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Neuroimaging evidence for a network sampling
theory of individual differences in human
intelligence test performance
Eyal Soreq 1✉, Ines R. Violante 2, Richard E. Daws1 & Adam Hampshire1

Despite a century of research, it remains unclear whether human intelligence should be

studied as one dominant, several major, or many distinct abilities, and how such abilities

relate to the functional organisation of the brain. Here, we combine psychometric and

machine learning methods to examine in a data-driven manner how factor structure and

individual variability in cognitive-task performance relate to dynamic-network connectomics.

We report that 12 sub-tasks from an established intelligence test can be accurately multi-way

classified (74%, chance 8.3%) based on the network states that they evoke. The proximities

of the tasks in behavioural-psychometric space correlate with the similarities of their network

states. Furthermore, the network states were more accurately classified for higher relative to

lower performing individuals. These results suggest that the human brain uses a high-

dimensional network-sampling mechanism to flexibly code for diverse cognitive tasks.

Population variability in intelligence test performance relates to the fidelity of expression of

these task-optimised network states.
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The question of whether human intelligence is dominated by
a single general ability, ‘g’1, or by a mixture of psycholo-
gical processes2–6, has been the focus of debate for over a

century. While performance across cognitive tests does tend to
positively correlate, population-level studies of intelligence have
clearly demonstrated that tasks which involve similar mental
operations form distinct clusters within a positive correlation
manifold. These task clusters exhibit distinct relationships with
various sociodemographic factors that are not observable when
using aggregate measures of intelligence, such as ‘g’2,7.

Recent advances in network science offer the potential to
resolve these contrasting views. It has been proposed that tran-
sient coalitions of brain regions form to meet the computational
needs of the current task8–10. These dynamic functional networks
are thought to be heavily overlapping, such that any given brain
region can express flexible relationships with many networks,
depending on the cognitive context8,9,11–13. This dynamic net-
work perspective represents a major departure from localist
models of brain functional organisation. Instead of cognitive
functions mapping to discrete neural regions or specific con-
nections, mental operations are suggested to be supported by
unique conjunctions of distributed brain regions, en masse. The
set of possible conjunctions can be considered as the repertoire of
dynamic network states and the expression of these states may
differ across individuals and relate to cognitive performance.

This conceptual shift motivates us to propose a network
sampling theory of intelligence, which is conceptually framed by
Thomson’s classic sampling theory14. Thomson originally pro-
posed that ‘every mental test randomly taps a number of ‘bonds’
from a shared pool of neural resources, and the correlation
between any two tests is the direct function of the extent of
overlap between the bonds, or processes, sampled by different
tests’. Extending this hypothesis, network sampling theory views
the set of connections in the brain that constitute a task-evoked
dynamic network state to be equivalent to Thomson’s ‘bonds’;
therefore, the set of available brain regions is equivalent to the
‘shared pool of neural resources’. The distinctive clusters within
the positive manifold reflect the tendency of operationally similar
tasks to rely on similar dynamic networks2,15–17. From this per-
spective, the general intelligence factor ‘g’ is proposed to be a
composite measure of the brain’s capacity to switch away from
the steady state, as measured in resting-state analyses, in order to
adopt information processing configurations that are optimal for
each specific task. When recast in this framework, classic models
of unitary and multiple-factorial intelligence1,14 are reconciled as
different levels of summary description of the same high-
dimensional dynamic network mechanism. The notion of
domain-general systems such as ‘task active’ or ‘multiple-
demand’ cortex is also reconciled within this framework. Speci-
fically, each brain region can be characterised by the diversity of
network states they are active members of. Brain regions that
classic mapping studies define as ‘domain-general’ place at one
extreme of the membership continuum, whereas areas ascribed
specific functions, e.g., sensory or motor, place at the other
extreme. The aim of this study was to test key predictions of
network sampling theory using 12 cognitive tasks and machine
learning techniques applied to functional MRI (fMRI) and psy-
chometric data. First, we test the hypothesis that cognitive tasks
evoke distinct configurations of activity and connectivity in the
brain. We predicted that these configurations would be sufficient
to reliably classify individual tasks, and that this would be the case
even when focusing on brain regions at the domain-general
extreme of the network membership continuum. We then tested
Thomson’s hypothesis that similarity between cognitive tasks
maps to the ‘overlap’ of the neural resources being tapped. Sub-
sequently, it was predicted that the ability to classify pairs of tasks

would negatively correlate with their behavioural-psychometric
similarity, with tasks that are less similar being classified more
reliably. Next, we hypothesised that individual functional
dynamic repertoires would positively correlate with task perfor-
mance, with the top performers expressing task configurations
that would be more reliably classified. We also tested the pre-
diction that classification success rates should have a basis in a
combination of the distinct visual (VS), motor and cognitive sub-
processes of the tasks. Finally, we hypothesised that task perfor-
mance would be associated with optimal perturbation of the
network architecture from the steady state, and that certain fea-
tures within the network would have more general and more
prominent roles in intelligence test performance.

Results
Data scope. We analysed fMRI data collected from 60 healthy
young adults while they performed 12 sub-tasks of an established
intelligence test, which has been previously used to assess 44,780
and 18,455 members of the general public in two internet-based
studies2,7. During fMRI recordings, each task was performed in
three 1-min blocks interleaved with 20 s of rest.

Spatial overlap in domain-general activation. We first sought to
identify ‘domain-general’ regions of the brain, that is, the brain
regions that were most consistently active across the 12 tasks. To
do that, we started by creating a group average activation map for
each of the 12 tasks (Fig. 1a). Using dice coefficients (DICE), we
demonstrated that any pair of tasks exhibited activation patterns
with high spatial similarity (mean DICE= 0.8, min DICE 0.7).
We followed this by generating three statistical maps: (1) an
intersection (INTR) map, which was calculated across all 12 tasks
as the conjunction of voxels that are active for all tasks (Fig. 1b);
(2) a T-contrast map comparing activity during the 12 tasks
relative to rest (Fig. 1c) and (3) a logical union map (Fig. 1d), i.e.
all voxels that are active for at least one task. To have a better idea
of the level of overlapping across tasks, we quantified the multi-
way percentage of task overlapping within the logical union map
(Fig. 1e, f). This indicated that more than 50% of voxels were
active in at least nine tasks, and that voxels that are purely
domain-specific are located at the boundaries of the union map.
Overall, the patterns observed in the statistical maps correspond
to the previously reported ‘multiple-demand’ (MD) cortex18–20,
which includes frontal, parietal, VS and motor brain regions. This
pattern is observed irrespective of the more extensive (union
map) or restricted (intersection map) volume of activation. Fur-
thermore, comparison of the INTR map to a previously published
resting state network (RSN) atlas21 showed a close correspon-
dence to VS and attention networks, which in turn functionally
sub-divide MD cortex2,22.

Functional heterogeneity within the domain-general to
domain-specific continuum. To more accurately quantify the
level of functional variability within MD cortex, the INTR map
was parcellated into regions of interest (ROIs) using an in-house
watershed algorithm12,23. For comparison, two further atlases
derived from independent studies were also examined. The first
captured regions that typically activate (MD) and deactivate
(default mode network (DMN)) across large sets of cognitive
tasks, that we refer to as MDDM20. The second was a 200 ROI
resting state functional parcellation24 of the cortex (CRTX), i.e.,
ROI’s that were defined independently of domain generality (see
Fig. 2a–c bottom panel). Together, these ROI sets capture dif-
ferent mixtures of the domain-general to domain-specific
continuum.
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We used these three parcellations to extract voxel-wise vectors
of activation for each task block and each subject and examined
the distribution of activity across each parcellation (Fig. 2d). As
expected, the INTR set included predominantly positive values
and the MDDM set had a bimodal distribution, reflecting the
inclusion of ‘task-positive’ and ‘task-negative’ brain regions.
The CRTX set had a broad right-tailed distribution with a
negative peak. Notably, these broad activation distributions were
indicative of substantial variability in task-evoked responses even
amongst the most commonly active INTR set of brain regions. To
investigate this further, we generated voxel-wise activation
distributions for each of the tasks and parcellations (Fig. 2e)
and then calculated pairwise similarity matrices (estimated using
cross-correlation see Fig. 2f) for each parcellation. To quantify the
apparent clustering, the similarity matrices were analysed using
principle components analysis (PCA), and this produced 3–4
components (Fig. 2f). Taken together, these analyses demonstrate
that brain regions that are active across the 12 tasks exhibit
activation patterns that are specific to individual, or clusters of,
tasks. This accords well with the prediction of network sampling
theory that cognitive tasks should sample different but heavily
overlapping combinations of brain regions.

Relating behavioural factor structure to neuronal overlap. A
central prediction of network sampling theory is that the strength
of the behavioural psychometric correlations between tasks
should correspond to the degree to which they tap common
underlying neural resources. To define psychometric similarity,
we used our previously published latent factor structure derived
using >60k test scores from the general public2,7 which loads the

12 tasks used here onto three orthogonal psychometric factors,
visuospatial (VS), reasoning (RE) and verbal reasoning (VR)
(Fig. 3a, b). As predicted by network sampling theory, the psy-
chometric distance between each pair of tasks showed a strong
positive correlation with the corresponding whole-brain task
activation DICE coefficients (r= 0.63, p < 0.001, Fig. 3c, d). This
indicates that tasks that are psychometrically similar evoke
similar patterns of activation. This strong association at the
whole-brain level held when separately testing each of the three
ROI sets (Fig. 3e, rINTR= 0.54, rMDDM= 0.60, rCRTX= 0.60, all
p < 0.001).

Twelve-way classification of cognitive tasks based on brain
activation patterns. We next engineered a multivariate classifi-
cation pipeline to test whether the 12 tasks could be accurately
identified based on the patterns of BOLD activation (BA) that
each task evoked using voxel-wise activity from each of the
three ROI sets. To eschew the over-fit problem, for each ROI set,
we separated our data into two independent subject subsets
(training= 75% and test= 25%). We used the training data to fit
one true 12-way classification model and a null model using a
scrambled response vector. Model performances were estimated
within the training set using fivefold cross-validation (CV) and on
the naïve test set (held-out). This process was repeated 100 times
to form performance distributions. As expected, the CV estimates
were overly optimistic25, with all three ROI sets showing a sig-
nificant 15% improvement in performance (estimated using
F1-macro) compared to the held-out test sets (p < 0.0001). Con-
sequently, we report the performance from the held-out test set in
all subsequent analyses. The ROI voxel-wise BA patterns were

Fig. 1 Domain-general overlap volumes. We used a cognitive battery designed to measure different aspects of intelligence to collect task-evoked brain
activation data from 60 participants. A description of each task is provided in Supplementary Methods A.1 and graphical representations in Fig. S1 and
Supplementary movies 1–12. a Maximum intensity projection for the voxel-wise activation patterns (vs resting period) for the 12 cognitive tasks composing
our battery. Initials for each task are displayed underneath simplified task names. b–d Maximum intensity projection for the following: b the intersection of
the 12 tasks, i.e., voxels that were active for all of the tasks. c t-test across the 12 tasks relative to rest, i.e., tasks that were reliably active for multiple tasks.
d Union of the 12 task activation patterns, i.e., voxels that were active for at least one task. e Proportion voxel-wise overlap projection (i.e. the number of
tasks a voxel is activated by (darker colour= voxels present in more tasks). f Treemap quantifying the multi-way proportion of logical intersections of
positive activation patterns across tasks. Top digit indicating the number of overlapping tasks and the bottom the percentage of voxels existing in the k-way
intersection. Colour matches the overlap volume.
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sufficient in 12-way classifying the tasks, the mean classification
accuracy across ROI sets was 34.5% (chance 8.3%). However, the
classification accuracy varied across ROI sets (one-way repeated-
measures ANOVA F2,297= 452, p < 0.0001), with performance
increasing as a function of the ROI set’s spatial extent (F1INTR=
38%, F1MDDM= 42%, F1CRTX= 49%) (Fig. 4a). This indicates
that activation patterns can reliably classify the 12 tasks, even
when constrained to a portion of the brain that was active across
all tasks. Furthermore, the ability to classify increases as infor-
mation from the rest of the cortex is included.

Superior task classification when analysing network con-
nectivity states. Contemporary network science theory10

emphasises how cognitive processes are supported, not only by
localised brain activity, but also by coordinated interactions that
occur across complex coalitions of brain regions. Building on this,
we tested whether the functional interactions between brain
regions, that occur during cognitive processing, could be used to
classify the tasks with a greater accuracy than BA, alone. We
applied the same machine learning pipeline using dynamic
functional connectivity (dFC), which estimated the change in
connectivity between the rest and task blocks, from each ROI
pair, and each ROI set. When trained using dFC patterns, the
accuracy of the classifiers was significantly higher (t198= 38.433,
p < 0.0001) than for BA for each ROI set (Fig. 4d). Furthermore,
the CRTX dFC model, capturing the broadest set of connections
in the brain, significantly (F2,297 > 2k, p < 0.0001) outperformed
both of the MDDM and INTR dFC models (F1INTR= 43%,
F1MDDM= 43%, F1CRTX= 69%). Notably, this difference is unli-
kely to relate in a trivial manner to the number of features
available for classification. For example, the CRTX ROI

connectivity model outperformed the CRTX voxel-wise activity
model, despite the latter having more than four times as many
features (Table 1). Therefore, in accordance with network sam-
pling theory, coalitions of brain regions, support diverse tasks by
transiently adopting distinct connectivity configurations.

Neuronal activity and connectivity provide complementary
information when classifying cognitive states. The contrast
between BA and dFC classification performances raised the
question of whether these patterns provide complementary
insights into task-evoked network states. To address this question,
we trained two-stage stack models, which referenced activation
and connectivity together. Specifically, models for voxel-wise
activation, and ROI dFC were trained independently at Stage 1,
and a stack model was trained using the two resultant sets of 12-
way classification metrics at Stage 2. This two-stage approach was
designed to account for the difference in the number of features
for each type of measure. The stack models outperformed (p <
0.0001) the corresponding individual models in all cases (F1INTR
= 52%, F1MDDM= 56%, F1CRTX= 74%, Fig. 4g).

Predicting multi-factorial psychometric structure from task-
evoked neuronal states. We next set out to test a further prediction
from network sampling theory, whereby the similarity in the neural
states evoked by tasks should relate to their psychometric similarity.
Notably, the classification analyses thus far revealed great variability
in terms of each model’s f1-micro score (an aggregate measure of
the classification accuracy of individual tasks) (Fig. 4b, e, h). This
indicates that classification accuracy of an individual task depends
on its relationship to the rest of the task battery, ROI set (INTR,
MDDM or CRTX) and the metric being used for classification (BA,

Fig. 2 Functional heterogeneity within ROI sets. a–c Top panel shows the region of interest parcellation sets colour coded to reflect task positive (orange)
or negative (blue) associations quantified using mean activation for each ROI. a The intersection conjunction was segmented using our in-house watershed
algorithm. b The task negative to positive20 statistical volume was segmented using the same method. c Unbiased ROI set capturing the whole cortex as
defined by24 during resting state fMRI. d Using the above ROI sets we use custom box-violin plots to show the grand mean voxel-wise activation
distribution contained within each brain mask (boxes height is defined as the inter quantile range (IQR); i.e. the range from the 3rd to the 1st quantile, the
median is drawn as the central line. Lower inner fence is defined as the 1st quantile minus 1.5 times IQR; upper inner fence is defined as the 3rd quantile
plus 1.5 times IQR. Finally, the violin plot is calculated from the winsorized kernel density distribution. Full code is avaliable in the GitHub repository under
fws.plot.group_violin.m. As expected, the INTR contains only positive values, the MDDM has a bimodal distribution reflecting the task positive and
negative networks it captures; and the CRTX mask has a skewed unimodal distribution spanning positive and negative values with a long right tail. e Task-
wise distribution plots across ROI sets emphasise the heterogeneity of the different tasks. f Top panel shows the pairwise correlation coefficient matrices
for each ROI set across tasks. Note, the inner clustering of tasks is consistent across ROI sets. f Bottom panel shows scree plots for principle component
analysis (PCA) of task × ROI, separately for each ROI set across tasks. Note, the optimal number of principle components needed to explain the variance
across tasks is at least three for each ROI set, thereby demonstrating the heterogeneity of their activation responses to different tasks. Source data are
provided as a Source Data file.
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dFC or stack). To demonstrate this, we quantified binary classifi-
cation performances between each pair of tasks (66 in total) for each
ROI set, and input metric, and correlated these with the corre-
sponding psychometric distances between each task pair. In all ROI
sets and metrics, there were moderate negative correlations between
binary classification accuracy and psychometric distance between
task pairs: BA—rCRTX=−0.47, rMDDM=−0.49, rINTR=−0.42
(Fig. 4c); dFC—rCRTX=−0.47, rMDDM=−0.48, rINTR=−0.51
(Fig. 4f); stack—rCRTX=−0.50, rMDDM=−0.54, rINTR=−0.55
(Fig. 4i). All p values were <0.001 and survived Bonferroni correc-
tion (n= 9, alpha= 0.05, alpha/n= 0.006). This strongly indicates
that psychometrically similar tasks evoke similar functional network
states.

Meta-clusters reflect behaviour complexity. Behaviour can be
viewed as a product of perceptual, cognitive and action systems
interacting together26 and tasks can differ within any combina-
tion of these domains. Therefore, we sought to determine which
of these aspects of the task designs within our battery contributed
to classification of the brain states that they evoke. We clustered
the 12 tasks according to psychometric2,7 (RE, VS, VR), motor
interaction type (dynamic, sequence, forced choice), and VS-
domain (spatial, digit, object, verbal) dimensions and classified
these categories using the same multi-way classification pipeline
trained on BA or dFC from the CRTX ROI set. All of the true BA
models (Fig. 5g–i) significantly outperformed the null models
in each dimension (psychometric F1True= 69.8%, F1Null= 33.1%,
motor F1True= 71.4%, F1Null= 33.2%, VS F1True= 58.2%,

F1Null= 24.8%, all p < 0.01). Moreover, the dFC models sig-
nificantly (p < 0.0001) outperformed the BA models in each
dimension (psychometric t198= 55.8, F1dFC > BA= 83.48 >
67.94%; motor t198= 56.177, F1dFC > BA= 84.58% > 68.8%; VS
t198= 55.7, F1dFC > BA= 72.4 > 55.4%, all p < 0.0001). Having
established that tasks could be multi-way classified using any of
the three dimensions, we next examined the performances of each
of the classes. This was important as the meta-class labels pro-
duced imbalanced classes (Fig. 5d–f). Specifically, for each
dimension, input metric (BA, dFC) and iteration (iter= 100) true
performance was compared to 100 permutations where tasks
were randomly assigned into classes, while maintaining the true
size of each class. Relative to this permutation distribution, the
true models significantly outperformed in the psychometric
and motor dimensions, but not for the VS dimension: BA—
(psychometric F1True > Perm= 68 > 53.3%, p= 0.001; motor
F1True > Perm= 68.8% > 53.8%, p= 0.002; VS F1True > Perm= 55.4
> 48.6%, p= 0.061); dFC—(psychometric F1True > Perm= 83.5 >
70.7%, p= 0.002; motor F1True > Perm= 84.58% > 71%, p= 0.002;
VS F1True > Perm= 72.4 > 68.3%, p= 0.161).

In a further examination of VS differences across tasks,
temporal dynamic similarities were calculated between task pairs
(i.e. perceptual dynamics of the tasks) using a dynamic saliency
model27 that was run on videos of the tasks being performed (see
Supplementary methods A.4). Here, we confirmed that there was
also no relationship between the temporal dynamic patterns (i.e.
saliency) and behavioural psychometric similarity (Fig. 2f and
Supplementary Fig. 3). Together, these results show that
classification of tasks relates to a combination of differences in

Fig. 3 Distributed activation pattern correlates with behavioural similarity. a A previously published internet-based study using test scores from >60k
members of the general public was used to define the psychometric similarity between the 12 tasks2,7. Loadings from the three-factor solution are
presented using a radial projection where each pole represents one of the following factors (VS—visuospatial, RE—reasoning, VR—verbal reasoning). The
initials for each task are displayed (see Fig. 1 for reference and Supplementary methods A.1 for a description of each task). b Hierarchical cluster analysis of
the 66-paired psychometric similarities further reflects the pairwise similarity between tasks. The three-factor structure is clearly evident as clusters of
higher correlation proximal to the lead diagonal. c DICE coefficients from each pair of whole-brain group-level task activation maps. d–f The following
scatter plots test association between psychometric similarities and different sources of similarities using a right-tailed Pearson correlation coefficient test.
When applicable tests are FDR corrected. d A strong positive correlation (p= 6.82e−09) was observed between task psychometric similarities and spatial
activation DICE coefficients, i.e., tasks that activate the same regions are more proximal in the behavioural factor space. e Cross-correlation pairwise
similarity extracted from activation patterns within each of the three ROI sets (cortex—CRTX (p= 1.6e−06), Multiple-demand default mode—MDDM
(p= 8e−08), Intersection—INTR (p= 8e−08)) showed a strong positive correlation with psychometric similarity (see similarity matrices in Fig. 2f). f No
significant correlation was observed between task psychometric similarities and similarities in salience time courses (see Supplementary methods A.4).
This indicates that the association between brain activation patterns and psychometric similarity is not driven by temporal similarities of stimuli
presentation and motor sequencing across the tasks. Source data are provided as a Source Data file.
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their cognitive and motoric demands, but less so to differences in
their VS-perceptual demands.

Behavioural performance index correlates with the classifia-
bility of task-evoked network states. A key element of network
sampling theory is that intelligence relates to the brain’s capacity
to dynamically form network states that are optimal for each
specific task. To test this prediction, we calculated the overall
classification accuracy of the tasks from the network states of each
individual who took part in the study. This was calculated as the
number of 1-min task blocks that were correctly classified for the
individual, with each individual providing a total of 36 blocks (12
tasks with 3 × 1 min replication blocks). The individuals’ classi-
fication accuracies were correlated with a global composite
measure of their task performance: specifically, the first un-
rotated component from a principle component analysis that was

calculated across the set of 12 task scores. Two participants were
identified as outliers at this stage in terms of very low classifica-
tion accuracy and were removed from the following individual
differences analysis (for per participant accuracy see Supple-
mentary Table 5).

Positive correlations were evident for the connectivity and
stack models. These were statistically significant for the MDDM
and CRTX connectivity and stack models at the FDR corrected
threshold, and was strongest for the CRTX connectivity model
(dFC: rMDDM= 0.36, p= 0.008, rCRTX= 0.39, p= 0.005; Stack:
rMDDM= 0.328, p= 0.024, rCRTX= 0.27, p= 0.033) (Fig. 6b, c).

Identifying the most relevant cortical connections for classifi-
cation. To gain a better understanding of which network features
drove the ability to decode the 12 tasks, we first aimed to identify
the connections that contributed the most to the classification

Fig. 4 Classification analysis across metrics and brain sets. The 12 tasks can be decoded based on either activation, connectivity or both metrics
combined (Stack). The mean pairwise binary classification scores indicate a strong negative correlation with the psychometric similarity implying that
behaviourally similar tasks are harder to distinguish. c, f, i The following scatter plots test association between psychometric similarities and different
sources of classification accuracies using a left-tailed Pearson correlation coefficient test. All tests are FDR corrected within the comparison. c Exact p
values: pCRTX= 0.0001, pMDDM= 0.0001, pINTR= 0.0003, pNull= 0.0204. f Exact p values: pCRTX= 0.0000, pMDDM= 0.0000, pINTR= 0.0000, pNull=
0.7181. i Exact p values: pCRTX= 0.1e−04, pMDDM= 0.02e−04, pINTR= 0.019e−04. a, d, g Scatter plot of 12-way classification accuracy (F1-score)
distributions across ROI sets (i.e. CRTX, MDDM and INTR). Y-axis values were estimated using within sample cross-validation and X-axis represents
performance over subject independent held-out test set. a Voxel-wise BOLD activation (BA), d dynamic functional connectivity (dFC), and g stack models
that combine information from both BA and dFC. Scatter plots show that: (1) models based on CRTX data outperform other ROI sets; (2) cross-validation
performance estimation show that the models are slightly overfitted; (3) combining connectivity and activity in a stack framework is evidence that these
measures are complementary for classification. b, e, h Radar plot showing the per task f1-micro accuracy distributions of the held-out test-set.
Classification accuracy was highly variable across tasks. In dFC, but not in BA, the overall CRTX f1-micro pattern was visually different from the other ROI
sets. c, f, i Strong negative correlations were evident between the psychometric similarity measure (x-axis) and binary classification accuracy (y-axis);
therefore, pairs of tasks that were behaviourally similar also evoked similar network states in the brain, which resulted in lower classification accuracy.
Source data are provided as a Source Data file.
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models. Using a leave-one-out sparse L1 multi-class learning
approach, we visually examined the top 0.1% of task-specific and
task general connections that were most relevant to the 12-way
classification problem. Specifically, 58 sparse multi-way models
were trained (one for each participant). The positive, and negative
weights from each model were independently binarised and

averaged across tasks. The positive weights reflect the connections
that transform measures to a positive domain and can be inter-
preted as task specific. In contrast, the negative weights indicate
common connections across the remaining eleven tasks and can
be interpreted as task general. We used functional RSNs to visually
compare these two complementary aspects of the classification

Table 1 Classification analysis results based on held-out test sample and fivefold cross-validation (CV).

Metric Set F1 (held-out) F1 (5-fold CV) Features

Mean Std CI± Mean Std CI±

BA CRTX 49.3 2.8 48.8–49.9 64.8 2.1 64.4–65.2 86,704
MDDM 42.1 2.5 41.6–42.6 55.9 1.8 55.5–56.3 31,973
INTR 37.7 2.9 37.1–38.2 54.6 2.1 54.1–55.0 14,250

dFC CRTX 68.9 3.7 68.2–69.6 75.6 1.9 75.2–75.9 19,900
MDDM 43.3 3.1 42.7–43.9 47.9 1.8 47.5–48.2 1326
INTR 43.1 3 42.5–43.7 45.76 1.95 45.4–46.1 190

Stack CRTX 73.6 3.7 72.8–74.3 83.4 1.8 83.0–83.7 24
MDDM 55.7 2.8 55.2–56.3 66.6 2.9 66.0–67.2 24
INTR 52.1 3.2 51.5–52.8 64.2 2.3 63.7–64.6 24

Classification accuracy measures were approximated using 100 models trained on independent random training samples and accuracy was quantified within training set using fivefold cross-validation
and on test dataset sampled from 25% of the participants (see ‘Methods’ section). Mean F1 measure was calculated as the average F1-macro score across models, reflecting the overall accuracy of the
12-way classification. Std F1 was also calculated, i.e., the standard deviation of the performance distribution and CI represents the 95% confidence intervals. Significance was estimated by calculating the
proportion of null models (trained on permuted task labels and it was ~8.3%) that outperformed the mean F1 from the true model, all results have significance p < 0.01.
BA BOLD activity, dFC dynamic functional connectivity, Stack stack model combining BA and dFC, CRTX cortex, INTR intersection, MDDM multiple-demand default mode.

Fig. 5 Behavioural factors decoded from cortical information. The design of each task was clustered according to psychometric, motor and perceptual
dimensions. a Psychometric class defined based on the behavioural factor structure. b Motor class. Dynamic interaction tasks require multiple perceptual-
mental-action cycles for completion, e.g. the self-ordered search (SO) task. Sequence tasks require the perceptual encoding of a spatial or temporal stimuli
sequence coupled with a motor sequence that reflects that encoding. Finally, static tasks require encoding a static stimuli that requires some mental
operation culminating in a forced choice response. c Perceptual-visual class. Composed of spatial configuration, digit, object and word stimuli. A video of
each task is provided in the Supplementary movies 1–12. d–f Task to class association showing how each set of classes has a distinct mapping across the
tasks. g–i Connectivity/dFC (top row) and voxel-wise activation/BA (bottom row) multi-class classification distribution accuracies (F1-score). Grey colour
representing null model, which is an approximation of chance based on shuffled response vectors. Dark colour representing true model performance on the
held-out test sample and light colour the random permutation of proportional task to class assignments. p values indicate the significance of the distance of
the mean true distribution from the permuted distribution using empirical p value approximation. Overall performances are substantially better than
randomly clustered tasks. Behavioural-psychometric and motor classes performed better than visual classes. j–l Scatter plot of per class f1-minor
accuracies. Y-axis represent activation models and X-axis connectivity models, showing that internally the models are not affected by the class imbalance.
Source data are provided as a Source Data file.
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models, as they have been previously linked to various intelligence
measures21,28. The most important task specific connections (top
panel Fig. 6d) were between RSNs. The most important task
general (bottom panel Fig. 6d) connections were within the RSNs.
Furthermore, as expected, task general features were more pre-
valent (task general: min= 0.54, mean= 0.58, max= 0.67; task-
specific: min= 0.37, mean= 0.41, max= 0.5). These results
indicate that task-optimised network states involve a perturbation
from the resting state architecture of the brain29.

Connectivity in resting state networks predicts performance
index. Building on the previous results, a likely possibility is that
individual differences in human intelligence performance index
relates to non-additive combinations of network features. We
simplified the CRTX ROI connectome, from ∼20k to 28 features by
averaging the within and between RSN connections and used these
to train an ensemble of boosted regression trees to examine the
non-additive connectivity-performance index relationship (Fig. 6e).
Using a minimal set of boosted regression trees, we quantified the

predictive power of this reduced RSN feature set and the most
relevant connections for prediction. To avoid over-fitting, we used
the same leave-one-out CV approach as before. A cross-validated
grid search identified the optimal ensemble boosted structure with
respect to the maximal number of branch node splits and the
maximum number of trees to train. This converged on 3 × 3 tree
structure. Positive correlations were evident across the leave-one-
out values and cognitive performance index (MSE= 0.6353, r=
0.55, p < 0.001, Fig. 6f). VS examination of a boosted regression tree
for all participants (Fig. 6g) showed that across all trees, the root
converged on different between RSNs. However, the majority of
branches were composed of within RSN connections. Importantly,
in an ensemble of boosted trees, each tree contributes a single multi-
step rule, and the predicted value is composed as a sum of leaves
across all trees. Furthermore, the width of the branch reflects the
generalisation of the rule (concerning the sample), with wider
branches affecting more samples. Analysis of the optimal tree
combination showed that increased connectivity between dorsal
attention (DA) and VS systems strongly associates with better
performance. In contrast, increased connectivity within the default

Fig. 6 Cortical connectivity in networks previously defined by resting state analysis (RSN)21 predicts individual task performance. a–c The following
scatter plots test association between overall performance index (PI) across all tasks (x-axis) and classification accuracy (y-axis) using a right-tailed
Pearson correlation coefficient test. All tests are FDR corrected. Individuals with higher scores express more accurately classifiable task-evoked network
states. Best classification was achieved by the stack models. The strongest correspondence to intelligence was produced by the connectivity (dFC) models.
d Schema-ball plots showing top 0.1% of connections that were stable across 58 (i.e. one for each participant) leave-one-out sparse one-vs-all multi-class
models. Top panel shows positive weights used to differentiate any one task from the other 11 and is dominated by connections that are between RSNs.
Bottom panel shows the negative weights used to identify features that are similar for most tasks and is dominated by connections that are within RSN.
e Top panel diagonal shows the seven within RSN labels (i.e. Default mode=DM, Dorsal attention=DA, Frontoparietal= FP, Limbic= LI, Somatomotor=
SM, Ventral attention=VA and Visual=VS). The lower triangle shows the 21 unique between RSN combinations. Colours correspond to those in d and g.
Bottom panel shows the mean dFC for each of the RSN combinations averaged across the 12 tasks. Using cross-validated leave-one-out grid search we
identified the optimal ensemble boosted structure with respect to the maximal number of branch node splits and the maximum number of trees to train
(converged on 3 and 3). We then quantified by 58 independent boosted regression trees. f Scatter plot showing the predicted performance index (y-axis) is
significantly association (p= 3.59e−6) with the actual performance index (x-axis) as quantified by 58 independent ensemble trees using a right-tailed
Pearson correlation coefficient test. g Boosted regression trees trained on the entire sample (i.e. not cross-validated) identified the most important
combinations of features for explaining individual differences in performance. Increased connectivity between dorsal attention (DA) and visual (VS)
systems was strongly associated with better performance. In contrast, increased connectivity within the default mode (DM) network combined with
decreased connectivity between either DA to VS or DM to frontoparietal (FP) was associated with lower performance. Source data are provided as a
Source Data file.
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mode (DM) network combined with decreased connectivity
between either DA to VS or DM to frontoparietal (FP) associates
with lower performance. These results accord with the network
sampling view that intelligent behaviour is a function of distributed
networks across the brain, task performance involves an optimal
perturbation of the network architecture from the steady state, and
that certain features within the network have more general and
more prominent roles in intelligence test performance.

Discussion
The results presented here are highly compatible with a network
science interpretation of Thomson’s sampling theory14. Indeed, as
has been noted by others, the relationship between the classic
notion of a flexible pool of bonds and the analysis of the brain’s
dynamic networks as applied a century later is striking17.
Thomson proposed that mental tests tap bonds from a shared
pool of neural resources, which is confirmed by our observation
that different cognitive tasks tend to recruit unique but heavily
overlapping networks of brain regions. Furthermore, when testing
Thomson’s proposal that the correlation between any two tasks is
a function of the extent of overlap between their bonds, we
confirmed that the similarities of tasks in multi-factor behavioural
psychometric space correlated strongly with the similarities in the
dynamic network states that they evoked. These findings corro-
borate the key tenets of network sampling theory, further pre-
dictions of which were tested utilising a combination of machine
learning techniques applied to the fMRI and psychometric data.

From a network science perspective, our results showing that
the tasks were 12-way classifiable with high accuracy based on
their dynamic network states is highly relevant. Indeed, the 74%
accuracy achieved by the CRTX stack model was surprising, given
that chance was 8.3% and we used just 1 min, comprising 30
images, of task performance data per classified sample. Although
activity and connectivity provided complementary information
when combined in the stack models, classification accuracy was
consistently higher for connectivity when the measures were
analysed independently. These results strongly support the
hypothesis that the human brain is able to support diverse cog-
nitive tasks because it can rapidly reconfigure its connectivity
state in a manner that is optimal for processing their unique
computational demands8,9,12,17. A key finding was that the task-
evoked dynamic network states were consistent across indivi-
duals; i.e., our trained 12-way classification models operated with
high accuracy when applied in a robust CV pipeline to data from
individuals to whom they were completely naive. This was with
an out of the box classifier with no CV optimisation, which is
important, because it means that the features that drove accurate
classification must reflect on a fundamental level how networks in
the human brain are prewired to flexibly support diverse tasks.

At a finer grain, these task-optimised network states are most
accurately described as a perturbation away from the RSN archi-
tecture of the brain12,29. More specifically, it was not simply the
case that the relative levels of activity or connectivity within each
RSN change, i.e., reflecting different mixtures dependent on task
demands; instead, the features that were most specific to a given
task-evoked state were predominantly the inter-RSN connections.
Put another way, task-evoked states are not a simple blending of
RSNs, but a dissolution of the RSN structure. This extends the
findings of another recent study, where we used a similar analysis
pipeline to examine how different aspects of working memory
affected brain activity and connectivity12. Mirroring the current
findings, we found that behaviourally distinct aspects of working
memory mapped to distinct but densely overlapping patterns of
activity and connectivity within the brain. Taken together, these
results do not accord well with the hypothesis that the human

brain is organised into discrete static networks. Instead, it would
appear that the dynamic network coding mechanism is very high-
dimensional, relating to the greater number of possible combi-
nations of nodes8,9. There are dependencies whereby some nodes
operate together more often than others, but these canonical
network states, which are consistently evident in data-driven
analyses of the resting state brain, are statistical rather than
absolute. Our more holistic interpretation of the relationship
between network states and cognitive processes is further sup-
ported by the analysis of the classifiability of task clusters when
grouped according to their behavioural dimensions. Specifically,
when grouped by psychometric, motor or VS characteristics, the
clusters were more classifiable than random task groupings in all
cases. It was notable though that psychometric and motor char-
acteristics provided a stronger basis for classification. This is
interesting, because it pertains to how the most prominent factors
of human intelligence differ operationally. For example, it accords
well with process overlap theory17, which proposes that general
intelligence relates most closely to processes that are common
across many different cognitive tasks.

More generally, the fact that inter-individual differences in the
classifiability of the tasks predicted variability in a general measure
of behavioural task performance provides further evidence that
cognitive faculties relate to the way in which the brain expresses
these task-optimal network states. Previous research into the neural
basis of human intelligence has typically emphasised the role of
flexible FP brain regions2,30–32. In this context, our focused analysis
of the INTR ROI set warrants further discussion. Brain regions
within the INTR ROI set belong to the classical MD cortical
volume, which has been closely associated with general intelligence.
MD includes the FP brain regions that have the broadest involve-
ment in cognitively demanding tasks19,20,30; this includes executive
functions, which enable us to perform complex mental
operations33,34 and that have been proposed to relate closely to the
‘g’ factor17. From a graph theoretic perspective, MD ROIs have been
reported to have amongst the broadest membership of dynamic
networks of any brain regions35 and it has been shown that inter-
individual variability in the flexibility of MD nodes, as measured by
the degree of their involvement in different functional networks,
correlates positively with individuals’ abilities to perform specific
tasks, e.g., motor skill learning36 and working memory37. Collec-
tively, these findings highlight a strong relationship between the
flexibility of nodes within MD cortex and cognitive ability.

Here, we reconfirmed that MD ROIs were amongst the most
consistently active across the 12 tasks. However, we also
demonstrated that these ROIs were highly heterogeneous with
respect to their activation profiles across those tasks. Further-
more, in many cases they were significantly active for most but
not all tasks. This variability in the activation profiles even
amongst the most commonly recruited areas of the brain aligns
with the idea that MD cortex flexibly codes for diverse tasks in a
high-dimensional manner. More critically, the internal activity
and connectivity of the INTR ROI set was not strongly predictive
of behavioural task performance. Nor did it provide the most
accurate basis for classification overall, or correspondence to
psychometric structure. Extending to the MDDM set provides an
improvement, but it was inclusion of the whole cortex ROI set
that provided the best predictor of task and behavioural perfor-
mance. Furthermore, connections between the core set of INTR
regions and the rest of the brain featured prominently in all of the
above cases. This finding accords with bonds theory, insofar as
that theory pertains to the wide variety of bonds that contribute
to diverse behavioural abilities. It also accords particularly well
with the core tenet of network science that cognitive processes are
emergent properties of interactions that occur across large-scale
distributed networks in the brain10,12.
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An intriguing aside pertains to the phenomena of ‘factor dif-
ferentiation’. It was originally noted by Spearman38 that ‘g’
explains a greater proportion of variance individuals who perform
lower on intelligence tests. This finding has been robustly repli-
cated over the subsequent century5. Our results provide a simple
explanation for factor differentiation. When individuals of higher
intelligence perform different cognitive tasks, the dynamic net-
work states that they evoke are more specific. Therefore, there is
less overlap in the neural resources that they recruit to perform
the tasks. Given the relationship observed here between network
similarity and behavioural-psychometric distance, this would be
expected to reduce bivariate correlations in task performances
and produce a corresponding reduction in the proportion of
variance explained by ‘g’.

The boosted ensemble of regression trees provided a simple
way to extend the individual differences analysis in order to
capture not just mixtures but also interactions between network
features when predicting behavioural performance. We observed
that increased connectivity between DA and VS systems strongly
associated with better performance, whilst increased connectivity
within the DMN combined with decreased connectivity between
either DA to VS or DM to FP associated with lower performance.
This accords well with previous studies that have shown that
these networks update their connectivity patterns according to
the task context35,39–43. However, it was particularly notable that
inter-RSN connections again played the most prominent role
insofar as they formed the roots of all of the trees, meaning they
had the broadest relevance across individuals. This further
accords with the view that task-evoked network states are best
described as a perturbation from the RSN architecture12,29.

In summary, we validated multiple key predictions of network
sampling theory. This theory can potentially explain key findings
from behavioural psychometrics, experimental psychology and
functional neuroimaging research within the same overarching
network-neuroscience framework, and bridges the classic divide
between unitary and multi-factorial models of intelligence. Given
that our machine learning analysis pipeline aligns naturally with
multivariate network coding whereas more commonly applied
univariate methods do not, we believe that the analysis of mul-
tivariate network states as applied here has untapped potential in
clinical research; e.g., providing functional markers for quanti-
fying the impact of pathologies and interventions on the brain’s
capacity to flexibly express task optimised network states11,29.

Methods
Behavioural data acquisition
Ethics approval. This study was approved by the University of Western Ontario
ethics committee and all participants provided written consent before taking part
in the study.

Participants. Sixty adults (35 females, mean age 22.95, range 18–38 years of age), all
with normal hearing and corrected to normal vision were included in the study.
Participants were recruited from the University of Western Ontario and
surrounding area.

Intelligence test battery. All participants engaged with 12 cognitive tasks designed to
measure planning, reasoning, attention, and working memory abilities that are
believed to be core intelligence abilities. All tasks designs and behavioural scores are
reported in detail in the Supplementary methods A.1 and Supplementary
movies 1–12. Before scanning, participants underwent a short training session to
ensure that they could perform all 12 tasks. The training consisted of reading
written instructions followed by one practice block of each task, undertaken on a
laptop outside of the MRI scanner. Each participant then undertook 12 functional
runs, one for each specific task. These were administered in a predefined order.
Each experimental run contained three blocks each 1-min long, separated by 20 s of
rest. Tasks were displayed on a projector screen, visible from the bore of the MRI
scanner via a mirror. Responses were taken with a custom MRI compatible mouse.
In the imaging study, the tests ran as stand-alone software within the Adobe AIR
run-time environment.

MRI acquisition, preprocessing and quality control
MRI acquisition. Whole-brain images were collected using a 3 Tesla scanner (TIM
Trio, Siemens, Erlangen, Germany). FMRI data were collected across 12 runs (60
min total). During functional scans, a T2-weighted echo-planar image depicting
blood oxygenation level-dependent (BOLD) contrast was acquired every 2 s. The
first ten images were discarded to account for equilibrium effects. Images consisted
of 36 × 3 mm slices, with an 80 × 80 matrix, 240 × 240 mm field of view, TE= 30
ms, flip angle= 90°, echo spacing= 2.65 ms. A 1 mm resolution MPRAGE struc-
tural scan was also collected for each participant with a 256 × 240 × 384 matrix, TI
= 900 ms, TR= 2.3 s, TE= 2.98 ms and 9° flip angle.

Preprocessing was performed using SPM12 (Statistical Parametric Mapping
Welcome Department of Imaging Neuroscience), FSL (FMRIB Software Library
v5.0) and MATLAB 2016b (for full description see Fig. S3 and section C of the
Supplementary methods B). Specifically, we performed slice timing correction,
motion correction, realigned internally, rigidly co-registered to the native structural
volume and non-linearly normalised onto MNI space using a DARTEL group
template constructed from the structural scans of all individuals. All volumes were
then smoothed with an 8 mm3 full width at half maximum Gaussian kernel.

Imaging quality control. Signal to noise ratio (SNR) metrics were extracted from the
unprocessed fMRI images using an in-house implementation of the metrics pro-
posed by Friedman44. An outlier’s detection analysis was performed to detect low
values (SNR <5). No scans were discarded at this stage.

Data mining and descriptive analysis
Group task activation maps estimate. Using the standard SPM12 mass univariate
GLM pipeline for each task first level models were estimated across individuals
using the canonical HRF convolved experimental onsets and matrix of nuisance
variables (see Supplementary methods C and Supplementary Fig. 7). A second
group-level map was generated for each task containing voxels that were con-
sistently activated above baseline across the group. Minimal cluster size was derived
by performing uncorrected analysis with a relaxed threshold (p < 0.01), then we
used the minimal false discovery rate (FDR) cluster (PFDR < 0.05) to generate a
cluster corrected map for each of the contrasts in the specific conjunction.

Conjunction analysis. Conjunction is defined as a logical AND statement between
two or more truth conditions. Following Nichols et al.45 we took the conservative
approach of identifying a conjunction volume between two or more tasks simply by
intersecting the statistical maps thresholded at a specified alpha rate. We employed
an alpha of 0.001 FDR corrected and multiplied the logical mask with the mini-
mum statistical value. This resulted in an intersection volume representing voxels
that are active for all 12 tasks.

Brain masks and region of interest sets. Pair-wise connectivity between ROIs in
the brain is estimated using atlases that aggregate together voxels based on some
similarity measure. We use three different ROI sets (see Supplementary Tables 2–4).

Data-driven ROI intersection set (INTR). Using the intersection volume created
using the conjunction across all 12 task, we generated a data-driven parcellation set
using an in-house implementation of the watershed transform23.

Multiple-demand default mode ROI set (MDDM). We used the previously pub-
lished MD20 averaged t-statistics from contrasts that isolated cognitive demand and
averaged across seven different tasks and symmetrised across both hemispheres to
define task-based positive and negative BOLD activity and applied the same
watershed algorithm to generate data-driven parcellation sets.

Cortical resting state ROI set (CRTX). We used an unbiased functional cortical ROI
set that clusters 200 independent ROIs on the cortex. It is based on a multi-session
hierarchical Bayesian model applied on several large resting state datasets24 followed
by a population-level parcellation of the cerebral cortex into large-scale resting state
networks based on similar corticocortical functional connectivity (FC) profiles.

Behavioural, saliency and BOLD task similarity measures
Task psychometric pairwise similarity estimate. How psychometric similar two tasks
are can be derived by examining similarities and differences in task performance
across a large sample of tests. Here we rely on a three-dimensional behavioural-
psychometric model (PCA) previously published2,7 based on two online datasets
(N= 44,780 and N= 18,455) using the same cognitive tasks. A VS representation
of this psychometric distance is plotted using radial projection where each point
represents a task, and each pole represents a factor, the relative distance of a task
from each pole reflects its association with that factor. We then calculate the
pairwise Euclidean distance (pD) between all possible task pairwise combinations.
Using a radial basis function kernel S(x, xt)= exp(−pD2) we transform the dis-
tance measure to similarity measure to simplify interpretation. Finally, we apply
hierarchical clustering to this matrix, pairing tasks together based on the relative
similarity from each other.
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Task dice coefficients pairwise similarity estimate. Using the Dice similarity coef-
ficient, also known as the overlap index we measured the overlap between task
pairs FDR thresholded voxels to assess pairwise spatial similarity. Dice metric
ranges between zero and one, where one indicates complete correspondence
between both maps and zero suggests no agreement. Calculated at the voxel level, it
is the number of shared voxels divided by the total number of voxels across both
volumes. Formally using a confusion matrix, it is defined as DICE= 2 TP

2 TPþFNþFP
where TP (true positives) are the shared voxels in each map. FN (false negative)

and FP (false positive) are voxels activated in only one map.

Task voxel-wise BOLD activation similarity estimate. Using each of the ROI sets
defined above we extracted for all voxels contained within a specific ROI set the
sum of beta coefficients per block. This was then averaged across participants and
task replications to form a vector of task activation’s per task. Similarity was then
estimated using Pearson’s correlation.

Task dynamic saliency pairwise similarity estimate. How similar are the temporal
attention dynamics between two tasks is a complex and open question. To
approximate this measure we first estimated for each task it’s temporal dynamic
saliency for 1 min and summed each frame to form a vector that reflects the
attention load across time. Our similarity measure is the simple cross-correlation
matrix across all possible task pairs.

Classification analysis. Classification models have been used in neuroimaging
studies for the past two decades46–48 and can be considered an established method
of investigation. However, many pitfalls and biases can be introduced by parameter
tweaking to boost reported performance of the learner algorithm. As the objective
of this study is not to establish that fMRI data can be used to decode cognitive
states, nor introduce a new way to decode such data, but rather use decoding as
means of interrogating and comparing between different metrics and volumes of
interest we rely on functions from the standard MATLAB Statistics and Machine
Learning Toolbox without using any parameter optimisation (see Supplementary
methods C).

Data structures. In this study we rely on two different BOLD metrics, voxel-wise
BA and dFC. Each metric was mined from the three different ROI sets defined
above (i.e. CRTX, MDDM and INTR). Data metrics from each participant, across
all tasks, and replication blocks were collected for each ROI sets and metrics, and
include events from 60 subjects across 12 tasks, with three independent replication
blocks for each task. Each block is estimated from 1min of BOLD time series. As a
result, we have 3 × 2= 6 different datasets each containing 60 × 12 × 3= 2160
matched events with variable feature size.

Voxel-wise activation. For each subject across all tasks and for each brain ROI set,
we extracted for all voxels contained within a specific set the sum of beta coeffi-
cients per block.

Dynamic functional connectivity. In neuroscience, FC commonly refers to the sta-
tistical association between distal regions across the brain49. Estimation of con-
nectivity is commonly performed using some form of dimensionality reduction, either
by defining common networks or ROI. Furthermore, it is well established that task
performance modulates dFC at different temporal scales, including that of seconds to
minutes. For example, Laumman et al. found that performance of external tasks alters
short-term FC50. Estimation of task-based dFC is commonly conducted using gen-
eralised psycho-physiological interactions (PPI)51. However, isolating task depended
intrinsic connectivity changes using PPI depends on the successful removal of task-
induced activity. Recently, it was demonstrated that such removal is better achieved
using a finite impulse response (FIR) modelling rather than the canonical HRF model
used by the PPI. Therefore, here we followed Cole et al.52 guidelines and estimate FIR
dFC as described in detail in Supplementary methods B.4.

Classification algorithms. We used the ‘Error Correcting Output Codes’ (ECOC)
ensemble approach to solve the multi-class problem. The MATLAB built in
function with linear support vector machine binary53 classification was used as the
basic learning algorithm to discriminate between one task and all other tasks using
either one-vs-all (OVA) or One-vs-one (OVO).

OVA and OVO multi-class classification schemes. Importantly, we distinguish between
the OVA and OVO classification schemes, as they can be used to answer two different
questions. The OVA model builds on identifying patterns that differentiate between
one task and all other tasks, in other words domain-specific patterns. While the OVO
builds on identifying patterns that differentiate between all pairs of tasks and can be
seen as some form of pairwise similarity measure. Both schemes create a multi-
dimensional reduced space with task-specific multivariate weighted code.

Stack classification. The two-stage stack modelling involves adding an additional
layer to the classification processes. Instead of using a coding procedure on the 12-

way positive binary scores (PBS) to assign a unique class to an event, we stacked the
three matrices (12 × 2) and trained an additional model on these. To avoid over-
fitting, which is common in large n, small m datasets we used an internal fivefold
CV and populated the PBS from the held-out fold. To assess performance, for each
metric we used the five CV models, i.e. with completely independent samples to the
training set, to estimate PBS for the test set and took the mode (i.e. majority vote)
across these scores to get the final test labelling.

Sparse classification. In order to identify most relevant connections that took part
in the multi-way classification we used the same ECOC multi-way framework but
changed the basic learning algorithm from the standard svm to a L1-regularised
(i.e. lasso) linear logistic regression classifier.

Ensemble of boosted least square regression trees. Ensemble boosted methods
combine several sequential models to produce a more accurate predictive perfor-
mance than utilising a single model where each model builds on its predecessor to
create a complementary ensemble. Least square regression trees are a form of
nonlinear predictive models where recursive partitioning is used to form a set of
decision rules that assign values based on some logical criteria. When used in an
ensemble the final predictive value is derived (in our case) as a simple sum across
the different trees that create the set.

Machine learning performance
Cross-validation: held-out, K-fold and leave-one-out. Held-out CV (aka out-of
sample) is a popular method to estimate how machine learning models will gen-
eralise to unseen data. The general procedure randomly splits the dataset into a
train and test groups with predefined proportion (i.e. 75 and 25%). The model is
trained using the training subset and performance is reported using the test set. The
k-fold procedure is an extension to the held-out where performance is estimated
using all events. In our case (i.e. fivefold), the data are separated into five different
training and testing samples and five models are trained using the training sub-
sample and tested on the unique fold. Leave-one-out CV is a special case of K-fold,
with K equal to the number of participants in the sample. In the permutation held-
out CV, a large number of random splitting is created and for each a held-out CV
performance is estimated. Performance is then reported using the average accuracy
of the distribution across models. The benefit of this latter approach is that it is
almost impossible to manipulate (i.e. cherry pick) results and it allows for statistical
comparisons between different models (e.g. different dependent variables).

Classification accuracy estimate. The balance between precision (i.e. the proportion
between correctly classified events and all events classified in class) and recall (i.e.
the proportion between correctly classified events and the ground truth) commonly
known as F1-score is used as our multi-way accuracy score. F1 is considered a
more appropriate measure for multi-class classification problems than percent
accuracy. The per class f1-minor measure is calculated as the harmonic mean
precision and recall (i.e. f1-minor= 2rp

pþr), and F1-major (global accuracy measure)

is calculated as a simple average of the f1-minor.

Accuracy significance. To quantify classification significance, we used the con-
servative repeated permutation CV approach to form paired performance esti-
mations as defined in ‘Performance estimation’ section. We then estimated the
empirical probability as p= bþ1

mþ1, where b is the number of events where F1null >
F1True, i.e. the number of events where the permuted null model outperformed the
model tested by real data, and m is the number of random sampling pairs (100
bootstraps in our case).

Mean square error. To quantify performance index prediction, we used a leave-one
out approach to form performance estimations for each subject. Mean square error
was used as measure of the average squared difference between the estimated values
and the actual value.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data that support the findings of this study are committed in the OpenNeuro54

repository under https://openneuro.org/datasets/ds003148/versions/1.0.156. The
processed experimental data that support the findings of this study are committed in
figshare55 under https://figshare.com/articles/dataset/Neuroimaging_evidence_for_a_
network_sampling_theory_of_human_intelligence/13237316. Source data are provided
with this paper.

Code availability
The MATLAB code used to create the analysis and figures is available online at https://
github.com/esoreq/12_tasks_code.git.
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