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Abstract

Discovering efficient drugs and identifying target proteins are still an unmet but urgent need for curing coronavirus disease

2019 (COVID-19). Protein structure-based docking is a widely applied approach for discovering active compounds against

drug targets and for predicting potential targets of active compounds. However, this approach has its inherent deficiency

caused by e.g. various different conformations with largely varied binding pockets adopted by proteins, or the lack of true

target proteins in the database. This deficiency may result in false negative results. As a complementary approach to the

protein structure-based platform for COVID-19, termed as D3Docking in our previous work, we developed in this study a

ligand-based method, named D3Similarity, which is based on the molecular similarity evaluation between the submitted

molecule(s) and those in an active compound database. The database is constituted by all the reported bioactive molecules

https://academic.oup.com/
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against the coronaviruses, viz., severe acute respiratory syndrome coronavirus (SARS), Middle East respiratory syndrome

coronavirus (MERS), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human betacoronavirus 2c EMC/2012

(HCoV-EMC), human CoV 229E (HCoV-229E) and feline infectious peritonitis virus (FIPV), some of which have target or

mechanism information but some do not. Based on the two-dimensional (2D) and three-dimensional (3D) similarity

evaluation of molecular structures, virtual screening and target prediction could be performed according to similarity

ranking results. With two examples, we demonstrated the reliability and efficiency of D3Similarity by using 2D× 3D value as

score for drug discovery and target prediction against COVID-19. The database, which will be updated regularly, is available

free of charge at https://www.d3pharma.com/D3Targets-2019-nCoV/D3Similarity/index.php.
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) is caused by severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1–5]

that is highly transmissible and pathogenic [6, 7]. As of 31 August

2020, COVID-19 has caused nearly 800 000 deaths with rapidly

increasing number of infected people [8]. However, there is still

no cure for COVID-19 treatment despite that numerous efforts

have been made to satisfy the unmet clinical need.

Previously, we embedded a structure-based module named

D3Docking in the D3Targets-2019-nCoV web server [9, 10],

which utilized molecular docking to explore the potential

protein-ligand binding energies. Though we tried to consider

the influence of conformations and pockets in the D3Docking

module, it is very difficult to comprehensively and precisely

predict all the possible conformations and druggable pockets

in a structural-based approach using molecular docking, and

thus may lead to false negative prediction. Moreover, a few

other docking platforms and computational tools have been

developed and reported for the treatment of COVID-19. For

example, COVID-19 Docking Server predicts the binding modes

between COVID-19 targets and the ligands [11]. Shennong

carries out structure-based virtual screening for COVID-19 using

FDA approved drugs and drugs that are currently undergoing

phase 3 clinical trials as the library [12]. MolAICal supplies

a way for generating 3D drugs in the 3D pocket of SARS-

CoV-2 main protease [13]. Virus-CKB applies pharmacology-

target mapping to rapidly predict the FDA-approved drugs [14]

and a network-based approach has been developed for drug

repurposing [15]. However, there is no platform to predict target,

perform virtual screening and discover drug candidates for

COVID-19 with a ligand-based approach. Therefore, developing

another parallel approach for target identification and virtual

screening is necessary as an alternative to the structure-based

scheme. Active compounds against coronavirus could serve as

the starting points for a ligand-based scheme.

Quite a number of compounds including natural products

have been reported to be active against various coronavirus

at different levels. For example, glycyrrhizin was found to

have bioactivity in inhibiting the replication, absorption and

penetration of SARS-CoV [16]. Tanshinones,which are a series of

natural products derived from Salvia miltiorrhiza, were reported

as inhibitors against the 3C-like and papain-like proteases

of SARS-CoV [17], with one of the compounds in this series

exhibiting nanomolar level activity (IC50 =0.8±0.2 µM) against

the papain-like protease of SARS-CoV. Several FDA approved

drugs, including chloroquine, chlorpromazine, loperamide and

lopinavir [18], showed in vitro activity in the inhibition of MERS-

CoV replication at low-micromolar level (3–8 µM). For the novel

coronavirus SARS-CoV-2, compounds represented by remdesivir

and chloroquine [19] have demonstrated promising based on

their in vitro or in vivo bioactivity. Dexamethasone, a type of

corticosteroid medication, has been found to reduce the 28-day

mortality of patients with SARS-CoV-2 [20]. Although the

action mechanism of some of the reported bioactive molecules

have been explored, there may still be a large proportion of

compounds, of which the corresponding target protein and the

mechanism behind the bioactivity remain uncovered.

Here we presented a ligand-based approach, named

D3Similarity, to predict active compounds against SARS-CoV-

2, and to identify the potential target proteins for molecules

with potential bioactivity in a scheme that is irrelevant to the

reliability and availability of protein 3D structures. This was

realized by evaluating the molecular similarity between the

input molecules and the active compounds in the D3Similarity

database.We hope D3Similarity would provide another efficient

way for target identification and virtual screening to meet the

need for curing COVID-19.

MATERIALS AND METHODS

Preparation of the ligand-based database

A total of 604 molecules with potential bioactivity in the

treatment of different types of coronavirus infection, which are

downloadable in sdf format from the D3Similarity webpage,

were collected and used to construct the ligand-based database,

involving targets of both viral (including SARS,MERS, SARS-CoV-

2,HCoV-EMC,HCoV-229E, FIPV) and human proteins. The ligand-

based database of D3Similarity will be continuously updated in

our future work.

Preprocessing of small molecules

All the small molecule files, including that inputted by the user

and those already existing in the ligand-based database, would

be preprocessed under the identical workflow. Generally, the

small molecule file would be first transformed to themol format

with Open Babel [21]; following optimization under the MMFF94

force field with the RDKit package [22], the mol file outputted by

RDKit with optimized structures would then be transformed to

the mol2 format again with Open Babel to be prepared for the

molecular similarity evaluation task.

Notably, we found that small molecules involving the nitro

group (-NO2) could not be well handled by RDKit if essential

information besides atomic coordinates and bonds is missing in

the structure file. This essential information involves additional

atomic charge definition of the nitro group, termed as the ‘unity

atom attributes’ in a qualified mol2 format file, which put one

positive charge unit on the nitrogen atom while one negative

https://www.d3pharma.com/D3Targets-2019-nCoV/D3Similarity/index.php
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Table 1. Parameters used in themolecular similarity evaluation task
in MolShaCS

Parameter name Value

minimizer nlopt_mma

align_molecules yes

timeout 60

write_coordinates yes

mol2_aa no

box_size 30.0

step 1.0E-5

tol 1.0E-4

delta 1.0E-5

charge unit on one of the oxygen atoms. Thus, we recommend

that molecules containing nitro groups be preprocessed with a

SMILES-based workflow. The input molecule will first be trans-

formed to the SMILES string if our program determines that

the molecule is substituted with the nitro group. Subsequently,

the SMILES of this small molecule would be revised (to include

the ‘unity atom attributes’ of the nitro group) and used as the

input, following optimization using RDKit with the MMFF94

force field to get the three-dimensional structure, and finally be

transformed to the mol2 format with Open Babel.

Evaluating the 2D molecular similarity

The 2D molecular similarity was evaluated based on the

Tanimoto coefficient (Tc) values between the SMILES of the

input structure and the sdf file containing all molecules in the

database, which was obtained using Open Babel based on the

mol2 files generated in part 2.2. The Tc values were calculated

with Open Babel using the default FP2 fingerprint.

Evaluating the 3D molecular similarity

The 3D molecular similarly between the input molecule and

those in the ligand-based database was evaluated based on

the mol2 files generated in part 2.2 using MolShaCS (Molecular

Shape and Charge Similarity) [23], which is a computational tool

to assess themolecular shape and charge similarity between two

molecules. Parameters used in the evaluation task (Table 1) were

set to the recommended values as mentioned in the MolShaCS

manual.

Ligand-based virtual screening

The ligand-based virtual screening would be conducted based

either on target protein-related compounds or on the active

compoundswithout any target information.Molecular similarity

would be evaluated between the molecules in the input sdf or

mol2 file and those in a subset of the ligand-based database. The

output result would simply be ranked by 2D and 3D molecular

similarity for all involved pairs of input molecule and database

ligands, and thus offer suggestions in choosing promising

molecules for further experimental exploration.

The workflow

All anti-coronavirus active compounds were collated and used

as the backend database. Open Babel is used to convert various

molecular formats and perform molecular 2D structural simi-

larity evaluation based on molecular fingerprints. RDKit is used

Figure 1. The workflow of the D3Similarity server for target prediction and for

ligand-based virtual screening.

Figure 2. Pie chart for the percentage of associated targets or types for small

molecules composing the ligand-based database.

to generate 3D conformations from 2D molecular structures.

MolShaCS is used to evaluate the similarity of 3D structures

between the user submittedmolecules and the ligands collected

in D3Similarity. Molecular similarity evaluation was performed

by 2D, 3D and 2D×3D scores.Upon job completion, the predicted

target or screened ligands, similarity scores and related informa-

tion will be reported on the website, which are downloadable.

The workflow of D3Similarity server is illustrated in Figure 1.

RESULTS AND DISCUSSION

Overview of molecules and potential target proteins
included in the database

After carefully searching in SciFinder and Pubmed about coron-

avirus active compounds, the compounds in the literature were

collected one by one, including molecular structure, activity,

target, coronavirus type and crystal structure. Currently, 32 tar-

gets were identified for 430 compounds of the 604 potential

bioactive molecules that are contained in our current ligand-

based database. Inhibitors for the 3C-like (44.7%) and papain-

like (17%) proteases account for the two largest proportions
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Table 2. Introduction of representative active compounds of coronavirus in the database

(Continued)
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Table 2. Continued

(Continued)
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Table 2. Continued

(Continued)
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Table 2. Continued

∗Semicolons is used to separate activity data for the same compound. There are two types of activity data including cell activity and protein activity. For example,

SARS-CoV-2 (IC50 =10 nM) Vero E6 means the IC50 of the compound against SARS-CoV-2 measured in Vero E6 cells is 10 nM. SARS-CoV-2 3CL (IC50 =0.053 µM) means

IC50 of the compound against 3C-like protease of SARS-CoV-2 is 0.053 µM.

among all involvedmolecules (Figure 2). Notably,molecules with

multiple targets were also counted for multiple times in the

pie chart plotted in Figure 2. Details of ligand structures and

the associated information for the target(s) are provided on the

webpage (see the CoViLigands module, https://www.d3pharma.

com/D3Targets-2019-nCoV/CoViLigands/2019-nCoV.php).

Representative active compounds in the database

Scientists are committed to the research and development of

drugs against SARS-CoV-2 since the outbreak of COVID-19. All

currently reported active compounds against coronavirus and

their potential targets are included in the D3Similarity database

in order to discover more effective compounds against COVID-

19. Representative active compounds and targets in the database

are shown in Table 2. ICV272 [24] was designed and synthesized

targeting main protease that plays a pivotal role in mediating

viral replication and transcription [25]. ICV272 showed good

pharmacokinetic properties in vivo and low toxicity, suggesting

that it is a promising drug candidate. The requisite roles of

papain-like protease suggest that papain-like protease is an

attractive target for antiviral drugs [26, 27]. ICV357 [28, 29] acts

as a noncovalent competitive inhibitor of papain-like protease

by inducing a conformational change.Natural compound ICV394

[30] potently inhibits the SARS-CoV helicase protein in vitro by

affecting the ATPase activity. Remdesivir (ICV397) has been rec-

ognized as a promising antiviral drug against awide array of RNA

viruses including SARS-CoV-2 by inhibiting viral RNA-dependent

RNA polymerase (RdRp) [19, 31]. The above compounds exert

antiviral effects by acting on the protein targets of the coron-

avirus. In addition, host targets also play a very important role

in the invasion of coronaviruses into organisms. In addition

to its importance in regulation of hypertension, angiotensin-

converting enzyme 2 (ACE2) has been demonstrated to be a

target for the coronavirus [32]. ICV407 [33] inhibits SARS-CoV by

blocking early interactions of SARS-S with ACE2. As the COVID-

19 continues, active compounds against SARS-CoV-2 have been

continuously reported. For example, Dihydroorotate dehydroge-

nase (DHODH) [34] was considered as drug target for SARS-CoV-2

treatment [35]. The DHODH Inhibitor ICV617 is a highly potent

inhibitor of SARS-CoV-2 replication (EC50 =1.96 nM) [36]. ICV618

can prevent infection by SARS-CoV-2 as an inhibitor of PIKfyve

kinase (IC50 =10 nM) [37]. Besides, ICV402 [38], ICV416 [39] and

ICV421 [40] also have potential bioactivity against coronavirus.

Active compounds against coronavirus in D3Similarity provide

useful leads for the discovery of antivirals that could prevent

SARS-CoV-2 and SARS-related infections andmay also become a

useful tool for studying fundamentalmechanisms of compound.

Input and output

D3Similarity is provided free of charge for registered users of the

D3Targets-2019-nCoV web server (https://www.d3pharma.com/

https://www.d3pharma.com/D3Targets-2019-nCoV/CoViLigands/2019-nCoV.php
https://www.d3pharma.com/D3Targets-2019-nCoV/CoViLigands/2019-nCoV.php
https://www.d3pharma.com/D3Targets-2019-nCoV/D3Similarity/index.php
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Figure 3. Graphical interface for input and output of the target identification module of D3Similarity.

D3Targets-2019-nCoV/D3Similarity/index.php). For target pre-

diction, a graphical interface for user is shown in Figure 3. We

recommend that the users submit the input structure in com-

mon file formats such as mol2 or sdf to ensure the input file

could be well handled by D3Similarity. Usually the evaluation

of molecular similarity between the submitted molecule and

those in the database would last for several minutes after the

beginning of the calculation before the output result is returned,

inwhich the information of themolecular structures and associ-

ated targets for top-ranking ligands will be provided on the web-

page. The targets for top-ranking ligands are predicted potential

targets for the submitted molecule. For example, human his-

tamine N-methyltransferase, 3C-like protease and papain-like

protease were predicted to be the top three potential targets

of chloroquine, among which 3C-like protease was reported

recently based on in vitro results [41, 42].

For virtual screening, a similar graphical interface as shown

in Figure 4 is also provided. In this module, the users must

provide the input database file in sdf ormol2 format to guarantee

the program could correctly split different molecules out of the

input database. Usually the calculation would last for several

minutes for each molecule in the input database, and thus,

the total running time would depend on the size of the input

database. In the output result, molecules in the input database

would be labeled as ‘MOL_1’, ‘MOL_2’, . . . based on the order in

which they appear in the input file. By default, the results would

be ranked bymolecular similarity between the input compounds

and the database ligands.

Evaluation of different ranking methods

Asmentioned above, both 2D and 3D similarity evaluations were

conducted in our ligand-based module. However, considering

that the SMILES-based 2D scheme may lose sight of the molecu-

lar geometry while the 3D scheme would be slightly affected by

the difference inmolecular conformations, here,we additionally

included the evaluation results ranked by the product of 2D

similarity score and 3D similarity score (2D×3D). Case studies

were presented to explore the efficiency of the three ranking

methods, and thus, that of D3Similarity in identifying potential

targets.

Inhibitors of the 3C-like protease and papain-like protease

were selected as two typical examples for the evaluation, con-

sidering these two subsets account for the largest proportions

of the ligand-based database. Molecules in the rest of the

database excluding inhibitors of 3C-like protease or papain-

like protease were also selected as negative control subsets to

explore the potential influence of database components. The

evaluations were then conducted between the input ligands

in the subsets and in the database excluding the input ligand

itself.

As shown in the pie charts of Figure 5, in the case study of

3C-like protease inhibitors,we presented the average percentage

composition of 3C-like protease, papain-like protease, unknown

and other targets that correspond to the molecules in the top

10 similarity rankings (hereinafter referred to as ‘top 10’ targets

and ‘top 10’ molecules) using 3C-like protease inhibitors in the

https://www.d3pharma.com/D3Targets-2019-nCoV/D3Similarity/index.php


Ligand-based approach for predicting drug targets 9

Figure 4. Graphical interface for input and output of the virtual screening module of D3Similarity.

database as input structures. As demonstrated in the pie charts,

in the evaluation results ranked by 2D similarity, 3D similarity

and the 2D×3D scheme, 3C-like protease accounts for a signif-

icantly larger percentage among the ‘top 10’ targets for 3C-like

protease inhibitors (Figure 5a–c) than that for molecules in the

negative control subset (Figure 5d–f). This observation suggested

that the large proportion of 3C-like protease in the ‘top 10’ targets

for 3C-like protease inhibitors results not only from the database

component itself, but also from the successful prediction of our

ligand-based approach.

The observations of the case of papain-like protease

inhibitors are similar to that of the case of 3C-like protease

inhibitors. In the ‘top 10’ targets of the similarity evaluation

result, papain-like protease also accounts for a larger proportion

for its reported inhibitors (Figure 6a–c) compared with that for

other molecules (Figure 6d–f). What’s more, in general, in both

the case studies, the usage of the ‘2D×3D’ scheme to rank the

molecular similarity yielded better results than using either 2D

similarity score or 3D similarity score alone, suggesting that

the 2D and 3D score may complement each other after the

multiplication. Thus, we recommend the users to employ the

‘2D×3D’ scheme as the default ranking scheme for molecular

similarity.

Predicting covalent binding by D3Similarity

Covalent binding plays an important role in SARS-CoV-2 drug

research [24, 43]. By checking molecular structures, we found

that 24 ligands in D3Similarity are potential covalent binders to

SARS-CoV-2 related targets. If a submitted molecule is similar to

the covalent binders in D3Similarity with at least one of the war-

heads (e.g. Michael acceptor, trifluoromethyl ketone, aldehyde

group, and aldehyde bisulfite), the submitted molecule would be

classified as a potential covalent binder.

D3Similarity works together with D3Docking

D3Similarity is a ligand-based approach which does not rely

on target structures, while D3Docking relies on the targets’3D

structures. There are 32 targets in D3Similarity and 46 targets

in D3Docking, while only 12 targets are identical in the two

target datasets, suggesting that these two approaches are

complementary well with each other. D3Similarity is much

faster for target prediction than D3Docking, i.e. 5–15 min for

a job by D3Similarity versus 1–2 h for a job by D3Docking. If

the predicted targets by D3Similarity are found in D3Docking

(https://www.d3pharma.com/D3Targets-2019-nCoV/CoViProtei

https://www.d3pharma.com/D3Targets-2019-nCoV/CoViProteins/2019-nCoV.php
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Figure 5. Case study of the 3C-like protease inhibitors using D3Similarity. Plotted pie charts are for average percentage composition of 3C-like protease, papain-like

protease, unknown and other targets that correspond to the molecules in the top 10 similarity rankings using 3C-like protease inhibitors in the database as input

structures ranked by (a) 2D similarity, (b) 3D similarity, (c) the product of 2D similarity score and 3D similarity score, and using molecules in the rest of the database as

input structures ranked by (d) 2D similarity, (e) 3D similarity, (f) the product of 2D similarity score and 3D similarity score.

ns/2019-nCoV.php), the potential binding modes could be

obtained by running D3Docking.

Overall,we believe that D3Similarity should be a complemen-

tary approach to docking-basedmethods for ligand-based target

prediction and virtual screening.

CONCLUSIONS

The SARS-CoV-2 infection has led to nearly 800 000 deaths in

more than 200 countries worldwide as of 31 August 2020, while

no approved drug is available for clinical treatment. Virtual

screening is a highly efficient approach to find potential antivi-

rals, while identifying the potential targets is of great impor-

tance for understanding the bioactivitymechanism of both now-

existing and to-be-developed molecules against the coronavirus

infection. On the basis of the previously reported D3Targets-

2019-nCoV web server, which has already been embedded with

a structure-based module named D3Docking, we released in

this study the ligand-based module, termed as D3Similarity,

which utilizes themolecular similarity evaluationwith bioactive

moleculeswith known targets or/andwell-exploredmechanism.

604 molecules were included in the ligand-based database and

will be updated regularly. In the evaluation of different ranking

methods, when applying the product of 2D similarity score and

3D similarity score (2D× 3D) to rank the results, D3Similarity

correctly predicted the target of the inhibitors of 3C-like and

papain proteases and outperformed the ranking results using

either 2D similarity score or 3D similarity score alone. These

observations demonstrated D3Similarity should be a comple-

mentary approach to docking-based methods for virtual screen-

ing and target identification of potential coronavirus antivirals.

We hope this ligand-based module would be helpful to the drug

development against SARS-CoV-2 and other coronaviruses. The

module is available free of charge at https://www.d3pharma.co

m/D3Targets-2019-nCoV/D3Similarity/index.php.

Key Points

• The COVID-19 pandemic caused by the virus SARS-

CoV-2 has become a humanitarian crisis, so we have

established a database constituted by all the reported

bioactive molecules against coronaviruses.
• We developed the ligand-based method, named

D3Similarity, which is based on the molecular similar-

ity evaluation between the submitted molecule(s) and

those in our active compound database.
• D3Similarity can be used to predict target proteins

for active compounds observed from experimental

studies, and to perform virtual screen via 2D and 3D

similarity evaluation.
• The similarity results can be sorted according to 2D

similarity, 3D similarity and 2D×3D, respectively. The

case studies were provided for evaluating these three

sorting methods.
• D3Similarity is provided free of charge for registered

users of the D3Targets-2019-nCoV web server (https://

https://www.d3pharma.com/D3Targets-2019-nCoV/CoViProteins/2019-nCoV.php
https://www.d3pharma.com/D3Targets-2019-nCoV/D3Similarity/index.php
https://www.d3pharma.com/D3Targets-2019-nCoV/D3Similarity/index.php
https://www.d3pharma.com/D3Targets-2019-nCoV/D3Similarity/index.php
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Figure 6. Case study of the papain-like protease inhibitors using D3Similarity. Plotted pie charts are for average percentage composition of 3C-like protease, papain-like

protease, unknown and other targets that correspond to the molecules in the top 10 similarity rankings using papain-like protease inhibitors in the database as input

structures ranked by (a) 2D similarity, (b) 3D similarity, (c) the product of 2D similarity score and 3D similarity score, and using molecules in the rest of the database as

input structures ranked by (d) 2D similarity, (e) 3D similarity, (f) the product of 2D similarity score and 3D similarity score.

www.d3pharma.com/D3Targets-2019-nCoV/D3Simila

rity/index.php)
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