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A growing body of evidence has shown the intimate relationship betweenmetabolomic profiles and insulin resistance (IR) in obese
adults, while little is known about childhood obesity. In this review, we searched available papers addressing metabolomic profiles
and IR in obese children from inception to February 2016 onMEDLINE, Web of Science, the Cochrane Library, ClinicalTrials.gov,
and EMASE. HOMA-IR was applied as surrogate markers of IR and related metabolic disorders at both baseline and follow-up.
To minimize selection bias, two investigators independently completed this work. After critical selection, 10 studies (including
2,673 participants) were eligible and evaluated by using QUADOMICS for quality assessment. Six of the 10 studies were classified
as “high quality.” Then we generated all the metabolites identified in each study and found amino acid metabolism and lipid
metabolism were the main affected metabolic pathways in obese children. Among identified metabolites, branched-chain amino
acids (BCAAs), aromatic amino acids (AAAs), and acylcarnitines were reported to be associated with IR as biomarkers most
frequently. Additionally, BCAAs and tyrosine seemed to be relevant to future metabolic risk in the long-term follow-up cohorts,
emphasizing the importance of early diagnosis and prevention strategy. Because of limited scale and design heterogeneity of existing
studies, future studies might focus on validating above findings in more large-scale and longitudinal studies with elaborate design.

1. Introduction

Obesity prevalence has nearly doubled worldwide during the
past three decades and still continues to increase. Obesity
during childhood and adolescence is reaching epidemic
proportions with great increase in prevalence rate [1]. During
1971 to 1974, the prevalence rates of obesity in 6–11-year-old
white/black children were 4% in the United States. Between
1999 and 2002, these prevalence rates increased to 13% and
20% in white and black children, respectively [2]. In 2012 the
overall prevalence rate of obesity in 2∼19-year-old American
children was 17.3% [1]. In developing countries the prevalence
rate of overweight and obesity in preschool children (<5
years old) in 2010 was estimated to be 6.1% and 11.7%,
respectively [3]. Thus, the prevalence of childhood obesity
has attracted wide attention of researchers and become an
emerging problem for public health. Furthermore, a variety
of evidences have shown the close relationship between

childhood obesity and multiple serious health complications
with high risk of morbidity and mortality [4, 5].

Insulin resistance (IR), contrary to insulin sensitivity
(IS), refers to decreased response to insulin-mediated cellular
actions [6]. In particular, it can be considered as impairment
in the function of insulin to induce glucose uptake in targeted
tissues and to suppress production and output of hepatic
glucose [7]. Furthermore, it is indeed associated with a
resistance to insulin action on protein and lipid metabolism
and on vascular endothelial function and genes expression
[8]. IR is the most common metabolic alteration related
to obesity [9], and it represents an important link between
obesity and type 2 diabetes [10] and other metabolic risks
such as cardiovascular diseases [11, 12]. Thus, identifying
children with IR could be an effective strategy for the preven-
tion and treatment of obesity related complications. Despite
the validity of gold-standard hyperinsulinemic-euglycemic
clamp and frequently sampled IV glucose tolerance test
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(FSIVGTT) [13], their costly and time- and labor-intensive
features limit the applications in large epidemiologic studies
[14]. Homeostasis model assessment for insulin resistance
(HOMA-IR) provides an estimate of IR derived from fasting
glucose and insulin levels, with higher scores representing
a greater degree of IR. It has been validated as a surro-
gate marker of IR for clinical and epidemiological studies
of children and adolescents, while HOMA-IR still has its
limitation in early diagnosis of IR in order to prevent its
progression to type 2 diabetes and other metabolic disorders.
Thus, more sensitive and specific biomarkers are urgently
needed to detect IR as soon as possible.

Metabolomics is a technique for identifying and quantify-
ing endogenous small molecule metabolites (<1,500Da) [15].
A wide range of metabolites in blood, urine, or tissues can
be detected by the application of nuclear magnetic resonance
spectroscopy (NMR), liquid or gas chromatography-mass
spectrometry (LC-MS, GC-MS), and so on [16]. Due to its
unique advantage in reflecting minimal metabolic alteration,
applying metabolomics as biomarkers in clinical studies has
generated more and more speculations. Our previous work
showed metabolomics profiles can be useful biomarkers and
predictors for diabetic kidney disease (DKD) diagnosis and
its progression [17]. Recent studies on obese adults have
presented the alterations in metabolomics not only reflect
metabolic disorders, but also shed light on the fundamental
mechanism of diseases [18, 19]. In the last 5 years, studies
focusing on the relationship between metabolomics and IR
in obese children have emerged quickly, while results seem
to be controversial.Thus, our aims were to integrate available
IR related plasmametabolomic profiles in obese children and
find out specific biomarkers for IR and future metabolic risk.

2. Method

2.1. Literature Search. We did the systematic search for
papers on MEDLINE, Web of Science, the Cochrane Library,
ClinicalTrials.gov, and EMASE for relevant studies from
inception to February 2016. A search strategy was applied
based on medical subject headings (MeSH�) terms. To
search relevant papers, variant combinations of following
terms were applied: “childhood obesity”, “obese children”,
“pediatric obesity”, “insulin resistance”, “metabolomic pro-
files”, “metabolomics”, “metabolic signature”, “metabolomic
approach”, “metabolites”, “nuclear magnetic spectroscopy,”
and “mass spectrometry”. In this procedure, two investigators
(Xue Zhao and Qing Han) independently completed this
work in order to minimize selection bias. If there were
disagreements, a third investigator (G. Wang) will join in the
selection procedure to solve the problem.

2.2. Inclusion and Exclusion Criteria. After reading all full-
text articles, we decide to include or exclude them based on
the criteria. The following inclusion criteria were applied:
(1) all subjects should be children or adolescence, which
means age of participants is<18 years; (2) obese childrenwere
defined as those with a bodymass index (BMI; kg/m2) greater
than the 95th percentile (≥95th) for age and gender according
to the Centers for Disease Control growth reference [30];

(3) participants should be free of any thyroid or metabolic
disorders requiring treatment such as diabetes, hypertension,
severe dyslipidemia, and coronary heart disease; (4) studies
need to include adiposity measures (BMI or BMI 𝑧 score)
andHOMA-IR according to the formula glucose (mmol/L) ×
insulin (mIU/L)/22.5 [31]; (5) metabolomic techniques such
as MS, NMR spectroscopy, or UPLC-MS were applied to
detect metabolite profiles in blood and results of plasma
global metabolomics should be the outcome; (6) only papers
published in English were included in this review.

Studies were excluded if subjects had diabetes or if they
were >18 years old or if they had severe medication history.
Themetabolomics profiles extracted fromurine are ruled out.
Conference abstracts, reviews, meta-analyses, case reports,
and letters to the editor were also excluded.

2.3. Data Extraction and Analysis. Data extraction on char-
acteristics of study population, HOMA-IR, and identified
metabolomic profiles were extracted, the procedure which
was done by two different people (Xue Zhao and Qing Han).
Due to large heterogeneity in study designs, method, and
population characteristics, we did not apply a quantitative
meta-analysis.

2.4. Methodological Quality Assessment. QUADOMICS was
used to evaluate the included studies in methodological
quality. It was developed to assess quality issues specific
to “omics” research, including the quality assessment of
studies included in systematic reviews [32]. The results after
QUADOMICS were “high quality” or “low quality,” which
refer to the methodologies of studies that achieved 11/16 or
lower, respectively.

3. Results

3.1. Literature Search and Study Characteristics. We include
10 studies (including 2,673 participants) after systematic
selection. All included studies met the inclusion/exclusion
criteria. We performed literature selection according to
PRISMA statement [33] in Figure 1. After literature research,
87 potentially relevant papers were firstly identified, among
which 18 full-text articles were retrieved. Finally, 10 unique
studies were included in our systematic review finally, which
provided adequate data and information.

We extracted population characteristics of included 10
studies in Table 1, including the year, sample size, boy/girl
proportion, study type, mean age, BMI 𝑧 score/BMI, HOMA-
IR, and identified metabolomics profiles. All the ten studies
were published between 2012 and 2016. Eight studies were
conducted in the United States [21, 23–29], one in Korean
[22], and one in Germany [20]. The studies varied in sample
size from 69 to 984 with a median of 267. The race/ethnicity
of participants was various, including Hispanic, African
American, White, and Asian. Nine studies included both
boys and girls; only one study focused on boys [22]. Two
studies mentioned sex difference in metabolomics profiles in
obese children [24, 26]. Mean baseline ages of participants
ranged from 4 to 19 years, with a median of 11.1 ± 1.3
years. Seven of ten studies belong to observational study; the
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Records excluded:
(i) No population of interest: 26

(ii) Methods do not meet criteria: 13
(iii) Irrelevant to IR: 19
(iv) Insufficient data: 11

Full-text articles excluded:
(i) No population of interest: 1

(ii) Irrelevant to IR: 2
(iii) Insufficient data: 5

Literature searching:
Databases: MEDLINE, EMASE, ClinicalTrials.gov,

the Cochrane Library, and Web of Science
Records identified after duplicates removed

(n = 87)

Articles screened on the basis of title
and abstract
(n = 87)

Full-text articles
screened for eligibility 

(n = 18)

Studies included in
qualitative synthesis

(n = 10)

Figure 1: The flowchart of literature selection in this review.

remainders were cohort studies with 12-month, 18-month,
and 24-month follow-up, respectively [20, 22, 26]. The
analytical platforms used for metabolites detection included
liquid chromatography-mass spectrometry (LC-MS), gas
chromatography-mass spectrometry (GC-MS), flow injec-
tion tandem mass spectrometer (FIA-MS/MS), nuclear mag-
netic resonance spectroscopy (NMR), HPLC/fluorescence
spectroscopy, and ultra-performance LC-MS.

3.2. Extraction of Specific Metabolomics Related to IR and
Future Metabolic Risk. After summarizing the metabolomics
profiles in Table 1, then we divided them into several sub-
groups according to their related metabolic pathways and
extracted specific metabolomics found to be associated with
IR which was shown in Table 2. Metabolisms of amino acids
and lipids were found to be most relevant to IR in obese
children. In these two metabolic pathways, BCAAs (valine,
leucine, and isoleucine), aromatic amino acids (tyrosine), and
acylcarnitines (C3, C5) were the most frequently mentioned
metabolites as novel biomarkers for IR. In three cohort
studies with long-term follow-up, BCAAs and tyrosine were
also reported to be good biomarkers for future IR and
metabolic risk.

3.3. Quality Assessment. According to QUADOMICS, we
conducted quality assessment process [32, 34]. The results
showed four of the ten studies were classified as “low quality.”
The remaining six studies were classified as “high quality.”

Two different persons checked the general characteristics
selection and methodological quality assessment indepen-
dently.

4. Discussion

To the best of our knowledge, this is the first systematic review
summarizing all available studies focusing on metabolomics
and IR in childhood obesity. Comparing with nonobese chil-
dren, obese children presented distinct metabolic patterns
in metabolomics profiles [24]. Although available studies in
this area are largely lacking, eligible studies still shed light
on the novel features of metabolomics profiles in reflecting
and predicting IR related metabolic risk, which might be
beneficial to future clinical early diagnosis and treatment [35].

4.1. Metabolomics as Biomarker for IR in Obese Children

4.1.1. Metabolomics in Amino Acids Metabolism

BCAAs. BCAAs, including valine, leucine, and isoleucine, are
essential amino acids changing along with the consumption
of a protein-containing meal [18]. Among a wide range of
metabolites in blood, BCAAs have been suggested to play
key roles in obesity, IR, and diabetes [15–17]. Studies on
metabolomics approaches reported that insulin resistant rats
and adults had an increased level of circulating BCAAs and
their relatedmetabolites [16, 19]. In the study on 803Hispanic
adolescents of Butte et al. [21], significant increase was seen in
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BCAAs and their catabolites in obese children which made
the largest contribution to BMI and adiposity among global
metabolomics. And elevated BCAAs were closely related to
total energy expenditure (TEE) and IR. Perng et al. [23]
also manifested the similar results in 262 children (6–10
years). They found that Factor 4 (characterized by BCAA
related pattern) was higher in obese children than their
counterparts.This increase was associated with adiposity and
worse cardiometabolic factors including HOMA-IR. Each
increment in the BCAA corresponded with 6% (95% CI: 1,
13%) higher HOMA-IR. In addition, children born to obese
women (41.2%) had 0.61 (0.13, 1.08) higher BCAA score com-
paring with their counterparts, which suggested maternal
obesity might also play a role in altered offspring BCAAs
metabolism. Newbern et al. [24] revealed the sex differences
inmetabolomics profiles related to IR in 82 obese adolescents.
They found male had higher BCAA related metabolites than
female. Furthermore, boys’ HOMA-IR correlated positively
with BMI 𝑧 score, elevated BCAAs, and uric acid, while in
girls, HOMA-IR only correlated with BMI 𝑧 score. Thus,
recent studies reported the positive association between
elevated BCAA and IR, which was mainly consistent with
the results in adults while it also indicated that alterations in
BCAAs metabolism could appear in early life, which might
make major contribution to later metabolic disorders in life
if no effective preventive strategy was performed.

However, inconsistent results were reported by other two
previous cross-sectional investigations on adolescents. In the
study by Mihalik et al. [28] and Michaliszyn et al. [27], obese
adolescents did not show higher BCAA concentrations com-
pared with normal weight counterparts. Furthermore, study
byMichaliszyn et al. [27] showedBCAA levels were positively
correlated with 𝛽-cell function relative to insulin sensitivity
in a total of 139 obese and normal weight children as a
result of adaptive metabolic plasticity in early life, while after
generating available recent studies, this inconsistency could
also be attributed to subject and method heterogeneity and
differences in energy expenditure between subjects. In these
two studies, the participants were divided into two obese
subgroups, with and without dysglycemia and 17 patients
with diabetes were included in dysglycemia group.The inclu-
sion of patients who had already progressed into diabetes
might influence their results. Furthermore, they did not
analyze the results by principal components analysis (PCA),
an unsupervised linear mixture model aimed at accounting
for the variance within a dataset by a smaller number of
mutually uncorrelated PCs, and they also ignored the possible
variance between male and female in metabolomics profiles.
In addition, subjects in subgroups showed different energy
expenditure of 1507 kcal/24 h (normal weight), 1978 kcal/24 h
(obese without diabetes mellitus), and 2041 kcal/24 h (obese
with diabetes mellitus). Thus, BCAA concentrations seem to
be affected not only by degree of obesity, but also by many
confounding factors such as gender, age, energy expenditure,
and analyzing method, which should be properly controlled.

Aromatic Amino Acids. Aromatic amino acids (AAAs) refer
to amino acids that include an aromatic ring, such as pheny-
lalanine, tyrosine, and tryptophan. Some are derived from

diet, while others can be synthesis by human body. Recent
studies showed AAAs were close to IR in obese adults and
children, especially for tyrosine and phenylalanine. Butte et
al. [21] found that tyrosine was the highest-rankedmetabolite
on the basis of its contribution to the obesity classification,
with predictive accuracy as 81%. In their study, the AAAs
(phenylalanine, tyrosine) together with BCAAs constitute
PC6, which presented striking close relationship with IR.
Consistent results were also found in studies by Perng et al.
[23], Lee et al. [22], and Mccormack et al. [26]. Interestingly,
most studies combine BCAAs and AAAs as a PC factor and
analyze them together, andBCAAs andAAAs usually showed
similar change tendency in obese children. The explanation
of this consistency might be that AAAs can compete with
BCAAs for uptake into tissues via their common neutral
amino acid transporters. In obese people, the limited quantity
of neutral amino acid transporters could not afford the
excess BCAAs and AAAs transportation leading to their
accumulation in bloodstream with high concentration. For a
long time, LAT1 was believed to work as their transporters in
broad tissues [36, 37]; however, recent studies have found the
functional LAT1 protein only expressed in BBB and placenta
[38]. There is no direct evidence that LAT1 protein exists on
the plasmamembrane of other tissues, which has been proved
by the LAT1 specific PET probe 18F-FAMT [39–41]. There-
fore, the competition of amino acids might occur at the other
broad scope neutral amino acid transporters, which should be
themajor contributors and require further studies to validate.

Different from above results, a latest study fromHellmuth
et al. [20] suggested tyrosine is the only metabolite which was
significantly associated with HOMA-IR at baseline and after
intervention in obese children.They thought tyrosine was the
primary alteration and then resulted in BCAAs’ elevation and
development of IR. While these findings need more studies
to be validated, further prospective, longitudinal studies are
required to unravel associations between AAAs and IR.

Other Amino Acids. Besides BCAAs and AAAs, there were
other amino acids related to IR, including sulfur amino
acids (cysteine, homocysteine) [29], asparagine [21], glycine
[21], serine [21], proline [20], citrulline [26], and glutamate
[21, 24]. As for variation tendency of these metabolites,
obese children usually presented elevated glutamate, proline,
cysteine and decreased asparagine, glycine, citrulline, and
serine when comparing with nonobese children.

4.1.2.Metabolomics in LipidMetabolism. It is well-established
that diabetes is often accompanied by dyslipidemia [42],
which is a major risk factor of cardiovascular diseases in
diabetic patients [16]. More and more evidence suggests that
increased free fatty acids and IR are the main causes of
dyslipidemia [43, 44]. Thus, specific metabolites related to
above pathways can provide reliable information about lipid
metabolism in obese insulin resistant children.

Fatty Acid Oxidation and Acylcarnitines. Metabolomic pro-
files in obese people were reported to present distinct pattern
on fatty acid oxidation and acylcarnitines [20, 22, 23].
Acylcarnitines are the by-products of noncomplete fatty acid
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oxidation [45]. Accumulation of fatty acid oxidation related
metabolites, known as lipotoxicity, has been implicated in the
development of IR and type 2 diabetes [17, 46, 47]. In addi-
tion, Newbern et al. [24] reported by-products of fatty acid
oxidation C2 acylcarnitine divided by the sum of C3 and C5
inversely correlatedwithHOMA-IR.Thenegative correlation
was also found in long-chain acylcarnitines and HOMA-IR
in Newbern et al.’s study. Perng and his colleague found C3
acylcarnitine and C5 acylcarnitine were positively related to
HOMA-IR [23]. Besides, Hellmuth et al. [20] used different
ratios as biomarker for IR, such as C5/C6-oxo, C4/C5-oxo,
C6-oxo/xLeu, and C5-OH/C5:1 in different subgroups. All of
these indicated incomplete fatty acid oxidation was related
to higher score of HOMA-IR. The possible mechanism
might be reduced complete fatty acids oxidation can result
in proinflammatory pathways simulation, disturbed insulin
action in skeletal muscle, enhancedmitochondrial stress, and
final dysglycemia in humans and rodents [45, 47, 48]. Butte
et al. found significantly reduced lysolipids (glycerophospho-
cholines, glycerophosphoethanolamines) and dicarboxylated
fatty acids in obese adolescents comparing with their coun-
terparts [21, 49]. As for nonesterified fatty acids (NEFAs),
Butte et al.’s and Newbern et al.’s studies suggested obese
children showed increased NEFAs comparing with nonobese
children. Taken together, potential important role of fatty
acids oxidation might be involved in the development of
IR and other metabolic disorders. Among alterations in
metabolic pathway of lipids, C3 and C5 acylcarnitine were
the most frequently mentioned acylcarnitine. Furthermore,
because C3 and C5 acylcarnitines were the by-products
of BCAAs, reduced complete fatty acids oxidation seemed
to be influenced by BCAAs metabolism indicating close
interaction of amino acid metabolism and lipid metabo-
lism.

Androgen Hormones. Different from adults, adolescents
experiencing pubertal growth might present alterations in
metabolic hormones and body fat deposition. An elevated
androgen derivative in obese group was reported by Butte et
al. [21] and Perng et al. [23]. Perng et al. found children with
higher BMI had a higher score for the sex steroids, HOMA-
IR, and fasting insulin level.The increase of sex steroidsmight
stimulate premature adrenarche [50] and induce the insulin-
like growth factor/growth hormone (IGF/GH) axis [51],
which is associated with many metabolic disorders includ-
ing dyslipidemia, hyperinsulinism, metabolic syndrome, and
polycystic ovary syndrome [52, 53], and this change was
related to amino acid metabolism. No relationship was
observed between pubertal status (before puberty and during
puberty) and fasting BCAA levels although alterations in
proteolysis and protein oxidation might exist [26, 54, 55].
Thus, although pubertal growth is related to specific sex
steroid pattern and IR in obese children, it seems nonrelevant
to altered amino acids metabolism.

4.2. Metabolomics as Biomarker for Future Metabolic Risk
in Obese Children. An increasing number of studies have
shown that the substantial susceptibility of diabetes acquired
in youth indicated the importance of whole-life prevention

and management [10]. However, a large part of adolescents
with type 2 diabetes related obesity is undiagnosed [56].
Moreover, the undiagnosed type 2 diabetes in early life
will progress with time passing and affect more and more
pregnant women [57, 58]. Thus, it becomes especially crucial
to perform effective prevention to early childhood. A useful
and predictive biomarker for development of IR, risk of type 2
diabetes, and relatedmetabolic disorders seems so significant
nowadays, while existing studies onmetabolomics and future
metabolic risk were largely lacking and results were not quite
consistent.

A recent study of Mccormack et al. [26] on 69 healthy
children observed there was no association between elevated
BCAAs andHOMA-IR at the time of recruitment, but higher
BCAAs at baseline could predict worsening of IR after 18
months of follow-up among 17 participants with complete
data. Of these 17 individuals followed in the longitudinal
cohort, none had impaired fasting glucose (IFG) or impaired
glucose tolerance (IGT) at baseline. 18 months later, none
developed diabetes mellitus but five developed impaired
fasting glucose and/or impaired glucose tolerance. Another
study by Lee et al. [22] with a larger sample of 109 boys
confirmed that BCAAconcentrations higher than themedian
value could be an early biomarker of development of IR and
relatedmetabolic syndrome. Among the variablemetabolites,
only BCAAs showed a significant risk relationship with high
HOMA-IR (>3.11) at 2-year follow-up after adjustment for
baseline age and 𝑧 scores of BMI as well as waist circumfer-
ence (OR = 3.139, 𝑝 = 0.042). For future metabolic risk score,
BCAAs showed a marginally significant effect on metabolic
syndrome risk (OR= 3.222,𝑝 = 0.066), while different results
were from Hellmuth et al.’s study, which suggested tyrosine,
rather than BCAAs, was the useful biomarker for future risk
of IR and metabolic risk in 80 obese children with one-
year follow-up. They found only tyrosine was significantly
associated with HOMA (𝑝 < 0.05) at baseline and end
of intervention. Despite controversial results, the available
evidence still reflects the significant role of amino acid
metabolism in the prediction of IR development and future
health crisis. Moreover, it can also suggest that alterations in
amino acids (BCAAs and tyrosine) might exist earlier than
IR,manifesting the possible causal relationship between them
to some extent. However, more large-scale, long-term studies
in this field are extremely lacking and urgent.

4.3. Comparison on Metabolomics Indicators of IR between
Obese Children and Adults. Refer to the different metabolo-
mic signature in obese adults and children; the variances
in manifestation of IR or obesity between them should
be discussed at first. Due to the distinct developmental
characteristics, children continue to growwith obvious tissue
expansion and maturation [59]. It can also suggest the differ-
ence in capacity of metabolic adaption to obesity, also called
metabolic flexibility [59, 60]. Comparing with adults, one
striking difference in childhood obesity is that impairment
of fasting glucose levels is usually absent and if present, it
is a delayed finding. In fact, a definite increase in fasting or
postprandial insulin can be identified as the very initial step
in obese children.
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Although metabolomic study is still in its infancy, a large
body of evidence has emerged in recent years, showing the
close relationship between IR and metabolomic profiles in
obese adults [61–65]. Findings on obese children presented
general consistency and promising expectation based on
limited evidence. However, comparing with research in obese
children, the studies in obese adults were more extensive and
elaborate andwith longer follow-up duration.The differences
in metabolomic signature of IR between obese adults and
children can be summarized into three aspects: affected
metabolic pathways, accuracy in prediction of IR, and study
design.

Differences in Affected Metabolic Pathways of IR. In present
study, we found the most frequently affected metabolic
pathways related to IR in obese children were amino acid
metabolism and lipid metabolism. Besides above two impor-
tant pathways, more derangements were revealed in adults
with obesity and IR, such as glucose metabolism [66, 67],
TCA cycle [67], inflammation [68], and gut microbiota [69].
Although some studies on obese children presented higher
grade of inflammation compared with nonobese children,
few studies showed the obvious relationship with statistic
difference. As for the reason of inconsistency in glucose
metabolism and TCA cycle between obese adults and chil-
dren, it might be explained by the difference in manifestation
of IR. In children, hyperinsulinemia was presented earlier
than impairment in glucose metabolism and TCA cycle,
which is contrary to adults. Gut microbiota has gained much
more speculations in metabolic disorders of the host in the
past decades [70, 71], especially in IR. Recently, metabolomic
profiles from gut microbiota [69] showed significant differ-
ences in obese adults with IR compared to nonobese adults.
However, little evidence was available on metabolomics
from gut microbiota in obese children. Thus, future study
should explore the significant role of metabolomics from gut
microbiota in insulin resistant children.

In spite of the general accordance in amino acid
metabolism and lipid metabolism, studies on adults were
more widespread with larger amount of metabolites. The
striking predictive values of BCAAs and AAAs in IR were
accordant in adults and children, whichmight be the result of
the increased proteolysis and impaired amino acid catabolism
[72, 73]. It also indicates the significant role of amino acid
in the pathology of IR. Besides these, adult studies showed
their insights in glutamate, alanine, glycine, and so forth in
amino acidsmetabolism and lysophospholipid, palmitic acid,
intact acid, and so forth in lipid metabolism [74]. Studies
on gut microbiota of adults presented significant changes in
bile acids and choline [66, 75], calling for more research on
children to validate these findings. Thus, studies on children
should expand their research in a larger amount of people, in
order to find undiscovered mechanism of IR.

Differences in Predictive Power of IR. To test the accuracy of
metabolomic profiles in prediction of IR, ROC curves were
applied in both obese adults and children studies. A study on
adults showed that in total 399 subjects using metabolomics
(a-hydroxybutyrate) to diagnose IR, 164 subjects were

classified as insulin resistant and 235 subjects were classified
as insulin sensitive [76, 77].These results indicate a sensitivity
of 85%, a specificity of 91%, and an overall prediction
accuracy of 76%, while in Korean children with obesity [22]
applying plasma BCAA to predict IR (HOMA-IR), the area
under the curve (AUC) was 70.3% with the sensitivity and
specificity as 74.1% and 58%, respectively. As for themetabolic
risk score, AUC was 73%; the sensitivity and specificity were
77.8% and 59.3%, respectively. Thus, we can conclude that
metabolomics can detect IRwith high accuracy in both adults
and children, although they did not use the samemetabolites.
However, few studies did this analysis which indicates future
studies should add this part to the systematic evaluation of
application for metabolomics. Also, using the same metabo-
lites to compare difference in predictive power is required.

Differences in Study Design. Differences in study design
between studies on adults and children involve three parts:
the testing samples, sample size, and follow-up duration. For
testing samples, available studies on obese children mainly
target serum or plasma which means they can only test
the changes of metabolites in the peripheral circulation.
However, metabolomics approach can detect metabolites not
only in blood, but also in urine and target tissues. Notably,
testingmetabolites in target tissues provides clues aboutmore
specific metabolic pathways affected in the tissue which can
be validated at the gene level. Also, it provides more helpful
information at the same time, which enables us to understand
the role of target tissue in the changedmetabolites level in the
circulation. Comparing with children, studies on adults seem
to be more diverse covering all three locations, including
blood, urine, and tissues. And among various tissues, adipose
tissue in adults showed significant role in plasma BCAA
levels. In study of Badoud et al. [78], there are significant
changes in BCAA catabolism and TCA cycle between obese
people and lean people based on gene expression analysis
of subcutaneous adipose tissue (SAT). Similar results were
also shown by other studies based on omental adipose tissue
and visceral adipose tissue [79, 80]. To find the gene variants
in weight-discordant monozygotic twins, Naukkarinen and
his colleagues [81] checked the SAT of obese cotwins and
presented the downregulation of BCAA catabolism path-
way, oxidative phosphorylation pathway, and fatty acid 𝛽
oxidation. Future children studies should focus on genetic-
metabolomic-phenotypic regulation of IR, which will offer
more insights into the way of understanding metabolic dis-
orders. As for the sample size and follow-up duration, studies
on adults showed absolute advantage with larger sample size
and longer follow-up duration in various racial subjects.

Thus, future studies of obese children should focus
on the standardization of study design in order to detect
metabolomic profiles in multiple tissues in larger and differ-
ent racial people with long-term visit.

4.4. Strength and Limitation of This Systematic Review. This
is the first systematic review onmetabolomics profiles and IR
related metabolic disorders in childhood obesity. Strengths
of this systemic review include the comprehensive review
and critical evaluation of current available literature. All ten
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studies were published from 2012 to 2016, which manifested
the latest development in this area. However, there are still
some factors limiting the ability to unravel conclusions, such
as the small sample sizes of studies and short term follow-
up. In addition, we used HOMA-IR as surrogate markers
of IR and metabolic disorders at both baseline and follow-
up, rather than the standard methods for measuring IR,
such as the hyperinsulinemic-euglycemic glucose clamp test
and OGTT. Not only the heterogeneity in study design and
experimental method, but also the difference in subjects can
influence the final results to some extent. Thus, it is crucial
to carry on some large, well-defined cohorts offering robust
analysis and complete data in this field.

5. Conclusion

As childhood obesity has become a global public health
burden, more effective and preventive strategies are required.
Our systematic review showed that insulin resistance in obese
children was associated with distinct metabolomic profiles.
Two different metabolic pathways, amino acid metabolism
and lipid metabolism, seemed to be mainly affected in
obese children comparing with nonobese children. Among
metabolites, BCAAs, aromatic amino acids, and acylcar-
nitines were closely related to IR and future metabolic risk.
Due to existing studies’ limitation, more longitudinal and
large-scale studies are required.
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