to the trial t. However, it is in practice intractable, because of the sum over latent states in the equation,387

which cannot be factored out.388

4.2.2 Cognitive models of the HRL task389

Bayesian models of the HRL task .390

Bayesian models of the HRL task assume an inference process over the latent variable of which arrow is currently391

the valid arrow, and thus which side (R/L) (given the current trial’s set of arrows) is most likely to result in positive392

outcome. The inference relies on the generative model of the task determined by parameters pswitch and preward , history393

of trial observations Ot , set of arrows and stochastic choice based on this inference. Initial prior belief over arrows is394

initialized uniformly prior = 1/nA, where nA corresponds to the number of arrows.395

To determine the agent policy over arrows at trial t, we first implemented a softmax function with decision param-396

eter β and prior belief of which arrow is the correct one; once the arrow is selected , the agent implements an ε-greedy397

policy conditioned on the selected arrow At to choose a R/L side:398

P(side(At)|At) = 1− ε

Likelihood p(rt = 1|At ,side(At)) and posterior are then updated into the prior belief for the next trial using the399

pswitch model of the task parameter:400

p(Ct+1 = i|O1:t−1) = (1− pswitch)∗ p(Ct = i|O1:t−1)+ pswitch(1− p(Ct = i|O1:t−1))

This belief is subsequently used to inform arrow choices on the next trial. This model differs from the Bayesian401

Inference model for the probabilistic task in that 1) preward and pswitch parameters are not free/inferred and 2) the choice402

of the side is stochastic, allowing for a potential lapse in selecting the side that is not consistent with the selected arrow.403

This model, thus has following free parameters: decision parameter β and noise parameter ε. Like in the in Bayesian404

inference model for the PRL task, we also tested the model variant with stickiness κ parameter that biases beliefs405

associated with the arrow/side chosen on the previous trial. Both models have tractable likelihoods.406

Hierarchical reinforcement learning . We also simulated a simple hierarchical reinforcement learning (HRL)407

model to simulate the performance on a HRL task (see tasks section, S1). This model assumes that an agent tracks the408

value of each of the arrows, and chooses between the arrows noisily:409

P(arrow) =
exp(β Qt(arrow))

∑
nA
i=1 exp(β Qt(arrowi))

(5)

We have also explored the model with an assumption that an agent has a tendency to repeat the choice from the410

previous trial, captured by the stickiness parameter κ:411

P(arrow) =
exp(β Qt(arrow)+κ(arrow = arrowt−1))

∑
nA
i=1 exp(β Qt(arrowi))

(6)

Once the agent chooses the arrow,it greedily chooses the direction based on which side (left/right) the arrow is pointing412

at (observable). Note that we only know the side the agent selected (left/right), because the arrow the agent chooses413
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is non-observable. The agent then observes an outcome, and updates the value of the selected arrow based on the414

observed outcome:415

Qt+1(arrow) = Qt(arrow)+α(r−Qt(arrow))

In the case of this model, the likelihood is intractable because of the need to integrate over uncertainty of what rule416

(which arrow) the agent followed on all of the past trials; because the integration exponentially increases with each417

time point, the likelihood is not tractable beyond the first several trials:418

L(θ) =
T

∑
t=1

logIP(at |ht ,ht−1,θ)

=
T

∑
t=1

logIP
(
∑
c

IP(at |ht ,rulet = c;θ)IP(rulet = c,ht−1;θ)
)

where at corresponds to the action dictating which side the agent selected (left/right), ht−1 corresponds to the task419

history encoding rewards, selected actions/sides, arrow directions, and c correspond to identity/color of the correct420

arrow.421

4.3 Likelihood-dependent methods.422

4.3.1 Maximum likelihood and Maximum a posteriori estimation423

Maximum likelihood estimation (MLE) represents a cornerstone of modeling that leverages probability theory and424

estimation of likelihood (P(D|M,θ)) of the data given the model parameters and assumptions (Myung, 2003). The425

parameter estimates are determined as the values that maximize the likelihood of the data:426

θMLE = argmaxP(D|θ)

= argmax∏
i

P(Di|θ)

= argmax∑
i

logP(Di|θ)

Thus, to estimate best fitting parameters via MLE, the likelihood of the data is computed and maximized with427

respect to parameter values via an optimization algorithm (often a blackbox one, such as fmincon in MATLAB or428

optimize.minimize from scipy toolbox in python). Maximum a posteriori estimation (MAP) relies on much the same429

principle, with an addition of a prior p(θ) to maximize the posterior:430

θMAP = argmax∑
i

logP(Di|θ)logP(θ)

As a prior for the MAP approach, we used an empirical prior derived from the true simulating distribution of431

parameters (see supplement for details). We note that this gives an advantage to the MAP method above what would432

be available for empirical data, allowing MAP to provide a ceiling performance on the test set.433

Because MAP and MLE rely on likelihood computation, their use is essentially limited to models with tractable434

likelihood. We used MAP and MLE to estimate parameters of tractable-likelihood models as one of the benchmarks435

against which we compared our ANN approach. Specifically, we fit the models to the test-set data used to compute436

the MSE of the ANN, and compared fit using the same metric across methods (see main text).437

4.3.2 Likelihood approximation methods438

Because models with tractable likelihood comprise only a small subset of all possible (and likely more plausible) mod-439

els, researchers have handled the issue of likelihood intractability by implementing various likelihood approximation440

methods. While there are different likelihood approximation tools, such as particle filtering (Djuric et al., 2003) and441

assumed density estimation (Minka, 2013), we focus on Approximate Bayesian Computation (ABC; Lintusaari et al.,442
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2017; Palestro et al., 2018; Sisson et al., 2018; Sunnåker et al., 2013), as it is more widely accessible and does not re-443

quire more extensive mathematical expertise. ABC leverages large scale model simulation to approximate likelihood.444

Specifically, a large synthetic data set is simulated from a model, with parameters randomly sampled from a specific445

range for each agent. Summary statistics that describe the data (e.g average accuracy or variance in accuracy) are used446

to construct the empirical likelihood that can be used in combination with classic methods.447

We implemented a basic form of ABC - the rejection algorithm (Sunnåker et al., 2013). This algorithm first448

samples a set of model parameters θ, simulates the data D̂ from the model M using these parameters and computes the449

predetermined summary statistic S(D̂) of the simulated data which we refer to as the sample. The summary statistics of450

the real data S(D) and the sample S(D̂) are then compared - if the distance between the two sets of summary statistics451

ρ is greater than the predetermined criterion ε, the sample is rejected:452

ρ(S(D̂),S(D))≤ ε

The distance metric, like the rejection criterion, is determined by the researcher. The samples that are accepted are453

the samples with distance to the real data smaller than the criterion, resulting in the conclusion that parameters used454

to generate the sample data set can plausibly be the ones that capture the target data. Thus, the result of the ABC for455

each data set is a distribution of plausible parameter values which can be used to obtain point estimates via the mean,456

median, etc.457

ABC is a valuable tool and has previously been combined with ANNs to aid likelihood approximation (Boelts458

et al., 2022; Fengler et al., 2021). However, it has serious limitations (Sunnåker et al., 2013). For instance, the choice459

of summary statistics is not a trivial problem, and different summary statistics can yield significantly different results.460

Similarly, in the case of rejection algorithm ABC, researchers must choose the rejection criterion which can also affect461

the parameter estimates. A possible way to address this is using cross validation to determine which rejection criterion462

is the best, but this also requires specification of the set of possible criteria values for the cross validation algorithm463

to choose from. Furthermore, one of ABC assumptions is independence of data points, which is violated in many464

sequential decision making models (e.g. reinforcement learning).465

To compare our approach to ABC, we used network training set data as a large scale simulation data set, and then466

estimated parameters of the held out test set also used to evaluate the ANN.467

To apply ABC in our case, we needed to select summary statistics that adequately describe performance on the468

task. We used the following summary statistics to quantify the agent for the models simulated on the PRL task:469

• Learning curves: We computed agents’ probability of selecting the correct action, aligned to the number of470

trials with reference to the reversal point. Specifically, for each agent we computed an average proportion of471

trials where a correct action was selected N trials before and N trials after the correct action reversal point, for all472

reversal points throughout the task. This summary statistic should capture learning dynamics, as the agent learns473

to select the correct action, and then experiences dip in accuracy once the correct actions switch, subsequently474

learning to adjust based on feedback after several trials.475

• 3-back feedback integration: The 3-back analysis quantifies learning as well; however, instead of aligning the476

performance to reversal points, it allowed us to examine agents’ tendency to repeat action selection from the477

previous trial contingent on reward history - specifically the outcome they observed on the most recent 3 trials.478

Higher probability of repeating the same action following more positive feedback indicates learning/sensitivity479

to reward as reported in Zou et al., 2022480

• Ab-analysis: The Ab-analysis allowed us to quantify probability of selecting an action at trial t,contingent both481

on previous reward and action selection history (trials t −2 and t −1, Beron et al., 2021; Zou et al., 2022).482

For the models simulated on a hierarchical task we used the learning curves as summary statistics (same as for the483

PRL), where reversal points were defined as the switch of the correct rule/arrow to follow. In addition, we quantified484

agent’s propensity to stick with the previously correct rule/arrow, where the agent should be increasingly less likely485

to select the side consistent with the arrow that was correct before the switch as the number of trials since the switch486

increases. Similarly, we used a version of the 3-back analysis where the probability of staying contingent on the487

reward history referred to the probability of potentially selecting the same cue across the trial window, based on488

observed choices of the agent. All summary statistics are visualized in the supplementary figure S8.489
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4.3.3 Model comparison490

To perform benchmark model comparison, we used the Akaike Information Criterion (AIC) metric (Akaike, 1998),491

commonly used to evaluate relative model fitness, with an aim of identifying the best model candidate that might have492

generated the data. The AIC score combines model log likelihood and number of parameters to quantify model fitness,493

while also penalizing for model complexity in order to prevent overfitting:494

AIC =−2(LLH)+2K

where K corresponds to the number of parameters. The model with the lowest AIC scores corresponds to the best495

fitting model for the given data. A related metric that is commonly used is the Bayesian Information Criterion (BIC,496

Schwarz, 1978), which considers the number of observations (N) as well, and similarly uses the lowest score to signal497

the best fitting model:498

BIC =−2(LLH)+K ∗ log(N)

We used AIC score as it outperformed BIC model comparison, and thus provided us with ceiling benchmark to499

evaluate the ANN.500

To perform proper model comparison, it is essential to not only evaluate the model fitness (overall AIC/BIC score),501

but also to test how reliably the true models (that generated the data) can be identified/successfully distinguished from502

others. To do so, we constructed a confusion matrix based on the AIC score (Fig. 4A). We used the test set data503

simulated from each model, and then fit all candidate models to each of the data sets while also computing the AIC504

score for each fit. If the models are identifiable, we should observe that AIC scores for true models (e.g. the models505

the data was simulated from) should be the lowest for that model when it’s fit to the data compared to other model506

candidates.507

4.4 Artificial neural network-based method508

4.4.1 Parameter recovery509

To implement ANNs for parameter estimation we have used the relatively simple neural network structure inspired510

by the previous work (Dezfouli et al., 2019). In all experiments, we used 1 recurrent GRU layer followed by 3 fully511

connected dense layers with 2000 dimensional input embeddings (S1). To train the network, we simulated a training512

data set using known parameters. For each model, we used 30000 training samples, 3000 validation samples, and513

3000 test samples that are generated from simulations separately. For probabilistic RL, the input sequence consisted514

of rewards and actions. For hierarchical RL, the sides (left/right) of three arrow stimuli are added to the rewards515

and actions sequences. The network output dimension was proportional to the number of model parameters. We516

used a tanh activation in the GRU layer, reLu activations in 2 dense layers, and a linear activation at the final output.517

Additional training details are given below:518

• We used He normal initialization to initialize GRU parameters (He et al., 2015).519

• We used the Adam optimizer with mean square error (MSE) loss and a fixed learning rate of 0.003. Early520

stopping (e.g. network training was terminated if validation loss failed to decrease after 10 epochs) was applied521

with a maximum of 200 epochs.522

• We selected network hyperparameters with Bayesian optimization algorithms (Bergstra et al., 2013) applied on523

a validation set. Details of the selected values are shown in Supplementary Materials.524

All of the training/validation was run using TensorFlow (Abadi et al., 2016). The training was performed on Nvidia525

V100 GPUs with 25 GB memory.526

Network evaluation. The network predicted the values of parameter on the test set that is unseen in the training and527

validation. We also conducted robustness tests by varying trial numbers (input length).528

To evaluate the output of both ANN and traditional tools we used the following metrics:529
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• Mean squared error (MSE): To evaluate parameter estimation accuracy we calculated a mean squared error530

between true and estimated model parameter across all agents. Prior to calculating MSE all parameters were531

normalized, to ensure comparable contribution to MSE across all parameters. Overall loss for a cognitive model532

(across all parameters) was an average of individual parameter MSE scores. Overall loss for a class of models533

(e.g. likelihood-tractable models) was an average across all model MSE scores.534

• Spearman correlation (ρ): We used Spearman correlation as an additional metric for examining how estimated535

parameter values relate to true parameter values, with higher Spearman ρ values indicating higher accuracy. We536

paired Spearman correlations with scatter plots, to visualize patterns in parameter recoverability (e.g. whether537

there are specific parameter ranges where parameters are more/less recoverable).538

• R-Squared (R2 or the coefficient of determination): R-Squared represents the proportion of variance in true539

parameters that can be explained by a linear regression between true and predicted values. It thus indicates the540

goodness of fit of an ANN model. We calculated an R-Squared score for each individual parameters across all541

agents and used it as an additional evaluation for how well the data fit the regression model.542

Alternative models. We have also tested the network with long short-term memory (LSTM) units since LSTM units543

are more complex and expressive than GRU units; nevertheless they achieved the similar performance as GRU units544

but are more computationally expensive, and thus we mostly focused on the GRU version of the model. Since LSTM545

worked, but not better than GRU, the LSTM results are reported in the supplementary materials.546

4.4.2 Model identification547

The network structure and training process were similar to that of the network used for parameter recovery, with548

an exception of the output layer that utilized categorical cross-entropy loss and a softmax activation function. The549

network validation approach was the same as the one we used for parameter recovery (e.g. based on the held-out test550

set). We also observed a better performance when training with various trial lengths.551

4.4.3 Robustness test: influence of different input trial lengths552

For all robustness experiments, we followed the same training procedures as described previously while varying the553

training data. The details of training data generation are given below:554

Parameter Recovery We simulated 30,000 training samples with 2000 trials per simulation in the probabilistic555

reversal learning task. For shorter fixed trial lengths per training samples (e.g 500), we used the same training set556

truncated to the first 500 trials. To generate the training data with different trial lengths across training samples, we557

reused the same training set, with sequences of trials truncated to a given length. There were 6000 training samples of558

lengths 50, 100, 500, 1000, 1500, and 2000 trials, each.559

Model Identification The process of data generation for model identification robustness checks was similar to pa-560

rameter recovery. However, we only simulated 500 trials for each model because we found no significant increase in561

accuracy with higher trial numbers.562
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6 Supplementary materials568

Figure S1: Tasks. A) Probabilistic reversal learning task. We simulated artificial agents using cognitive models of
behavior on a Probabilistic reversal learning (PRL) task, which provides a dynamic context for studying reward-driven
learning (Cools et al., 2001; Lawrence et al., 1999). In this task, an agent chooses between two actions, where one
of the actions gets rewarded with higher probability (p(r) = .80) and one with lower (1− p). After a certain number
of correct trials, the reward probabilities of the two actions reverse. The task provides an opportunity to observe how
agents update their model of the task (e.g. correct actions) based on observed feedback. B) Hierarchical reinforcement
learning task. In this task, three differently colored arrows represent three potential rules an agent can follow when
selecting one of the two actions (left/right) corresponding to the side the chosen arrow is pointing at. Selecting a side
consistent with correct arrow is rewarded with probability p = .90. Correct arrow switches after a certain number of
trials. The task provides a possibility to examine how following latent rules may shape agents’ learning behavior.

19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2023. ; https://doi.org/10.1101/2023.09.14.557793doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.14.557793
http://creativecommons.org/licenses/by-nc/4.0/


Figure S2: 2 Parameter RL (2P-RL) model parameter recovery using different fitting methods. ρ corresponds to
Spearman correlation coefficient, red line represents a unity line (x=x), and black line represents a least squares
regression line.
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Figure S3: 4 Parameter RL model (4P-RL) parameter recovery using different fitting methods. ρ corresponds to
Spearman correlation coefficient, red line represents a unity line (x=x), and black line represents a least squares
regression line.

Figure S4: Bayesian Inference (BI) model parameter recovery using different fitting methods. ρ corresponds to Spear-
man correlation coefficient, red line represents a unity line (x=x), and black line represents a least squares regression
line.
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Figure S5: Bayesian Inference with stickiness (S-BI) model parameter recovery using different fitting methods. ρ

corresponds to Spearman correlation coefficient, red line represents a unity line (x=x), and black line represents a least
squares regression line.
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Figure S6: Correlation between the average experienced time intervals in attentive state and the τ parameter in RL-LAS
model that captures transition between disengaged/engaged attention states estimated by the ANN.
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Figure S7: Misclassification of Bayes and sticky Bayes model is contingent on the value of the stickiness parameter
κ. The misclassification percentage is higher at κ values closer to 0.

Figure S8: Summary statistics for Approximate Bayesian Computation (ABC). Top row shows summary statistics
computed for all models simulated on a probabilistic reversal learning task; the figure only shows agents simulated
using a 4-parameter RL model. Bottom row shows summary statistics computed for all models simulated on a hierar-
chical reversal learning task; the figure only shows performance of HRL model agents. Both rows depict 200 out of
3000 test set agents. Gray lines represent individual agents; black line represents an average across the agents.
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Figure S9: Effect of prior misspecification on parameter estimation in MAP and our ANN approach. A) Applying
too narrow prior specification to the fitting procedure (prior in MAP, training samples in ANN) results in difficulty
estimating out-of-range parameters for both MAP and ANN. Broader prior specification addresses this issue, with
only a slight loss of precision in specific target ranges. Training the network with a broad range of parameters while
oversampling parameters from regions of interest yields most robust results. B) Visualization of fitting with MAP and
ANN with a wide prior, tested on a full range/wide range data set - training the network with broader range while
oversampling from the most plausible range yields less noisy performance in the range compared to MAP. Red lines
delineate the range of the narrow prior, which corresponds to the main text results. C) The broad prior was designed
by sampling from the full broader range (β ∈ [0,10], α ∈ [0,1]), with the constraint that 70% of samples are in the
expected narrow range (β ∈ [2,6], α ∈ [0.5,1], and 30% outside.)

Tasks Parameter Recovery Model Identification

Cognitive Models 2 PRL 4 PRL
2 PRL in-
tractable HRL

PRL
tractable

2 PRL
tractable
& in-
tractable

HRL

Batch size 256 256 256 256 128 128 128
GRU units 128 90 256 256 151 151 151

1st dense units 64 45 128 128 75 75 75
2nd dense units 32 22 64 64 37 37 37

Dropout after GRU layer 0.2 0.3 0.2 0.2 0.187 0.187 0.187

Dropout after 1st dense layer 0.1 0.2 0.1 0.1 0.04 0.04 0.04

Dropout after 2nd dense layer 0.01 0.05 0.02 0.01 0.02 0.02 0.02

Table S1: Summary of hyper-parameter values selected from Bayesian optimization algorithms.
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