
HSV-1 exploits the innate immune scavenger receptor MARCO 
to enhance epithelial adsorption and infection

Daniel T. MacLeod1, Teruaki Nakatsuji1,2, Kenshi Yamasaki1, Lester Kobzik3, and Richard 
L. Gallo1,2

1Division of Dermatology, Department of Medicine, University of California - San Diego, La Jolla, 
CA, USA, 92093

2Veterans Affairs San Diego Health Care System, San Diego, CA, USA 92161

3Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA 02115

Abstract

HSV-1 is an important epithelial pathogen and has the potential for significant morbidity in 

humans. Here we demonstrate that a cell surface scavenger receptor, macrophage receptor with 

collagenous structure (MARCO), previously thought to enhance antiviral defense by enabling 

nucleic acid recognition, is usurped by HSV-1 and functions together with heparan sulfate 

proteoglycans to mediate adsorption to epithelial cells. Ligands of MARCO dramatically inhibit 

HSV-1 adsorption and infection of human keratinocytes and protect mice against infection. HSV-1 

glycoprotein C (gC) closely co-localizes with MARCO at the cell surface, and gC binds directly to 

purified MARCO with high affinity. Increasing MARCO expression enhances HSV-1 infection 

while MARCO-/- mice have reduced susceptibility to infection by HSV-1. These findings 

demonstrate that HSV-1 binds to MARCO to enhance its capacity for disease, and suggests a new 

therapeutic target to alter pathogenicity of HSV-1 in skin infection.

Introduction

HSV-1 infections are a frequent occurrence and have the potential to develop into life-

threatening disease in immunocompromised individuals. Primary infection typically begins 

in the skin and mucocutaneous regions by targeting keratinocytes, the most abundant cell 

type in these tissues. If infection is not controlled, HSV-1 can spread to other target organs 

including the central nervous system (CNS). Despite advances in antiviral therapies that 

have reduced HSV morbidity and mortality, it remains of considerable interest to understand 
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in greater detail the elements contributing to HSV-1 virulence. Towards this end, a more 

detailed analysis of the host elements that are used by the virus to promote infection and the 

local elements of the mucocutaneous defense system that act to resist HSV-1 infection is 

needed.

HSV-1 initiates disease by repurposing host-derived molecules to enhance its virulence. The 

first step in this process is adsorption of the virus to the cell surface. Heparan sulfate 

proteoglycans (HSPGs) were the only known molecules on the host cell responsible for this 

process1. Interestingly, HSV-1 and HSV-2 both bind to HSPGs yet recognize different 

structural features of heparan sulfate, thus showing that there is some degree of specificity to 

this interaction2. Glycoprotein C (gC) is the major HSV-1 glycoprotein that binds to 

HSPGs3, 4, but glycoprotein B (gB) also contributes to HSPG adsorption, and this is 

particularly important in the absence of gC5. The HSPGs Syndecan-1 and Syndecan-4 are 

highly expressed by keratinocytes6 and may serve as adsorption receptors for HSV-1, 

however studies have not addressed which specific receptors expressed by keratinocytes are 

most vital for adsorption. Membrane fusion events follow adsorption and additionally 

involve interactions of HSV-1 glycoprotein D (gD) and gB with the cell surface. Multiple 

cell surface targets have been identified for viral entry including for gD: 3-O-sulfated 

heparan sulfate7, tumor necrosis factor receptor superfamily member 14 (commonly known 

as HVEM)8, or poliovirus receptor-related protein 1 (commonly known as Nectin-1)9, and 

for gB: paired immunoglobulin-like type 2 receptor alpha10 or myosin-9 (also known as 

non-muscle myosin IIa)11.

To mount an effective antiviral response cells must recognize the virus and initiate an 

appropriate immune response. Several types of innate immune receptors have been 

associated with the capacity to detect HSV infection12. Class A scavenger receptors are an 

important element in this innate immune detection process as they bind to extracellular viral 

dsRNA at the cell surface to mediate dsRNA uptake and to enable this dsRNA to interact 

with TLR3 in the endosome13-17. Failures of this TLR3-dependent innate immune 

recognition pathway can have serious consequences. For example, human patients with 

genetic defects in TLR318, and other proteins involved in mediating the TLR3-dependent 

response to dsRNA19-21, are predisposed to herpes simplex encephalitis, a severe, 

disseminated infection of the CNS, and TLR3 deficiency in mice renders astrocytes more 

susceptible to HSV infection and leads to HSV-mediated disease in the CNS22. It is 

hypothesized that TLR3 is important for recognition of a DNA virus such as HSV-1 because 

virtually all viruses produce dsRNA during replication23, and this dsRNA is released into 

extracellular space following lysis of infected cells24. Thus, cells expressing TLR3 have the 

ability to defend against HSV-1 by using this receptor to respond to dsRNA, and this 

appears to be particularly crucial to innate antiviral defense in the CNS.

Here, we present the unexpected discovery that instead of contributing to host defense, the 

class A scavenger receptor MARCO is exploited by HSV-1 to promote cell surface 

adsorption and infection in the skin.
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Results

Scavenger receptor ligands inhibit HSV-1 infection

Surface epithelial cells are the initial target for viral entry and can activate a potent innate 

immune response through TLR325-28. Activation of TLR3 increases pro-inflammatory 

cytokines, antimicrobial peptides and IFNs in skin and other tissues29-31, and has been 

frequently linked with cutaneous immune and antiviral responses25, 32, 33. We first sought to 

determine whether activation of TLR3 could enable keratinocytes to directly defend 

themselves against HSV-1 by treating cells with Poly(I:C), a synthetic dsRNA25-28. 

Poly(I:C) treatment resulted in inhibition of HSV-1 infection as assessed by measuring 

levels of HSV-1 gD mRNA (Fig. 1a). However, TLR3 activation appeared to be dispensible 

for this protection against infection since treatment with Poly(I), a ssRNA component of 

Poly(I:C) that does not activate TLR3, conferred protection against HSV-1 similar to that 

seen with Poly(I:C) (Fig. 1a). Poly(I) and Poly(C) were not able to increase expression of 

IL-6, IL-8, IFN-β and human beta-defensin 2 (hBD-2), four genes that were significantly 

increased by Poly(I:C) stimulation of normal human epidermal keratinocytes (NHEK) (Fig. 

1b). Furthermore, inhibition of IFN-β production by methylthioadenosine (MTA)34, a Signal 

Transducers and Activators of Transcription 1 (STAT1) inhibitor, did not alter the capacity 

of Poly(I:C) to reduce HSV-1 gD expression (Supplementary Fig. S1a,b). These results 

indicated that although IFN-β has well-characterized antiviral effects35, 36, it was not 

responsible for protection against HSV-1 infection by Poly(I:C) under these conditions. We 

confirmed these results by utilizing chloroquine (CQ) to more directly examine the effect of 

TLR3 inhibition on the ability of Poly(I:C) to protect against HSV-1 infection, as CQ is 

known to be a potent inhibitor of endosomal acidification and TLR3 activation16. As 

expected, pretreatment with CQ inhibited the capacity of Poly(I:C) to stimulate expression 

of IL-6 and IFN-β, thus confirming that TLR3 activation was inhibited (Supplementary Fig. 

S1c). However, despite inhibition of cytokine and interferon responses, CQ did not reduce 

the capacity of Poly(I:C) to protect against HSV-1 infection (Supplementary Fig. S1d), 

further showing that cellular activation mediated by TLR3 was not required for the 

protective effects of Poly(I:C). Therefore, since Poly(I) was capable of inhibiting HSV-1 

infection, but Poly(C) was not, we considered alternate explanations that could account for 

the antiviral activity of both Poly(I) and Poly(I:C).

Both Poly(I) and Poly(I:C) are ligands for class A scavenger receptors, a family of cell 

surface molecules required for dsRNA uptake prior to cell activation13-15, 37. Poly(C), which 

did not protect against HSV-1, is not a ligand for class A scavenger receptors. Therefore, we 

next hypothesized that the capacity to inhibit infection was related to the ability to bind 

scavenger receptors. To test this hypothesis we examined additional scavenger receptors 

ligands: Fucoidan (Fn) and dextran sulfate (Dxs). These were chosen since they also bind 

scavenger receptors37 but are structurally distinct from the polynucleotides. The capacity of 

Dxs, Fn, and Poly(I) to bind scavenger receptors was confirmed by showing their ability to 

block Poly(I:C) stimulation of cytokine release (Supplementary Fig. S1e,f). Chondroitin 

sulfate (CS) was used as a control for Dxs and Fn as it is another sulfated polysaccharide, 

but like Poly(C) it cannot bind scavenger receptors, and had no effect on the capacity of 

Poly (I:C) to function (Supplementary Fig. S1f).
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Diverse molecules that share the capacity to bind scavenger receptors (Poly(I), Dxs and Fn) 

all reduced HSV-1 plaque formation, but similar control molecules CS and Poly(C) did not 

(Fig. 1c). However, heparin also inhibited HSV-1 infection in NHEK (Fig. 1c). This effect 

was previously known and thought to occur by inhibiting the interaction of HSV-1 with cell 

surface HSPGs1. Therefore, we next examined if scavenger receptor ligands might act by 

interference with adsorption to HSPGs. To first test this, we compared the capacity of 

Poly(I) and heparin to inhibit infection by a mutant form of HSV-1 that has a truncated gC 

lacking amino acids 33-123, the C5/P domain (gCΔC5/P) predominantly responsible for 

heparin binding4, 38. As expected, heparin treatment inhibited infection of WT virus but had 

a less potent inhibitory effect on the mutant virus lacking this heparin binding domain (Fig. 

1d). However, Poly(I) similarly inhibited infection of both the WT virus and the gCΔC5/P 

mutant. These results, together with our previous findings, led us to hypothesize that HSV-1 

infection of keratinocytes involves a previously unsuspected interaction with both a 

scavenger receptor and HSPGs acting together to mediate adsorption to keratinocytes.

Scavenger receptor ligands inhibit HSV-1 and gC adsorption

We next tested the action of scavenger receptors ligands in the initial adsorption of HSV-1 

to cell surfaces. Poly(I) prevented adsorption of whole HSV-1 viral particles to keratinocytes 

in a dose-dependent manner, while increasing doses of Poly(C) had no effect (Fig. 2a). Since 

adsorption of HSV-1 to the cell surface is primarily mediated by the viral glycoprotein 

gC3, 4, we next analyzed the effects of Poly(I) on binding of this purified protein to the 

keratinocyte surface. The association of purified gC with NHEK was inhibited by Poly(I), 

but not Poly(C) (Fig. 2b). Furthermore, as predicted from prior work, heparin blocked the 

association of gC with cell surface HSPGs1 (Fig. 2b). However, Poly(I) inhibited binding of 

gC by a different mechanism than heparin because Poly(I) could not displace gC from a 

heparin column (Fig. 2c). In contrast, gC was easily displaced from heparin by sodium 

chloride concentrations below 1.0 M (Fig. 2d), suggesting a relatively weak ionic 

interaction. These results show that HSV-1 gC binds to keratinocytes by both heparan 

sulfate-dependent and heparan sulfate-independent mechanisms, and Poly(I) acted on the 

heparan sulfate-independent binding event.

MARCO co-localizes with HSV-1 virions and purified gC

We next sought to identify a specific scavenger receptor on keratinocytes that could 

associate with HSV-1 gC. Analysis of NHEK determined that these cells express multiple 

scavenger receptors including MARCO, OLR1, and SCARA3 (Supplementary Fig. S2). 

These receptors can all bind Poly(I)39-42, and thus we sought to determine if these receptors 

could co-localize with HSV-1 bound to the cell surface. To specifically measure co-

localization with HSV-1 gC, we employed a proximity ligation assay (PLA) that is designed 

to generate a fluorescent signal only when the antigens tested reside within less than 

approximately 40nm from one another. Assays were performed by maintaining cells at 4°C 

to inhibit glycoprotein uptake and viral entry, and comparisons were made between co-

localization of HSV-1 gC with MARCO, syndecan-1, OLR1, and SCARA3. Syndecan-1, an 

HSPG previously linked to HSV-1 infection43, 44, generated a positive PLA signal in the 

presence of gC (Fig. 3b), confirming that this HSPG co-localized with gC. MARCO also 

generated a strong positive PLA signal (Fig. 3a), indicating that MARCO and gC are 
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residing on the surface of the cells in close physical proximity in the absence of other viral 

components. OLR1 and SCARA3, although abundantly expressed on the cell surface 

(Supplementary Fig. S2), did not co-localize with HSV-1 gC (Fig. 3c,d). Similarly, when 

whole virions were added instead of glycoprotein, a strong PLA signal was generated with 

either MARCO or syndecan-1, but not OLR1 or SCARA3 (Supplementary Fig. S3), 

confirming the selective, close co-localization of MARCO and syndecan-1 with HSV-1 gC.

MARCO directly binds to HSV-1 gC

The experiments described above implied that MARCO can interact directly with HSV-1 

gC. We next used purified MARCO to verify that gC can bind to this protein in the absence 

of other cellular receptors and to determine the affinity of this interaction. gC bound at nM 

concentrations to MARCO, to saturation, and with association plots suggesting single order 

specific binding (Fig. 4a,b). This effect was specific to gC and MARCO, as another viral 

glycoprotein, gB, did not bind to MARCO (Fig. 4c), and gC did not bind to an alternative 

scavenger receptor, OLR1 (Fig. 4d). Notably, the interaction between MARCO and gC had 

a KD of 7.7×10-10 nM, a stronger affinity than that reported previously between gC and 

heparan sulfate or heparin (KD values of 1.3×10-8 nM and 1×10-7 nM, respectively, obtained 

by surface plasmon resonance)38.

Further evidence that HSV-1 gC adsorption to scavenger receptors is independent of 

adsorption to HSPG was seen by analysis of binding to gC lacking the heparin binding 

(C5/P) domain (amino acids 33-123). This truncated form of gC binds heparin with 

approximately 42-fold lower affinity than the intact form of gC38 but still bound to MARCO 

with relatively high affinity (Fig. 4e,f). The capacity of gC lacking the C5/P domain to bind 

to MARCO was consistent with our earlier finding that the infectivity of HSV-1 harboring 

this mutated gC was strongly inhibited by Poly(I), while heparin had a less potent inhibitory 

effect compared to its capacity to inhibit infection by WT virus (Fig. 1f).

HSV-1 infection correlates with MARCO expression

To confirm the functional significance of the interaction of HSV-1 gC and MARCO, we 

next generated a HaCat keratinocyte cell line that stably overexpressed human MARCO. 

MARCO overexpressing cells expressed approximately 3-fold more MARCO protein than 

control cells (Fig. 5a,b, and Supplementary Fig. S4). Keratinocytes overexpressing MARCO 

were more susceptible to infection than a control cell line (Fig. 5c,d), demonstrating that 

increasing the expression of MARCO resulted in increased infection by HSV-1. 

Furthermore, the presence of gC was essential for this enhancement of infection, as a mutant 

virus lacking gC exhibited comparable levels of infection in control and MARCO 

overexpressing cells (Fig. 5c,d).

Next, to test the relevance of disruption of scavenger receptors using an in vivo system, we 

employed a model of severe cutaneous HSV-1 infection and tested the capacity of Poly(I) to 

prevent HSV-1-mediated disease. Mice were immunocompromised by prior systemic 

cyclophosphamide treatment45, then infected with HSV-1 in the skin. Mice were treated 

locally with PBS, Poly(C) or Poly(I). Control mice treated with PBS or Poly(C) developed 
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large necrotic skin lesions, but Poly(I) treatment significantly inhibited cutaneous lesion 

development (Fig. 5e).

Finally, to confirm the role of MARCO in this in vivo model and demonstrate the functional 

relevance of the interaction of HSV-1 and MARCO, we compared infection in wildtype 

(WT) and MARCO-/- mice. Skin lesions in WT mice were larger than those seen in 

MARCO-/- mice, a difference that persisted and increased over the course of the experiment. 

By day 8 post-infection MARCO-/- mice had 71% smaller skin lesions than WT controls 

(Figure 5f, P<0.01, Two-way ANOVA).

Together, these findings indicate that the interaction of HSV-1 gC and MARCO is 

functionally significant in HSV-1 infection and is relevant to cutaneous HSV-1 disease.

Discussion

We demonstrate using several independent lines of evidence that HSV-1 enhances 

adsorption and infection of keratinocytes by binding the scavenger receptor MARCO. 

Observations supporting this conclusion include competition experiments showing that the 

scavenger receptor ligand Poly(I) inhibited adsorption and infection of HSV-1 in cultured 

keratinocytes, inhibited purified gC binding to the cell surface, and inhibited HSV-1 

infection in mouse skin. Furthermore, proximity ligation unambiguously detected the 

physical co-localization of HSV-1 gC and MARCO on cells, and analysis of binding showed 

direct high-affinity binding between MARCO and gC in cell free systems. Finally, 

overexpression of MARCO in keratinocytes increased susceptibility to infection while 

MARCO-/- mice were less susceptible to infection by HSV-1. Taken together, these findings 

show for the first time that MARCO expression on keratinocytes contributes to early 

infectious steps of HSV-1 in skin.

Our results demonstrate that HSV-1 adsorption to keratinocytes involves more than just an 

interaction with HSPGs. We confirmed the previously reported1 role of HSPGs in 

adsorption of HSV-1 since heparin was able to suppress gC binding and HSV-1 infection of 

keratinocytes. Syndecan-1, an HSPG that is highly expressed on the surface of 

keratinocytes, co-localized with gC and is the likely candidate for the HSPG to which gC 

binds. However, although previous studies have shown that HSV-1 infection can still occur 

in the absence of any cell surface HSPGs46, it was entirely unsuspected that the virus could 

usurp a scavenger receptor to promote adsorption. We have now demonstrated that gC co-

localizes with MARCO and HSPGs on the cell surface, and gC bound directly to MARCO 

in the absence of other cellular or viral proteins. Interestingly, the affinity of gC to MARCO 

appeared to be measurably higher than the previously known binding affinity of gC to 

heparan sulfate. Furthermore, gC used distinct domains to bind to HSPGs and MARCO, 

because deletion of the C5/P (heparin binding) domain dramatically reduced gC binding to 

heparin but not to MARCO, and a mutant virus lacking the heparin binding domain 

remained susceptible to inhibition by Poly(I). Previously, both dextran sulfate and fucoidan 

were reported to be inhibitors of HSV-1 infection47. It was assumed that these compounds 

inhibited infection by preventing interaction of HSV-1 with HSPGs, however both 

compounds had substantially lower minimum inhibitory concentrations than heparin, and it 
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was not suspected that dextran sulfate or fucoidan might also have acted against HSV-1 by 

competition with MARCO. Our results now suggest that the potent inhibitory of effects of 

these compounds may result from their capacity to block interactions with both HSPGs and 

MARCO. Thus, multiple lines of evidence show low affinity, high abundance (HSPGs) and 

high affinity, low abundance (MARCO) receptors are binding to gC and acting together to 

mediate adsorption and infection of keratinocytes.

Beyond promoting adsorption and infection, the interaction with MARCO may also benefit 

HSV-1 by potentially enabling it to limit and evade innate immune responses. The binding 

of HSV-1 to MARCO may interfere with the function of MARCO to endocytose nucleic 

acids, thereby limiting the ability of cells to respond to exogenous nucleic acids via 

intracellular innate immune receptors like TLR3. Additionally, a recent study has indeed 

shown that although MARCO increases intracellular TLR recognition of nucleic acids, the 

presence of these receptors actually has the opposite effect on the ability of cell-surface 

TLRs to detect pathogens48. Thus, the interaction of HSV-1 with MARCO may increase 

adsorption and also limit cell-surface recognition of viral components by alternative innate 

immune receptors such as TLR2, which is also involved in the detection of HSV-149. 

Further studies will be needed to evaluate the full consequences of the interaction of HSV-1 

with MARCO.

From a clinical standpoint, the protection conferred against HSV-1 infection by scavenger 

receptor ligands, and the significant reduction in infection in MARCO-/- mice, validated the 

physiological relevance of our observations. Although the role of gC in viral attachment in 

vitro has been well established, the complete virulence mechanism of gC in vivo is more 

complex than this binding interaction. Ultimate virulence involves several factors such as 

complement and antibody evasion, not only attachment50. The mouse model system used 

here employed scarification as a method to increase access to keratinocytes and to enhance 

local infection and amplification of the virus before spread to sensory ganglia51. These 

results showed in vivo that access to MARCO is required for optimal infection in the skin. 

However, it is not clear what role MARCO plays in infection of other tissues. The efficacy 

of Poly(I) to inhibit HSV-1 infection in vivo was less than the effect seen on isolated 

keratinocytes in in vitro, and the reduction seen in MARCO-/- mice was not absolute. 

Further studies are needed to optimize treatment conditions to specifically block the multiple 

modes by which HSV-1 adsorbs to keratinocytes. Such therapies can be especially useful in 

diseases such as atopic dermatitis where epidermal susceptibility to viral infections is 

enhanced.

Previous studies have shown that there are redundancies in the affinity and function of 

scavenger receptors in nucleic acid uptake14, 15, and the role of other scavenger receptors in 

HSV-1 infection is not clear. Using a different route of infection (intravenous), Suzuki et al. 

previously reported that MSR1 knockout mice were more susceptible to HSV-1 infection 

compared to WT mice52. This raises the important possibility that the role of scavenger 

receptors might be specific to the route of administration, the type of receptor, and the cell 

target. Since the subsequent recognition of viral nucleic acids by scavenger receptors is 

necessary for the later interferon response, it is possible that the observations with MSR1 

deficient mice highlight the later immune defense role of this molecule. Future studies will 
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be needed to fully understand the outcome of the interaction of HSV-1 with scavenger 

receptors and determine if these interactions are ultimately beneficial for the host or the 

virus.

Some additional viruses have been previously suggested to interact with class A scavenger 

receptors. For example, MSR1 has been shown to be essential to the sensing of HCMV by 

endosomal TLRs17, indicating a protective role for MSR1 in this context. In contrast, 

Adenovirus type 553 has been recently shown to use MSR1 to facilitate infection. 

Additionally, it has been recently demonstrated that the presence of MARCO increases 

susceptibility to influenza, although MARCO does not enhance viral uptake and instead 

appears to suppress a beneficial early inflammatory response in the lungs54. Combined with 

our current study, these results emphasize the nuanced relationship existing between class A 

scavenger receptors and viruses.

To our knowledge this is the first demonstration that HSV-1 can utilize a component of the 

pattern recognition system to enhance disease. Our studies concur with other examples of 

HSV-1 modulating innate and adaptive immune systems to enhance virulence, but conflict 

with the current common understanding of epithelial immune defense systems that predicts 

that these elements are beneficial to the host55, 56, or that association with viral recognition 

systems leads to protection against infection57, 58. Exploitation of the cell surface scavenger 

receptor system by HSV-1 further illuminates the complexity of the interactions between the 

host and pathogen at the epithelial surface.

Methods

Cells and animals and viruses

NHEK (Life Technologies, Grand Island, NY) were cultured in Epilife media containing 

Epilife Defined Growth Supplement (Life Technologies, Grand Island, NY), 0.06mM 

calcium chloride, and 100 I.U. Penicillin and 100μg Streptomycin per ml (VWR, Radnor, 

PA). BSC-1 cells (ATCC, Manassas, VA) and HaCat keratinocytes (a gift from Rivkah 

Isseroff, University of California, Davis) were cultured in DMEM (Lonza, Basel, 

Switzerland), 10% FBS (Thermo Fisher Scientific, Waltham, MA), 2mM L-glutamine and 

100 I.U. Penicillin and 100μg Streptomycin per ml (VWR, Radnor, PA). HaCat cells stably 

overexpressing MARCO and control HaCat cells were generated by transfecting HaCats 

with a pcDNA3 control plasmid or pcDNA3[MARCO], using the Nucleofector kit V and 

Nucleofector device (Lonza, Basel, Switzerland). Cells were cultured for 3 weeks in media 

containing 500μg/ml G418 (Biopioneer, San Diego, CA) to select for transfected cells prior 

to use in experiments. These cells were continuously cultured in 500μg/ml G418 during 

experiments. C57Bl/6 wildtype mice were purchased from the Jackson Laboratory, Bar 

Harbor, Maine. MARCO-/- mice were a gift from Dr. Andrij Holian (Univerity of Montana, 

MT). All animal studies were in accordance with the Public Health Service Policy on 

Humane Care and Use of Laboratory Animals, and were approved by UCSD IACUC 

(UCSD Animal Welfare Assurance # A3033-1). All procedures were performed under 

isofluorane anesthesia, and all efforts were made to minimize pain, discomfort, and 

suffering. The NS strain of HSV-1 (Fig. 1c,d, and Fig. 5c,d,f), the gCΔC5/P mutant (Fig. 1f), 

and the gC Null mutant (Fig. 5c,d) were a generous gift from Dr. Harvey Friedman 
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(University of Pennsylvania, PA). The Schooler strain of HSV-1 was a generous gift from 

Dr. William Fenical (Scripps Institute of Oceanography, CA).

Plasmids

A plasmid with a pcDNA3 backbone, expressing full-length human MARCO driven by a 

CMV promoter, and a Neomycin resistance gene, pcDNA3[MARCO] (a gift from Sanjunkta 

Ghosh, Harvard University, Boston MA) was used for transfection experiments, with 

pcDNA3.1(-) (Life Technologies, Grand Island, NY) as a negative control plasmid.

Reagents and Primary Antibodies

Poly(I:C) was purchased from Invivogen, San Diego, CA. Poly(I), Poly(C), Dextran Sulfate, 

Fucoidan, Chondroitan Sulfate, Heparin, cyclophosphamide, and methylthioadenosine was 

purchased from Sigma-Aldrich, St. Louis, MO. Chloroquine phosphate was purchased from 

Spectrum, Gardena, CA. Recombinant OLR1 was purchased from R&D Systems, 

Minneapolis, MN. Purified HSV-1 gC (gC1(457t)), gB (gB1(730)), and gC(Δ33-123t) 

(lacking the ΔC5/P domain) were generous gifts from Dr. Roselyn Eisenberg and Dr. Gary 

Cohen (University of Pennsylvania, PA). A cell line for the production of recombinant 

MARCO was kindly provided by Dr. Andrij Holian (Univerity of Montana, MT). MARCO 

protein was produced and purified as described59. Primary antibodies recognizing HSV-1 

gC (mouse monoclonal, clone T96, catalogue #sc-51626), HSV-1 gB (mouse monoclonal, 

clone 10B7, catalogue #sc56987), MARCO (rabbit polyclonal, catalogue #sc-68913), OLR1 

(rabbit polyclonal, catalogue #sc20753) and all IgG controls were purchased from Santa 

Cruz Biotechnology, Santa Cruz, CA. A monoclonal primary antibody recognizing HSV-1 

gD (clone 2C10, catalogue #ab6507) was purchased from Abcam, Cambridge, MA. A 

primary antibody recognizing Syndecan-1 was previously characterized6. A rabbit 

polyclonal antibody recognizing human SCARA3 (catalogue #SAB2700220) was purchased 

from Sigma-Aldrich, St. Louis, MO. A mouse monoclonal antibody recognizing human 

MARCO was previously characterized60. A rat monoclonal antibody recognizing mouse 

MARCO (clone ED31, catalogue #MCA1849) was purchased from Hycult Biotech, 

Plymouth Meeting, PA. A monoclonal antibody recognizing human GAPDH (clone 6C5, 

catalogue #10R-G109a) was purchased from Fitzgerald, Acton, MA.

Fluorescence Microscopy

Cells were fixed with paraformaldehyde and blocked with 3% bovine serum albumin 

(Sigma-Aldrich, St. Louis, MO). Prolong DAPI anti-fade and fluorescent Alexa Fluor 

conjugated secondary antibodies (1:200 dilution) were used (Life Technologies, Grand 

Island, NY). Images were captured using a BX41 microscope (Olympus, Center Valley, 

PA).

Plaque Assay

Keratinocytes were infected with HSV-1 for two hours, then washed and incubated in fresh 

media for 48 hours. Cells were fixed and plaque formation visualized by staining cells with 

the anti-gD antibody (1:1,000), and an IR-Dye conjugated secondary antibody (1:10,000) 

(LI-COR Biosciences, Lincoln, NE) and imaging stained plaques using an Odyssey Imager 
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(LI-COR Biosciences, Lincoln, NE). MOIs selected resulted in approximately 100-200 

plaques per well in a 6-well plate using WT HSV-1, NS strain.

Quantitative real-time PCR

RNA and DNA were isolated using Trizol (Life Technologies, Grand Island, NY). RNA was 

reverse transcribed using iScript (Bio-Rad, Hercules, CA). Predesigned Taqman probes and 

primers were used to quantify IL-6, IL-8, hBD2 and IFN-β mRNA using Taqman Gene 

Expression Master Mix and a 7300 Real Time PCR System (Life Technologies, Grand 

Island, NY) according to manufacturer's instructions. Custom Taqman Probes (Life 

Technologies, Grand Island, NY) were used for HSV-1 gD and GAPDH RNA and DNA 

quantification. HSV-1 gD probe: FAM-CCATACCGACCACACCGACGAACC-MGB; 

GAPDH probe: VIC-CATCCATGACAACTTTGG TA-MGB. Primers sequences (Sigma-

Aldrich, St. Louis, MO): HSV-1: 5’-CGGCCGTGTGACACTATCG-3’, 5’-

CTCGTAAAATGGCCCCTCC-3’; GAPDH: 5’-CCTAGCACCCCTGGCCAAG-3’, 5’-

TGGTCATGAGTCCTTCCACG-3’. Fold change normalized to host cell GAPDH levels 

relative to the control was calculated using the 2(-ΔΔCt) method.

ELISA

IL-6 concentration was determined using an OptEIA ELISA Set (BD Biosciences 

Pharmigen, San Diego, CA).

HSV-1 Immunofluorescence Adsorption Assay

HSV-1 was incubated with cells at 4°C for 2 hours, then cells were washed to remove 

unbound virus, fixed with paraformaldehyde, and stained using an HSV-1 gC antibody 

(1:100), and an Alexa-Fluor labeled secondary antibody (1:200) (Life Technologies, Grand 

Island, NY). Images were taken by fluorescent microscopy (described above) and HSV-1 

particles were quantified using ImageJ. The specificity of this assay was validated by control 

experiments using serial diluted HSV-1.

Western Blot

Protein was isolated by lysing cells at 4°C in 1X RIPA buffer containing protease inhibitors 

(Roche, Basel, Switzerland) and protein concentrations quantified using a BCA assay 

(Thermo Fisher Scientific, Waltham, MA). 20μg total protein was loaded on a 4-20% 

agarose gel and transferred to a PVDF membrane (Bio-Rad, Hercules, CA). MARCO 

protein was detected using the rabbit polyclonal antibody (1:1,000) and GAPDH was 

detected using the mouse monoclonal antibody (1:10,000). 680nm and 800nm IR-Dye 

conjugated secondary antibodies (1:10,000) and an Odyssey imager and quantification 

software (LI-COR Biosciences, Lincoln, NE) were used for 2-color western blotting to 

analyze both proteins on the same blot.

On-cell Western gC cell binding assay

gC was incubated with cells and the indicated compounds together at 4°C. Cells were 

washed before fixation. Bound gC was detected with the anti-gC antibody (1:100) and an 

IR-Dye conjugated secondary antibody (1:800) (LI-COR Biosciences, Lincoln, NE), and an 
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Odyssey imager (LI-COR Biosciences, Lincoln, NE). A standard curve was generated using 

serial dilutions of known concentrations of gC bound to cells to quantify the amount of 

bound gC.

ELISA binding assay

Capture protein was bound to EIA/RIA plates (Thermo Fisher Scientific, Waltham, MA) in 

PBS lacking calcium and magnesium, pH 7.4 (Life Technologies, Grand Island, NY), 

blocked with PBS containing 3%BSA (Sigma-Aldrich, St. Louis, MO), then incubated with 

viral glycoproteins diluted in PBS. Cells were washed with PBS containing 0.05% 

Tween-20. Bound glycoproteins were detected using primary antibodies (1:200), HRP-

conjugated secondary antibodies (1:500) (Santa Cruz Biotechnology, Santa Cruz, CA), and 

TMB substrate reagent (BD Biosciences Pharmigen, San Diego, CA). Standard curves for 

quantification of bound viral glycoproteins were generated using serial dilutions of known 

concentrations of the proteins.

HPLC

A HiTrap Heparin HP Column and AKTA purifier HPLC system (GE Healthcare, 

Piscataway, NJ) were used for analysis. Briefly, 100μg of purified gC protein was loaded on 

to the heparin column and the column was washed to remove any unbound gC. Freshly 

prepared Poly(I) and NaCl solutions were used to generate the indicated concentration 

gradients used for elution. 1ml fractions were collected during the elution, and the amount of 

gC present in these fractions was quantified by dot blot using the anti-gC antibody (1:1,000), 

an IR-Dye conjugated secondary antibodies (1:10,000) (LICOR Biosciences, Lincoln, NE), 

and an Odyssey imager (LI-COR Biosciences, Lincoln, NE) with known concentrations of 

purified gC protein used to generate a standard curve for quantification.

HSV-1 infection of immunocompromised mice

Mice were injected intraperitoneally with 300mg/kg cyclophosphamide. One day later, mice 

were depilated. Two days after cyclophosphamide injection, mice were infected with 105 

HSV-1 by scarification with 25G needles. Mice were photographed once daily, and lesion 

sizes were quantified using ImageJ. Mice were euthanized when they became extremely 

lethargic and/or exhibited signs of paralysis, indicating systemic spread of the virus and 

imminent mortality.

Proximity Ligation Assay

NHEK seeded into chamberslides (Thermo Fisher Scientific, Waltham, MA) were incubated 

with HSV-1 or gC for 2 hours at 4°C allowing binding, but not internalization. Unbound 

virus or protein was removed by washing with cold PBS. Cells were fixed with PFA at 4°C. 

Blocking buffer (O-link Bioscience, Uppsala, Sweden) was used to prevent non-specific 

antibody binding, and cells were incubated with two primary antibodies (1μg/ml), one 

recognizing gC and the other recognizing the indicated proteins, MARCO, Syndecan-1, 

OLR1, and SCARA3. Secondary antibodies conjugated with oligonucleotides were added, 

and hybridization, ligation, amplification, and detection steps were performed according to 

manufacturer's instructions (O-link Bioscience, Uppsala, Sweden) to generate an amplified 
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fluorescent signal in areas where the antigens recognized by the two primary antibodies 

reside within less than approximately 40nm. Fluorescent PLA signals were evaluated using 

fluorescence microscopy (described above).

Statistical Analysis

Analyses were performed using GraphPad Prism version 5.00 for Windows, GraphPad 

Software, San Diego, California, USA, www.graphpad.com.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We would like to thank Dr. Roselyn Eisenberg and Dr. Gary Cohen (University of Pennsylvania, PA), Dr. Harvey 
Friedman (University of Pennsylvania, PA), Dr. Andrij Holian (Univerity of Montana, MT), Dr. Rivkah Isseroff 
(University of California, Davis, CA), and Dr. William Fenical (Scripps Institute of Oceanography, CA) for 
providing us with key reagents as described in the Methods section. We would like to thank Deborah Spector 
(University of California, San Diego) for critical review of our manuscript. Portions of this work were supported by 
The Atopic Dermatitis Research Network (ADRN) (HHSN272201000020C), an NIH Institutional T32 grant (T32 
AR062496) supporting D.T.M., and NIH grants R01 AR052728, R01 AI052453, R01 AI0833358 to R.L.G. and 
RO1 ES11008 (to L.K.).

References

1. WuDunn D, Spear PG. Initial interaction of herpes simplex virus with cells is binding to heparan 
sulfate. J Virol. 1989; 63:52–58. [PubMed: 2535752] 

2. Herold BC, Gerber SI, Belval BJ, Siston AM, Shulman N. Differences in the susceptibility of herpes 
simplex virus types 1 and 2 to modified heparin compounds suggest serotype differences in viral 
entry. J Virol. 1996; 70:3461–3469. [PubMed: 8648678] 

3. Herold BC, WuDunn D, Soltys N, Spear PG. Glycoprotein C of herpes simplex virus type 1 plays a 
principal role in the adsorption of virus to cells and in infectivity. J Virol. 1991; 65:1090–1098. 
[PubMed: 1847438] 

4. Tal-Singer R, et al. Interaction of herpes simplex virus glycoprotein gC with mammalian cell 
surface molecules. J Virol. 1995; 69:4471–4483. [PubMed: 7769707] 

5. Herold BC, Visalli RJ, Susmarski N, Brandt CR, Spear PG. Glycoprotein C-independent binding of 
herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B. J Gen Virol. 
1994; 75:1211–1222. [PubMed: 8207388] 

6. Gallo R, Kim C, Kokenyesi R, Adzick NS, Bernfield M. Syndecans-1 and -4 are induced during 
wound repair of neonatal but not fetal skin. J Invest Dermatol. 1996; 107:676–683. [PubMed: 
8875948] 

7. Shukla D, et al. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell. 
1999; 99:13–22. [PubMed: 10520990] 

8. Geraghty RJ, Krummenacher C, Cohen GH, Eisenberg RJ, Spear PG. Entry of alphaherpesviruses 
mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science. 1998; 280:1618–
1620. [PubMed: 9616127] 

9. Montgomery RI, Warner MS, Lum BJ, Spear PG. Herpes simplex virus-1 entry into cells mediated 
by a novel member of the TNF/NGF receptor family. Cell. 1996; 87:427–436. [PubMed: 8898196] 

10. Satoh T, et al. PILRalpha is a herpes simplex virus-1 entry coreceptor that associates with 
glycoprotein B. Cell. 2008; 132:935–944. [PubMed: 18358807] 

11. Arii J, et al. Non-muscle myosin IIA is a functional entry receptor for herpes simplex virus-1. 
Nature. 2010; 467:859–862. [PubMed: 20944748] 

MacLeod et al. Page 12

Nat Commun. Author manuscript; available in PMC 2013 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.graphpad.com


12. Melchjorsen J. Sensing herpes: more than toll. Rev Med Virol. 2011; 22:106–121. [PubMed: 
22020814] 

13. Saleh M-C, et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. 
Nat Cell Biol. 2006; 8:793–802. [PubMed: 16862146] 

14. Limmon GV, et al. Scavenger receptor class-A is a novel cell surface receptor for double-stranded 
RNA. FASEB J. 2008; 22:159–167. [PubMed: 17709607] 

15. DeWitte-Orr SJ, Collins SE, Bauer CM, Bowdish DM, Mossman KL. An accessory to the 
‘Trinity’: SR-As are essential pathogen sensors of extracellular dsRNA, mediating entry and 
leading to subsequent type I IFN responses. PLoS Pathog. 2010; 6:e1000829. [PubMed: 
20360967] 

16. Matsumoto M, et al. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J 
Immunol. 2003; 171:3154–3162. [PubMed: 12960343] 

17. Yew KH, Carsten B, Harrison C. Scavenger receptor A1 is required for sensing HCMV by 
endosomal TLR-3/-9 in monocytic THP-1 cells. Mol Immunol. 2010; 47:883–893. [PubMed: 
19914718] 

18. Zhang S-Y, et al. TLR3 Deficiency in Patients with Herpes Simplex Encephalitis. Science. 2007; 
317:1522–1527. [PubMed: 17872438] 

19. Casrouge A, et al. Herpes Simplex Virus Encephalitis in Human UNC-93B Deficiency. Science. 
2006; 314:308–312. [PubMed: 16973841] 

20. Perez de Diego R, et al. Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like 
receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity. 2010; 33:400–
411. [PubMed: 20832341] 

21. Sancho-Shimizu V, et al. Herpes simplex encephalitis in children with autosomal recessive and 
dominant TRIF deficiency. J Clin Invest. 2011; 121:4889–4902. [PubMed: 22105173] 

22. Reinert LS, et al. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection 
and facilitates establishment of CNS infection in mice. J Clin Invest. 2012; 122:1368–1376. 
[PubMed: 22426207] 

23. Jacobs BL, Langland JO. When two strands are better than one: the mediators and modulators of 
the cellular responses to double-stranded RNA. Virology. 1996; 219:339–349. [PubMed: 
8638399] 

24. Majde JA, Guha-Thakurta N, Chen Z, Bredow S, Krueger JM. Spontaneous release of stable viral 
double-stranded RNA into the extracellular medium by influenza virus-infected MDCK epithelial 
cells: implications for the viral acute phase response. Arch Virol. 1998; 143:2371–2380. [PubMed: 
9930193] 

25. Lai Y, et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin 
injury. Nat Med. 2009; 15:1377–1382. [PubMed: 19966777] 

26. Lebre MC, et al. Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J Invest 
Dermatol. 2007; 127:331–341. [PubMed: 17068485] 

27. Kollisch G, et al. Various members of the Toll-like receptor family contribute to the innate 
immune response of human epidermal keratinocytes. Immunology. 2005; 114:531–541. [PubMed: 
15804290] 

28. Tohyama M, et al. dsRNA-mediated innate immunity of epidermal keratinocytes. Biochem 
Biophys Res Commun. 2005; 335:505–511. [PubMed: 16087162] 

29. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and 
activation of NF-kappaB by Toll-like receptor 3. Nature. 2001; 413:732–738. [PubMed: 
11607032] 

30. Yamamoto M, et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that 
preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol. 2002; 
169:6668–6672. [PubMed: 12471095] 

31. Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T. TICAM-1, an adaptor molecule that 
participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol. 2003; 4:161–
167. [PubMed: 12539043] 

MacLeod et al. Page 13

Nat Commun. Author manuscript; available in PMC 2013 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



32. Tabeta K, et al. Toll-like receptors 9 and 3 as essential components of innate immune defense 
against mouse cytomegalovirus infection. Proc Natl Acad Sci U S A. 2004; 101:3516–3521. 
[PubMed: 14993594] 

33. Guillot L, et al. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells 
to double-stranded RNA and influenza A virus. J Biol Chem. 2005; 280:5571–5580. [PubMed: 
15579900] 

34. Mowen KA, et al. Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. 
Cell. 2001; 104:731–741. [PubMed: 11257227] 

35. Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci. 1957; 
147:258–267. [PubMed: 13465720] 

36. Basler CF, Garcia-Sastre A. Viruses and the type I interferon antiviral system: Induction and 
evasion. Int Rev Immunol. 2009; 21:305–337. [PubMed: 12486817] 

37. Krieger M, et al. Molecular flypaper, host defense, and atherosclerosis. Structure, binding 
properties, and functions of macrophage scavenger receptors. J Biol Chem. 1993; 268:4569–4572. 
[PubMed: 8383115] 

38. Rux AH, et al. Kinetic analysis of glycoprotein C of herpes simplex virus types 1 and 2 binding to 
heparin, heparan sulfate, and complement component C3b. Virology. 2002; 294:324–332. 
[PubMed: 12009874] 

39. Moriwaki H, et al. Ligand specificity of LOX-1, a novel endothelial receptor for oxidized low 
density lipoprotein. Arterioscler Thromb Vasc Biol. 1998; 18:1541–1547. [PubMed: 9763524] 

40. Kodama T, et al. Type I macrophage scavenger receptor contains alpha-helical and collagen-like 
coiled coils. Nature. 1990; 343:531–535. [PubMed: 2300204] 

41. Chen Y, et al. A phage display screen and binding studies with acetylated low density lipoprotein 
provide evidence for the importance of the scavenger receptor cysteine-rich (SRCR) domain in the 
ligand-binding function of MARCO. J Biol Chem. 2006; 281:12767–12775. [PubMed: 16524885] 

42. Ezzat K, et al. Scavenger receptor-mediated uptake of cell-penetrating peptide nanocomplexes with 
oligonucleotides. FASEB J. 2011; 26:1172–1180. [PubMed: 22138034] 

43. Cheshenko N, Liu W, Satlin LM, Herold BC. Multiple receptor interactions trigger release of 
membrane and intracellular calcium stores critical for herpes simplex virus entry. Mol Biol Cell. 
2007; 18:3119–3130. [PubMed: 17553929] 

44. Bacsa S, et al. Syndecan-1 and syndecan-2 play key roles in herpes simplex virus type-1 infection. 
J Gen Virol. 2011; 92:733–743. [PubMed: 21148276] 

45. Rager-Zisman B, Allison AC. Mechanism of immunologic resistance to herpes simplex virus 1 
(HSV-1) infection. J Immunol. 1976; 116:35–40. [PubMed: 173758] 

46. Banfield BW, Leduc Y, Esford L, Schubert K, Tufaro F. Sequential isolation of proteoglycan 
synthesis mutants by using herpes simplex virus as a selective agent: evidence for a proteoglycan-
independent virus entry pathway. J Virol. 1995; 69:3290–3298. [PubMed: 7745676] 

47. Baba M, Snoeck R, Pauwels R, de Clercq E. Sulfated polysaccharides are potent and selective 
inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular 
stomatitis virus, and human immunodeficiency virus. Antimicro Agents Chermother. 1988; 
32:1742–1745.

48. Mukhopadhyay S, et al. SR-A/MARCO-mediated ligand delivery enhances intracellular TLR and 
NLR function, but ligand scavenging from cell surface limits TLR4 response to pathogens. Blood. 
2011; 117:1319–1347. [PubMed: 21098741] 

49. Kurt-Jones EA, et al. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to 
lethal encephalitis. Proc Natl Acad Sci U S A. 2004; 101:1315–1320. [PubMed: 14739339] 

50. Lubinski JM, et al. Herpes simplex virus type 1 evades the effects of antibody and complement in 
vivo. J Virol. 2002; 76:9232–9241. [PubMed: 12186907] 

51. Blyth WA, Harbour DA, Hill TJ. Pathogenesis of Zosteriform Spread of Herpes Simplex Virus in 
the Mouse. J Gen Virol. 1984; 65:1477–1486. [PubMed: 6088680] 

52. Suzuki H, et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to 
infection. Nature. 1997; 386:292–296. [PubMed: 9069289] 

53. Haisma HJ, et al. Scavenger Receptor A: A New Route for Adenovirus 5. Mol Pharm. 2009; 
6:366–374. [PubMed: 19227971] 

MacLeod et al. Page 14

Nat Commun. Author manuscript; available in PMC 2013 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



54. Ghosh S, Gregory D, Smith A, Kobzik L. MARCO regulates early inflammatory responses against 
influenza: A useful macrophage function with adverse outcome. Am J Respir Cell Mol Biol. 2011; 
45:1036–1044. [PubMed: 21562316] 

55. Schauber J, et al. Injury enhances TLR2 function and antimicrobial peptide expression through a 
vitamin D-dependent mechanism. J Clin Invest. 2007; 117:803–811. [PubMed: 17290304] 

56. Nizet V, et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. 
Nature. 2001; 414:454–457. [PubMed: 11719807] 

57. Edwards L, et al. Self-administered topical 5% imiquimod cream for external anogenital warts. 
HPV study group. Human papillomavirus. Arch Dermatol. 1998; 134:25–30. [PubMed: 9449906] 

58. Stanley MA. Imiquimod and the imidazoquinolones: mechanism of action and therapeutic 
potential. Clin Exp Dermatol. 2002; 27:571–577. [PubMed: 12464152] 

59. Sankala M, et al. Characterization of recombinant soluble macrophage scavenger receptor 
MARCO. J Biol Chem. 2002; 277:33378–33385. [PubMed: 12097327] 

60. Arredouani MS, et al. MARCO is the major binding receptor for unopsonized particles and 
bacteria on human alveolar macrophages. J Immunol. 2005; 175:6058–6064. [PubMed: 16237101] 

MacLeod et al. Page 15

Nat Commun. Author manuscript; available in PMC 2013 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Scavenger receptor ligands inhibit HSV-1 infection of keratinocytes
a, HaCats were treated with 100μg/ml Poly(I:C), or 50μg/ml of Poly(I) or Poly(C) 20 

minutes before the addition of HSV-1 at an MOI of 0.01. Cells were incubated for 5.5 hours 

before quantification of HSV-1 mRNA by qPCR. b, NHEK were treated with 10μg/ml 

Poly(I), Poly(C) and Poly(I:C) for 3 hours before qPCR analysis of gene expression. c, 
NHEK were treated with 10μg/ml of the indicated compounds for 20 min prior to the 

addition of HSV-1 at an MOI of 0.0005. PFU were quantified 48 hours after infection. d, 
NHEK were treated with 10μg/ml Poly(I) or heparin 20 min before infection with WT 

HSV-1 at an MOI of 0.0005 or an equivalent amount of HSV-1 gCΔC5/P (HSV-1 

possessing gC with a deletion of the heparin binding domain, amino acids 33-123) viral 

particles. PFU were quantified 48 hours after infection. PFU are displayed as relative % 

compared to untreated cells for each virus. NS, not significant. a-d, all data are means ± 

s.e.m, n=3 from representative experiments repeated at least two times. One-way ANOVA 

with Tukey post-tests were used for statistical analysis, ** P<0.01; *** P<0.001. b,c, P 

values were derived from comparisons to vehicle treated samples.
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Figure 2. Effect of scavenger receptor ligands on adsorption of HSV-1 and purified gC
a, HaCat keratinocytes were incubated with HSV-1 at an MOI of 100 at 4°C with the 

indicated concentrations of Poly(I) and Poly(C). Bound HSV-1 was visualized by 

fluorescence microscopy. Five images of bound HSV-1 per concentration were captured and 

the number of HSV-1 particles quantified using ImageJ. Each image contained 15-20 cells. 

Error bars indicate s.e.m. Two-way ANOVA with bonferroni post-tests was used to compare 

the effect of Poly(I) to Poly(C). n=5, *** P<0.001. b, purified gC was incubated with 

NHEK in the presence of 100μg/ml heparin, Poly(I), or Poly(C) at 4°C. Unbound gC was 

removed by multiple wash steps, then cells were fixed and bound gC was detected and 

quantified using an on-cell western assay. Error bars indicate s.e.m. One-way ANOVA with 

Tukey post-tests were used for statistical analysis with comparisons made to vehicle treated 

cells, n=2, ** P<0.01. ND, not detectable, NS, not significant. c,d, 100μg of purified gC was 

bound to a Heparin column, and eluted with a linear gradient (broken line) of Poly(I) (c), or 

NaCl (d). Eluted gC was quantified from 1ml fractions by dot blot and plotted as solid black 

circles representing each individual fraction connected by a solid line.
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Figure 3. MARCO co-localizes with HSV-1 gC on the keratinocyte cell surface
NHEK were incubated in the presence of purified HSV-1 gC for 2 hours at 4°C to allow 

binding of the glycoprotein to the cell surface. Unbound gC was removed by multiple wash 

steps before cells were fixed and incubated with both a mouse monoclonal antibody 

targeting HSV-1 gC, and rabbit polyclonal antibodies targeting MARCO (a), syndecan-1 

(b), OLR1 (c) or SCARA3 (d). Physical proximity of MARCO, syndecan-1, OLR1 or 

SCARA3 to HSV-1 gC bound to the cell surface was determined using a fluorescence-based 

proximity ligation assay that produces a red fluorescent signal only when the antigens 

recognized by the antibodies utilized in the assay reside within less than 40nm of each other. 

Nuclei (blue) are stained with Hoescht. Scale bar = 100μm. All data are from representative 

experiments repeated 2-4 times.
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Figure 4. MARCO binds directly to HSV-1 gC
Plate-bound purified MARCO protein was incubated with increasing concentrations of 

purified gC (a), gB (c) or gCΔC5/P (gC with a deletion of the heparin binding domain, 

amino acids 33-123) (e). gC, gB, and gCΔC5/P remaining bound after multiple wash steps 

was detected and quantified by ELISA. The dissociation constant (KD) and the maximum 

number of receptor binding sites (Bmax) were determined using nonlinear regression with 

background subtracted using Graphpad Prism. In (b) and (f), data in (a) and (e), 

respectively, were transformed to create double-reciprocal plots to show linear binding 

kinetics. d, plate-bound recombinant OLR-1 was incubated with purified gC. gC remaining 

bound after washing was detected and quantified by ELISA. a-f, all individual replicate 

values plotted with offset overlapping points. All data are from representative experiments 

repeated at least two times.
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Figure 5. HSV-1 infection correlates with MARCO expression in cells and in mice and is reduced 
by Poly(I)
a-d, HaCat cells were transfected with a control plasmid, pcDNA3 or a pcDNA3-backbone 

plasmid with the human MARCO gene inserted (labeled as [MARCO] on graphs) and 

selected with G418 to enable stable expression. MARCO and GAPDH protein levels were 

visualized in the same sample of 20μg total protein using two-color western blot (a). The 

image in (a) is from one representative Western blot of two blots, and the image of the full-

length blot is presented in Supplementary Fig. S4. MARCO protein levels relative to 

GAPDH were quantified using Licor Odyssey software (b), n=2, error bars indicate the 

s.e.m. c,d, pcDNA3 and [MARCO] cells were infected with WT or HSV-1 gC null (HSV-1 

lacking gC) at an MOI of 0.0005. PFU were quantified 48 hours after infection (c) and viral 

DNA was quantified 24 hours after infection (d). c,d, comparisons between pcDNA3 and 

[MARCO] cells were made using two-tailed T-tests, n=3. Error bars indicate the s.e.m. Data 

presented are from one representative experiment of at least two independent experiments. e, 
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16 week old female mice were immunocompromised with cyclophosphamide prior to 

infection with HSV-1. Mice were injected subcutaneously with PBS, or 125μg Poly(C) or 

Poly(I) twice daily at the site of infection beginning the first day of infection. Photographs 

were taken once daily beginning the first day post-infection. Lesions were quantified using 

ImageJ. Error bars indicate the s.e.m. Two-way ANOVA with bonferroni post-tests was 

used to compare wound sizes in Poly(I) and Poly(C) treated mice to PBS treated mice, n=4, 

** P<0.01; *** P<0.001. f, 11 week old sex-matched wildtype (WT) and MARCO-/- mice 

were immunocompromised with cyclophosphamide prior to infection with HSV-1. Mice 

were photographed daily until 8 days post-infection when WT mice began to exhibit 

symptoms of systemic and neurological infection, necessitating euthanasia. Lesion 

formation was quantified using ImageJ. Error bars indicate the s.e.m. Two-way ANOVA 

with bonferroni post-tests was used to compare wound sizes in WT and MARCO-/- mice, 

n=5; ** P<0.01. Data presented are from one representative experiment of two independent 

experiments.
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