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Clinical microbiology laboratories are the first line to combat and handle infectious
diseases and antibiotic resistance, including newly emerging ones. Although most
clinical laboratories still rely on conventional methods, a cascade of technological
changes, driven by digital imaging and high-throughput sequencing, will revolutionize
the management of clinical diagnostics for direct detection of bacteria and swift
antimicrobial susceptibility testing. Importantly, such technological advancements occur
in the golden age of machine learning where computers are no longer acting passively in
data mining, but once trained, can also help physicians in making decisions for
diagnostics and optimal treatment administration. The further potential of physically
integrating new technologies in an automation chain, combined to machine-learning-
based software for data analyses, is seducing and would indeed lead to a faster
management in infectious diseases. However, if, from one side, technological
advancement would achieve a better performance than conventional methods, on the
other side, this evolution challenges clinicians in terms of data interpretation and impacts the
entire hospital personnel organization and management. In this mini review, we discuss
such technological achievements offering practical examples of their operability but also
their limitations and potential issues that their implementation could rise in clinical
microbiology laboratories.
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INTRODUCTION

Fully automated diagnostics pipeline is a seducing idea and first automated microbiology
laboratories have started to be implemented world-wide (Vandenberg et al., 2018; Vandenberg
et al., 2020). In parallel, machine learning (ML), a branch of artificial intelligence, has gained a
foothold in many fields of clinical medicine (Topol, 2019). We actually have ML-driven tools that
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can make diagnosis, help clinicians in decision-making
challenges (Peiffer-Smadja et al., 2020), such as the choice for a
given treatment, and even empower the patients themselves to
manage their healthcare (Topol, 2019). The innovative aspect of
ML is that it is not a ruled-based system; ML algorithms can
learn from input data and automatically make predictions
or decisions.

With next-generation sequencing (NGS) techniques, we can gain
information about pathogens analyzing millions of small fragments
coming from their genomes and even gain insights on microbiota
composition, including not-yet cultured or uncultivable organisms.

Can automation, together with new technologies, make a
difference from conventional clinical microbiology tests that
often require a significant amount of manual work?

What impact will such advancements have in clinical routine
in terms of sample-to-result timing, taking into account that it
usually takes between 24 and 48 h to obtain results in current
routine laboratories (Ruppé et al., 2016)? What will such new
technologies imply in terms of resources and management?
Lastly, can we understand and interpret multimodal large-
volume data resulting from these new technologies?

In this mini review, we will discuss these questions leveraging
the benefits of technological advancements over routine
diagnostics but also considering the limitations and problems
by implementing them in healthcare facilities.
FULL AUTOMATION IN CLINICAL
MICROBIOLOGY LABORATORIES

In a clinical microbiology routine laboratory, sample processing
varies mostly because of the nature of the specimens (blood, urine,
etc.) but also because of the diversity of pathogens that can require
specific media and growth conditions. Besides pathogen
identification, clinical microbiology laboratories are also in charge
of providing information about the antibiotic susceptibility of
pathogens to help selecting the most appropriate pharmacological
regimen. Antibiotic susceptibly tests (ASTs) can be performed with
different approaches (agar disk diffusion, agar gradient diffusion or
broth microdilution) and can measure the minimum inhibitory
concentration (MIC) of an antibiotic, that is the lowest
concentration of the drug at which there is no visible growth.

To date there are only two commercially available instruments,
the Copan’s WASPLab™ (WASPLab™) and the Becton
Dickinson’s Kiestra TLA (Kiestra TLA), which propose
automated culture-based tests including specimen streaking,
slide preparation, transfer of inoculated media between
instruments and automated incubators (Dauwalder et al., 2016;
Bailey et al., 2019).

The WASPLab™ and Kiestra TLA are versatile technologies
which can incorporate or can be combined with other diagnostic
systems such as MALDI-TOF (Cherkaoui et al., 2011; Mutters
et al., 2014), a key technique in modern medical microbiology to
identify bacteria and fungi (Cherkaoui et al., 2010; Kaleta et al.,
2011; Clark et al., 2013; Patel, 2019; Cherkaoui et al., 2020a). For
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example, the Kiestra TLA combined with MALDI-TOF has been
shown to shorten the incubation time required to identify
microbial pathogens (Mutters et al., 2014). Unlike Kiestra TLA,
WASPLab™ offers an automated solution for antimicrobial disc
diffusion susceptibility testing with equal or better accuracy than
other available phenotypic methods (Cherkaoui et al., 2020b).

Overall, the two systems reduce the number of manual pre-
analytic, analytic and post-analytic steps that are typically
performed in a non-automated laboratory (Dauwalder et al.,
2016). The implementation of the WASPLab™ or of the Kiestra
TLA systems in clinical settings improved sample processing
steps and reduced sample-to-result timing (Barake et al., 2017;
Cherkaoui et al., 2019a; Cherkaoui et al., 2020c).

Since 2018, the Copan’s WASPLab™ technology has been
implemented at the Geneva University Hospitals (Hôpitaux
Universitaires de Genève—HUG) (Cherkaoui et al., 2020c),
where it has proven offering rapid detection of vancomycin-
resistant enterococci with automated incubation and digital-
image based analysis system (Cherkaoui et al., 2019b) and
more generally, a substantial shortening of turn-around times
(Cherkaoui et al., 2019a; Cherkaoui et al., 2020a).

Full automation of diagnostic procedures can generate further
advantages (Dauwalder et al., 2016; Cherkaoui et al., 2020c).

Firstly, automation increases the capability of sample processing
with a better documentation and traceability. Secondly, there is a
better control of the costs (e.g. reagents, medium, etc.) with reduced
turn-around times thus resulting in a faster diagnosis. Thirdly, full
automation permits extending the opening hours of the laboratory
with a huge benefit for patient care.

Hopefully full automation will also incorporate molecular
diagnostic capabilities, starting with DNA extraction,
another procedure that is multi-step and requires experienced
technical personnel.

Nowadays, there are plenty of DNA processing machines
ranging from low to medium- and high-throughput, but not yet
included in Kiestra TLA nor inWASPLab™ systems. In particular,
we can distinguish two main types of instruments among
commercially available ones: one that combines DNA extraction
with the amplification, and the other one where extraction and
amplification are performed separately (Ali et al., 2017; Shin, 2018).
A technology based on automated nucleic acids (NA) analyses
would be advantageous in those situations where NA-based testing
is demanded on a large scale, like SARS-CoV-2 pandemic, and
offering additional consolidation.
NEXT-GENERATION SEQUENCING
TECHNOLOGIES

NGS has represented a further milestone in clinical microbiology.
Today we have four main sequencing technologies, Illumina, Ion
Torrent, Pacific Biosciences (PacBio) and Oxford Nanopore
(Figure 1), which are based on a different chemistry for the
sequencing and that provide different outputs in terms of
number and length of the sequencing reads. Currently, Illumina
November 2020 | Volume 10 | Article 582028
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short-read sequencing is the most used technology for both
genomics and metagenomics, due to its sequencing depth and
therefore accuracy (Figure 1). However, the speed of sequencing
of Oxford Nanopore, combined with its ability to sequence long
reads, makes it also very compelling for some diagnostic
procedures (Grädel et al., 2020).

Parallel to the sequencing technological advancements,
there has been an explosion of bioinformatics tools that are
capable to analyze and structure the information from
sequencing data.

While some of these tools, such as Galaxy platform (Giardine
et al., 2005), Ridom SeqSphere+ (Ridom GmbH), CLC Genomics
Workbench 20.0 (QIAGEN) and BioNumerics (Applied Maths
NV - bioMérieux) display graphical user interfaces, there are
many others which require coding skills for their proper and
powerful usage. Most codes are publicly shared in open
repositories such as GitHub and Bitbucket.

We can today apply NGS to study the core and/or whole
genome (Genomics; Figure 1) to infer any kind of molecular
typing fromMLST to vaccine antigens (Pérez-Losada et al., 2018;
Muzzi et al., 2019; Leo et al., 2020) and even study clonal
relationships by investigating single nucleotide polymorphisms
(SNPs) or genomic recombination events (Didelot and Wilson,
2015; Donner et al., 2020; Olearo et al., 2020; Pham et al., 2020;
Scherrer et al., 2020).

A further important application of NGS, called metagenomics,
is to profile microbiota. Metagenomics has linked microbiota
species composition to a broad range of infectious diseases
(Forbes et al., 2018; Egli et al., 2020), including complex
nosocomial infections as ventilator-associated pneumonia
(Emonet et al., 2019), suspected infectious endocarditis
(Choutko et al., 2019; Kolb et al., 2019), or challenging deep-
seated infections (Lazarevic et al., 2018; Foulex et al., 2019).

Metagenomics consists of two largely used experimental
methods: amplicon-based (targeted metagenomics, also called
metataxonomics) and whole metagenome shotgun sequencing
(WMGS) (Figure 1). Targeted metagenomics is based on the
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amplification, followed by sequencing, of hypervariable regions
in a target gene present in all species of the same kingdom. The
gene encoding for 16S ribosomal RNA is the most used to
generate taxonomic profiles. Bacterial detection by 16S-
sequencing can be limited to taxonomic levels higher than the
species level in some cases; besides it excludes viruses and fungi
from the analyses.

Sequencing reads generated by WMGS are queried against
large databases and eventually assigned to a given species not
only from bacteria but also from other organisms, including
Archaea, DNA viruses and eukaryotic microbes. The relative
abundance of species is used to quantify a species with respect to
the amount of sequencing reads.

Two main approaches are used for species identification in
metagenomic sequencing datasets: k-mers- and clade-specific-
marker-based. Beyond purely technical aspects, the main
difference between the two methods is that k-mers-based tools,
like CLARK (Ounit et al., 2015) and Kraken2 (Wood and Salzberg,
2014), can be used for large customized genome databases, while
marker-based approaches, like MetaPhlAn2 (Truong et al., 2015),
rely on the querying of reads against a more limited gene sequence
dataset. The result is that we can detect a wider range of species with
k-mers-based tools than with a marker-based approach (Leo et al.,
2017). A further application of WMGS is to search for genetic
antibiotic resistance by querying antibiotic resistance gene
databases, like ResFinder (Zankari et al., 2012) and the
Comprehensive Antibiotic Resistance Database (CARD)
(McArthur et al., 2013).

Metagenomics is an appealing tool for the diagnosis of infectious
diseases as it has shown to be functionally equivalent to culture
techniques (Leo et al., 2017), but it can detect pathogens when they
are missed by current laboratory methods (Xu et al., 2011; Mokili
et al., 2013; Wan et al., 2013); it could also constitute a promising
tool to be integrated in infection control and clinical epidemiology
(Greninger et al., 2015).

NGS and metagenomics have not yet been automatized and
the utilization of ML has been applied to different aspects, as
FIGURE 1 | Next-generation sequencing technologies and their applications in microbiology. A non-exhaustive list of bioinformatics tools used for genomics and
metagenomics analyses is reported. SNPs, single nucleotide polymorphisms; 16S-Seq, 16S-sequencing; WMGS, whole metagenome shotgun sequencing.
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inferring antibiotic resistance, predicting diagnosis and recurrent
infection (Peiffer-Smadja et al., 2020).
ARTIFICIAL INTELLIGENCE IN
AUTOMATED CLINICAL MICROBIOLOGY
DIAGNOSTICS

Together with automation and NGS, artificial intelligence could
also contribute to a better management of infectious diseases in
helping clinicians to collect and elaborate information from
clinical tests.

Computer vision that is the ability of a computer to process a
digital image and identify objects represents one of the most
popular examples of how artificial intelligence works. In clinical
microbiology field, computer vision can be useful to improve the
identification of pathogens with all those tasks that are manual
and require a certain expertise like the interpretation of Gram
stains (Dauwalder et al., 2016).

In fact Gram stain is an essential test which provides initial
information on the presence and type of bacteria and helps in
opting for a first prompt antibiotic regimen (Barenfanger et al.,
2008). Smith and Kang et al. (Smith et al., 2018) realized a system
where both slide imaging and Gram stain analyses interpretation
were automated. They used a ML algorithm that can analyze
digital images and recognize most common pathogens of
bloodstream infections based on their morphologies. Their
automated ML system reached an accuracy of 92.5% compared
to manual classification. Similar results were obtained by
adopting ML approaches to automate antimicrobial
susceptibility testing and the definition of antimicrobial
minimal inhibitory concentrations on the five most common
Gram-negative pathogens Escherichia coli, Enterobacter cloacae,
Klebsiella pneumoniae , Pseudomonas aeruginosa , and
Acinetobacter baumannii (Smith et al., 2017).

Computer vision can ideally be applied to any type of
morphologic/phenotypic test, including parasitological ones.
For example, ML was applied to identify parasitic protozoa
from fecal matter (Mathison et al., 2020) and malaria parasites
(Florin et al., 2018).

Beyond facilitating the automation of certain tasks, ML can be
of help in saving time and expenses in clinical laboratories.
Burton et al. (2019) applied ML algorithms to predict whether
urine samples required further testing by considering not only
biological matter present in the sample (counts of white, red
blood and epithelial cells) but also other factors like the
pregnancy status or the age of the patient.

A recent work (Mueller et al., 2020) describes how a
computer tool could analyze and validate the amplification
curves generated from reverse transcription polymerase chain
reaction (RT-PCR) developed for SARS-CoV-2 testing. In
fact, the validation of these laboratory tests can become a
laborious task for clinical personnel especially when they are
performed on large scale. The consequence is to slow down
the delivery of the test outcome to the patient. The algorithm
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
developed by Mueller et al. (2020) can automatically validate
SARS-CoV-2 RT-PCR tests and retain those that need
particular attention.

In this perspective, such computer-based tools would help
focusing on the cases that need further microbiological investigation.
IMPLEMENTING NEW TECHNOLOGIES IN
REAL-WORLD SETTINGS:
CONSIDERATIONS AND LIMITATIONS

The implementation of new technologies, like automation, ML
and NGS, brings several issues. Automation of a clinical
microbiology laboratory is challenging until it can reach all
the steps, like opening all routinely used sample containers,
relying on validated incubation times and standardized
antibiotic susceptibility testing (Dauwalder et al., 2016;
Cherkaoui et al., 2019a; Cherkaoui et al., 2020a; Vandenberg
et al., 2020).

Standardization and validation of the pre-analytical,
analytical and post-analytical procedures are needed before the
automated system is fully applicable to routine analyses. In this
respect, tasks of the automated pipeline could be segmented and
sequentially validated allowing also a better management of
personnel training and implementation of instruments in the
hospital routine daily life (Cherkaoui et al., 2020c). Importantly
an appropriate IT system should be put in place to ensure a
correct information exchange with the automated system, e.g. for
the protocol of the microbiological tests/tasks to perform
(Cherkaoui et al., 2020c).

Biosafety is also an important aspect that should be carefully
considered when implementing a new system to appropriately
handle clinical samples with biological hazard, in order to
prevent accidental infections among laboratory personnel or
laboratory contaminations.

ML-driven technologies are “black boxes”, meaning that the
processes leading from the input to the output are unknown to the
user. Therefore, althoughML represents a promising tool especially
in coping with large-volume complex data, the understanding of its
functioning might be hard for microbiologists and clinicians who
must inspect and validate the results. Furthermore, ML-driven
technologies should be examined in clinical trials in order to be
safely and officially incorporated in laboratory-certified operations.
Thus, whether ML approaches bring an added value to diagnostics
remains to be clarified, once routine implementation can be
achieved and potential benefits measured.

NGS and metagenomics are neither fully standardized, nor
streamlined in a way that they can smoothly integrate a routine
microbiology laboratory. Some efforts to converge towards
national/international validated procedures have been undertaken
(Ruppé et al., 2017; Ruppé and Schrenzel, 2018; Ruppé and
Schrenzel, 2019; Charretier et al., 2020). Moreover, given the
large volume of sequencing data, metagenomics can demand a
lot of computing resources and can be time-consuming. NGS can
detect species in terms of “relative abundance” to which we should
November 2020 | Volume 10 | Article 582028
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find a meaningful corresponding parameter to allow comparison
with culture data.

Automated systems and NGS require the availability of suitable
host facilities, trained personnel and adequate informatics
infrastructure for data computation, analysis, interpretation and
storage. In the absence of such factors, small hospitals are excluded
from these technological advancements. Therefore, a reorganization
of diagnostics laboratory networking is warranted. Although
different models of automated clinical microbiology laboratories
are currently implemented (Vandenberg et al., 2020), they are all
characterized by a central facility with one or more satellite
laboratories. While the central facility should incorporate all the
current key technologies, including automatized system and NGS,
satellite laboratories serve as platforms for rapid response tests
(Vandenberg et al., 2020).

Particular attention should be put at data communication and
sharing. We can imagine that these exchanges develop at three
different levels (Figure 2): 1) between personnel (clinicians,
laboratory operators) belonging to the same hospital facility; 2)
between personnel from satellite and central facilities of the same
hospital corporation; and 3) between different hospitals.

For level 1), video platforms, like Zoom or Skype, provided
that they respect the required medical confidentiality, might be
considered for rapid clinical consultations and thus valuable
instruments to keep communication during unusual situation
such as the COVID-19 pandemic.

Irrespective of the type of relationships between facilities,
digitalization should be accompanied with appropriate data
reporting and rigorous regulation of patient data sharing.

Electronic health record (EHR) is the systematic collection of
patient information in digital machine-readable format and
represents a solution to data communication and interoperability
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
between the disparate hospitals, on condition that consistent
ontology definitions are used. The FAIR (Findability, Accessibility,
Interoperability and Reusability) initiative principles (Wilkinson
et al., 2016) should be considered to generate formal diagnostic
concepts and todefine standarddiagnostic definitionsused inEHRs.
A constant curation and revision of ontologies should then be
ensured especially when new technologies are introduced in
routine analyses. This is the case of genomics, where information
are very often not structured in a machine-readable format where
new technical terms (Mascia et al., 2018) and new types of data
representation are introduced. Therefore, the constitution of a data
report for genomic datawhich is largely understood andaccepted by
the clinicians should be evaluated (Crisan et al., 2018).

Exchange of clinical data between infrastructures implies that
patient privacy should be guaranteed at any operation level and an
ad hoc security system should be used. Privacy-protecting
technologies like homomorphic encryption and secure
multiparty computations could ensure a protected environment
where to store or locally analyze data, that is without the need to
electronically transfer them to another informatics environment
(Grishin et al., 2019). Implementation of secure computation,
based on cryptographic protocol that covers the features of
patients, has also been proposed for the analyses of microbiome
(Wagner et al., 2016).

Initiatives like the Global Alliance for Genomics and Health
(https://www.ga4gh.org/) and the European Union General Data
Protection Regulation (https://eugdpr.org/), aim to harmonize
legislation concerning the treatment and the protection of
clinical genomic data. In Switzerland, the BioMedIT project
(https://sphn.ch/network/projects/biomedit/) was established
for a secure national coordination and transmission of clinical
information among biomedical infrastructures.
FIGURE 2 | Schematic representation of a possible future scenario in the dynamics of automated clinical microbiology laboratory networking. Clinical samples are
analysed by automated phenotypic tests or by NGS at the central bacteriology laboratory. Data acquisition, mining and elaboration of a first clinical report are
performed by a machine learning approach. The final report is evaluated by technical and clinician experts and resulting information added to an electronic health
record (EHR). EHR is then shared either internally (local server) or sent outside. Satellite laboratories and external facilities can also send the outcomes of rapid tests
or other analyses to the central facility via a secured cloud and newly acquired information can be integrated in EHRs. NGS, next-generation sequencing.
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CONCLUSIONS

New technological advancements are going to change the
appearance of clinical microbiology routine laboratories with
data increasing in volume and complexity. Yet, their
implementation in real clinical settings should still prove an
improvement in making processes faster and cleaner than
conventional workflows. Explainability and interpretability of
ML-based tools are rarely addressed and independent
validations should be carried out. A re-arrangement of local and
regional diagnostics facilities is demanded to better cover the
needs of management of automated laboratories.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
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