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Abstract

Phospholipase D1 (PLD1) is generally accepted as playing an important role in the regulation of multiple cell functions, such as
cell growth, survival, differentiation, membrane trafficking, and cytoskeletal organization. Recent findings suggest that PLD1
also plays an important role in the regulation of neuronal differentiation of neuronal cells. Moreover, PLD1-mediated signaling
molecules dynamically regulate the neuronal differentiation of neural stem cells (NSCs). Rho family GTPases and Ca**-depen-
dent signaling, in particular, are closely involved in PLD1-mediated neuronal differentiation of NSCs. Moreover, PLD1 has a
significant effect on the neurogenesis of NSCs via the regulation of SHP-1/STAT3 activation. Therefore, PLD1 has now attracted
significant attention as an essential neuronal signaling molecule in the nervous system. In the current review, we summarize
recent findings on the regulation of PLD1 in neuronal differentiation and discuss the potential role of PLD1 in the neurogenesis of

NSCs.
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Introduction
Overview of NSCs

Neural stem cells (NSCs) are multipotent cells that are
capable of proliferation and self-renewal, which can dif-
ferentiate into all types of neural cells, namely neurons,
astrocytes, and oligodendrocytes (Miller and Gauthier
2007). In 1992, NSCs were first isolated from the adult
striatal tissue, including the subventricular zone and adult
mice brain tissue (Reynolds and Weiss 1992). Following
the discovery of NSCs, significant advances have been
made in our understanding about its localization, develop-
ment, persistence, properties, and potential in the central
nervous system (Xu et al. 2017). Multipotent NSCs can
be isolated and cultured from primary cortical or hippo-
campal cultures after passage in the presence of mitogenic
growth factors (Gage et al. 1995), such as epidermal
growth factor and basic fibroblast growth factor (bFGF).
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Mitogenic growth factors are important for NSCs prolif-
eration (Mudo et al. 2009) and the maintenance of its
undifferentiated state (Vescovi et al. 1993). The coordinat-
ed action of multiple signals acting on embryonic NSCs
gives rise to the vast diversity of neuronal and glial pop-
ulations that populate the mature brain (Xu et al. 2017).
Specific transcriptional factors are important for the dif-
ferentiation of NSCs into the major neural cell types
(Fig. 1). NSCs also play a crucial role in animals. In
addition to supplying neurons to the olfactory bulb in
mice, NSCs are also important for learning and hippocam-
pal plasticity in adult mice (Paspala et al. 2011).
Moreover, since the activation of NSCs or their transplan-
tation into areas of central nervous system injury can lead
to regeneration in animal models and humans, its putative
clinical application has attracted considerable interest.

PLD Structure

Phospholipase D (PLD) is a ubiquitous enzyme that hydro-
lyzes phosphatidylcholine (PC) to yield phosphatidic acid
(PA) and free choline. In the presence of primary alcohols,
such as ethanol and 1-butanol, PLD preferentially catalyzes
the transphosphatidylation reaction, rather than the hydrolytic
reaction, which produces phosphatidyl alcohols at the expense
of PA production (Fig. 2a) (Kanaho et al. 2009). Two major
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Fig. 1 Neural stem cell and major
neural cell types. Neural stem
cells differentiate into the major
neural cell types (i.e., neurons,
astrocytes, and oligodendrocytes)
depending on their accompanying
transcription factors. Pax6, paired
box protein; NF-1, nuclear factor-
1; RBP-J, recombining binding
protein suppressor of hairless;
Id1, DNA-binding protein
inhibitor 1; Oligl/2, °
oligodendrocyte-lineage
transcription factor; Sox10, SRY-
related HMG-box 10; Myrf,

Neuron

Pro-neuronal

NSC

™~

Oligodendrocyte

— !

Astrocyte

[
Pro-astrocytic Pro-oligodendrocytic

. -Pax6 -STAT3 -Olig 1/2
myelin regulatory factor Mashi NF-1 _Sox10
-Neurogenin 1,2 -RBP-J -Myrf
-Math3 -ld1
-NeuroD -Hesl
\ J

PLD isozymes, i.e., PLD1 and PLD2, have been well identi-
fied in mammalian cells (Jenkins and Frohman 2005). PLD1
is a 1074-amino acid protein with an apparent molecular
weight of 120 kDa. PLD2 is a 933-amino acid protein with
an apparent molecular weight of 106 kDa. Mammalian PLD1
and PLD2 both contain two HKD motifs (HxKxxxxD se-
quence, histidine “H,” any amino acid “x,” lysine “K,” and
aspartic acid “D”), which are critical for enzymatic catalysis,
both in vitro and in vivo, as evidenced by the observation that
point mutations in the motif disrupt PLD activity (Sung et al.
1997). Other highly conserved domains of the PLD isozymes
include the phox (PX), pleckstrin homology (PH), and
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PI4,5P, binding domains, which markedly activates PLD2
and are required for small GTPase ARF stimulation of
PLDI1 (Exton 2002; Kanaho et al. 2009). Although the PH
domain appears to regulate the PLD association with lipid
rafts facilitating the recovery of the enzyme to endosomes
(Du et al. 2003), it is not required for PLD activity (Sung
et al. 1999). The PX domain mediates protein-protein interac-
tions or preferentially binds PI3,4,5P; (Xu et al. 2001).
Finally, PLDI has a conserved loop domain, which is not
found PLD2. This loop domain is involved in the auto inhibi-
tion of PLDI, since its deletion from PLD1 results in high
basal activity (Fig. 2b).
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Fig. 2 Catalytic reactions of phospholipase D (PLD) and the basic
structure of phospholipase D1 (PLD1) and phospholipase D2 (PLD2). a
PLD hydrolyses phosphatidylcholine (PC) to produce phosphatidic acid
(PA) and choline. In the presence of ethanol, PLD preferentially catalyzes
the transphosphatidylation reaction rather than the hydrolytic reaction,
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thus, forming phosphatidylethanol at the expense of PA. b Domains
shown are the catalytic HKD motif (HKD), phox consensus sequence
(PX), pleckstrin homology (PH), phosphatidylinositol bisphosphate
(PIP;), and PLD1 loop region
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PLD Functions

Numerous reports suggest that PLD1 contributes to various
cellular mechanisms, including inflammation, tumor cell in-
vasion and metastasis, lipid metabolism, and neural develop-
ment (Bae et al. 2014; Brown et al. 2017; Bruntz et al. 2014).
Therefore, PLD1 have emerged as drug targets for many dis-
eases such as infectious diseases, cancer, cardio-vascular dis-
eases, and neurodegenerative diseases (Brown et al. 2017,
Eftekharian et al. 2017). PLD1 is found throughout the cell,
particularly, in the perinuclear region, Golgi complex, and
early endosomes in non-stimulated cells. Further, it is
relocated to the plasma membrane upon stimulation.
Increased expression of PLDI, its subcellular localization
and altered catalytic activity have essential roles in cell prolif-
eration, differentiation, vesicle trafficking, and cytoskeleton
rearrangement in neuron (Brito de Souza et al. 2014; Luo
et al. 2017). PLDI is expressed in many functionally diverse
brain areas, including the cerebral cortex, hippocampus, brain
stem, spinal cord, and olfactory bulb (Lee et al. 2000). Recent
studies have reported that the signal-dependent activation of
PLD1 is important for neuronal differentiation in NSCs (Park
et al. 2015, 2017; Yoon et al. 2005, 2006). PLD2 is almost
exclusively found in the light membrane “lipid raft” fraction
of the plasma membrane (Gomez-Cambronero and Keire
1998). PLD2 can be activated in intact cells by a variety of
agonists and tyrosine kinases. Further, it can be regulated by
small GTPases and certain PKC family members (Gomez-
Cambronero 2014). PLD2 promotes neurite outgrowth in
PC12 cells and functions as a downstream signaling effector
of extracellular signal-regulated kinases in the nerve growth
factor (NGF) signaling pathway. In PC12 cells and cerebellar
granule neurons, this pathway is activated by NGF and neu-
ronal cell adhesion molecule L1 (Watanabe et al. 2004; Yun
et al. 2006). Therefore, both PLD1 and PLD2 appear to influ-
ence neurite outgrowth. However, the role of PLD2 in neuro-
nal differentiation of NSCs has not yet been elucidated.
Therefore, this review focused on the role of PLD1 in neuro-
nal differentiation and described its potential role in the
neurogenesis of NSCs.

Role of PLD1 in Neuronal Differentiation
of NSCs

In HiB5 cells, the activation of PLD contributes to neuronal
differentiation via neurogenic platelet-derived growth factor
(PDGF) (Sung et al. 2001). Further, NGF-induced PLD1 ex-
pression mediates neuronal differentiation of PC12 cells
(Ammar et al. 2013; Min et al. 2001). PLDI1 is also implicated
in the bFGF-induced neurite outgrowth of H19-7 cells (Klein
2005; Yoon et al. 2012). In addition, PLD1 corrected the im-
paired neurite outgrowth capacity of familial Alzheimer’s

disease mutant neurons (Cai et al. 2006). Thus, PLD]1 is a
key molecule in neuronal differentiation, especially neurite
outgrowth. Yoon et al. (Yoon et al. 2005) reported for the first
time that PLD1 is required for neurite outgrowth during neu-
ronal differentiation of NSCs. Since then, PLD1-mediated
signaling pathways have been identified in neuronal differen-
tiation of NSCs. Herein, we summarize the PLD1-mediated
signaling molecules involved in the neuronal differentiation of
NSCs.

PLD1 and Rho Family GTPases in Neuronal
Differentiation of NSCs

During brain development, each neuron develops into a single
axon and multiple neurites, which then eventually form syn-
apses (Elston and Fujita 2014; Huang et al. 2017). To ensure
precise neuronal connectivity, neurons are derived from the
coordination of multiple developmental steps, including axon
growth, branching, guidance, and synapse formation (Huang
et al. 2017). Cytoskeleton rearrangement is required for the
dynamics of neuronal morphology formation. The Rho family
GTPases, of which RhoA, Cdc42, and Racl are best charac-
terized, act as significant modulators of cytoskeleton rear-
rangement (Threadgill et al. 1997). The Rho family GTPases
serves as a molecular switch by converting from an inactive
GDP-bound state to an active GTP-bound state. Once activat-
ed, they can interact with their specific effectors. Recent re-
ports suggest that RhoA, Racl, and Cdc42 play a central role
in dendritic development. Further, the differential activation of
Rho-related GTPases contributes to the generation of morpho-
logical diversity in the developing cortex (Threadgill et al.
1997). Racl and Cdc42 promote neurite initiation and out-
growth (Daniels et al. 1998). Conversely, RhoA activation
antagonizes neurite formation and causes neurite retraction.
Thus, the regulation of Rho family GTPases is crucial for
guiding downstream biological reactions, such as axon growth
or retraction, and synapse maturation during neuronal
development.

The Rho family GTPases are important regulators of
PLD activity (Powner and Wakelam 2002). PLD1 activity
is regulated particularly by interactions with small
GTPases that belong to the ARF and Rho families
(Powner and Wakelam 2002; Rudge and Wakelam
2009). The transfection of RhoA, Cdc42, or Racl can
activate PLD1 (Powner and Wakelam 2002; Yoon et al.
2006), which has been implicated in the regulation of the
actin cytoskeleton (Rudge and Wakelam 2009). PLD1
controls many physiological functions, such as cell migra-
tion and neuronal axon formation, via this regulatory ac-
tion. In NSCs, the expression levels of Cdc42 and RhoA
were increased during neuronal differentiation, and PLD1
and Cdc42 were co-localized in neurites, while RhoA was
localized in the cytosol (Yoon et al. 2006). Further, Cdc42
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was bound to PLD1 during differentiation, and dominant-
negative Cdc42 (Cdc42N17) decreased PLD activity and
neurite outgrowth. Conversely, constitutively active
Cdc42 (Cdc42V12) increased both PLD activity and
neurite outgrowth, suggesting that the association between
Cdc42 and PLD1 is important for the activation of PLD1
and neurite outgrowth in NSCs. Moreover, a dominant-
negative Racl (Rac N17) mutant inhibited PLDI-
induced Bcl-2 expression. Bcl-2 expression, however,
was not altered by DN-Cdc42 (Cdc42 N17) or DN-Rho
(Rho V19) during neuronal differentiation of NSCs (Park
et al. 2015). Therefore, the interplay between PLDI1 and
Rho family GTPases has an important role in the neuronal
differentiation of NSCs.

PLD1 and Bcl-2 Expression in Neuronal Differentiation
of NSCs

Bcl-2 is a well-known anti-apoptotic protein that prevents
the release of apoptogenic factors, such as cytochrome ¢
and second mitochondrial-derived activator of caspase,
which was originally found to be overexpressed in B cell
lymphoma (Gross et al. 1999). Bcl-2 serves as a critical
regulator of pathways involved in apoptosis and inhibits
cell death (Liu et al. 2013). Proteins of the Bcl-2 family
influence neuronal apoptosis and cell differentiation and a
reduction in the ability of neurons to extend neurites in
Bcl-2-deficient embryos (Chen et al. 1997; Yoon et al.
2012). Bcl-2 is critical for the neuronal commitment of
mouse embryonic stem cells (Trouillas et al. 2008).
Moreover, the anti-apoptotic role of Bcl-2 has been well
identified in previous studies, in which anti-apoptotic gene
modifications have had beneficial effects on the neural dif-
ferentiation of neural progenitors and NSCs (Esdar et al.
2001; Lee et al. 2009). In vivo studies also indicated that
the overexpression of Bcl-2 enhanced retinal axon regen-
eration after optic-tract transaction (Chen et al. 1997) and
increased axonal growth of transplanted fetal dopaminergic
neurons in the rat striatum (Holm et al. 2001).

Recent studies have demonstrated that Bcl-2 is implicat-
ed in PLD1-mediated neuronal differentiation. PLD1 is
known to regulate Bcl-2 expression in various cells (Cho
et al. 2008, 2011; Choi and Han 2012). For instance, PLD1
regulates Bcl-2 expression via the JNK/STAT3 pathway,
which leads to neuronal cell differentiation of H19-7 cells
(Yoon et al. 2012). A recent study also demonstrated that
PLD1 increased Bcl-2 expression and promoted Bcl-2-
mediated signaling in NSCs (Park et al. 2015). More spe-
cifically, PLDI is regulated by PLCy/PKCux activation and
promotes Bcl-2 expression, via the PA/AA/PGE2/EP4/
PKA/p38 MAPK pathway during neuronal differentiation.
These results suggest that PLD1-mediated Bcl-2 expres-
sion affects the neuronal differentiation of NSCs.
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PLD1 and Ca**-Dependent Signaling in Neuronal
Differentiation of NSCs

The development of the nervous system occurs through a
series of well-organized steps in the proliferation of NSCs,
its migration over considerable distances from the germinal
centers to their destinations, and ultimately their differentia-
tion into billions of neurons and glia, which populate the brain
(Toth et al. 2016). In these processes, Ca”* signaling is essen-
tial for the developing brain (Zheng and Poo 2007). Increased
Ca** levels regulate PKC« activation and translocation to the
membrane from the cytosol in various processes (Boncoeur
etal. 2013; Champion and Kass 2004). PKCa regulates Ca’*-
dependent differentiation in several cell lines and primary
cells and plays an essential role in synaptic plasticity by rais-
ing intracellular Ca®* levels (Kopach et al. 2013; Park et al.
2015). PLD catalyzes the hydrolysis of PC to PA and choline
(Exton 2002). PA itself acts as a cellular messenger or is fur-
ther transformed by PA phosphohydrolase into DAG, which is
essential for the activation of PKC (Zhao et al. 2007). The
activation and phosphorylation of PLD1 is regulated by
PKCax, with a similar interrelationship between PLD and
PKC isoforms seen in a variety of cell types (Kim et al.
2005; Park et al. 2015). Recent studies revealed that increased
intracellular Ca®* affects PKCx activation and neurite out-
growth in NSCs (Park et al. 2015, 2017). In addition, a
PKC«x specific inhibitor, RO320432, reduced the activation
of PLD1 and affected PLD1 signaling during differentiation in
NSCs (Park et al. 2015, 2017). Moreover, intracellular Ca?t
promotes neurogenesis by translocating PKCoa to the mem-
brane through making complex with hippocalcin (HPCA).
And then PKCwx is activated by direct binding to
phosphoinositide-dependent protein kinase 1 (PDK1) in
NSCs. PDKI1 signals upstream of PKCx trigger neurite out-
growth leading to increased expressions of Nt3, Nt45, Bdnf,
and Neuro D in NSCs (Park et al. 2017).

Another important Ca®* signaling factor, phospholipase C
(PLCy), also affects PLD1 signaling in several cells (Park
et al. 2009, 2015; Yoon et al. 2012). When treated with some
growth factors, PLCy is phosphorylated and generates DAG
and inositol 1,4,5-triphosphate (IP3), which in turn activates
PKC«, consequently increasing intracellular Ca®* (Hall et al.
1996; Oh et al. 2008). Recent studies demonstrated that PLCy
signaling elevates the intracellular Ca®* concentration and reg-
ulates neocortical neuronal progenitor migration and neuronal
differentiation (Lundgren et al. 2012; Park et al. 2015).
Moreover, the inhibition of PLCy using a specific inhibitor,
U73122, or blocking intracellular [Ca**]i with BAPTA-AM,
reduced the phosphorylation and activation of PKCax during
neuronal differentiation of NSCs (Park et al. 2015).
Furthermore, U73122 or BAPTA-AM inhibited PLD1 activity
and neuronal differentiation in NSCs (Park et al. 2015). Taken
together, these results suggest that intracellular Ca** signal
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molecules, including PLCy, PKC«, and PDKI1, regulate
PLD1-mediated neuronal differentiation in NSCs.

HPCA is a high-affinity Ca®*-binding protein, which is
restricted to the CNS and most abundant in pyramidal cells
of the CAl region in the hippocampus (Kobayashi et al.
2005). During brain development the expression of HPCA
sharply increases concurrently with synapse formation
(Saitoh et al. 1994). HPCA belongs to the family of EF-
hand-containing neuronal Ca** sensor proteins, which possess
a Ca®/myristoyl switch that allows its translocation to the
membrane, in response to increased cytosolic Ca®* concentra-
tions (Oh et al. 2008; Park et al. 2017). HPCA exerts a neu-
roprotective action by blocking the formation of Ca**-induced
cell death stimuli (Masuo et al. 2007). Further, infusion of
mutant Hpca lacking Ca**-binding sites prevents long-term
depression in hippocampal neurons (Jo et al. 2010). Since
HPCA has a crucial role in Ca®*-mediated neuronal activity
in the brain, it is possible that HPCA is implicated in neuronal
differentiation of NSCs. HPCA is also regulated by a Ca**-
mediated PLD1 signaling pathway (Oh et al. 2008; Park et al.
2017). It also induces the expression of neuro-D, leading to
neurite outgrowth during differentiation in H19-7 cells (Oh
et al. 2008). A recent study demonstrated that the expression
of nerve growth factors, such as N7-3, N7-45, and BDNF,
depended on Ca®* binding and the myristoylation of HPCA
during the neuronal differentiation of NSCs (Park et al. 2017).
Interestingly, HPCA directly binds to PKC«, which facilitates
the PKCux-regulated kinase cascade; PKCx-dependent PLD1
activation is required for neurite outgrowth. Moreover, PLD1
and HPCA were even co-localized on embryonic day 14 (E14)
in the rat cerebral neocortex, and HPCA-dependent PLD1
activation was required for neuronal differentiation of NSCs.
Finally, their collaboration greatly influenced the
neurogenesis of NSCs (Park et al. 2017).

PLD1 as an Accelerator in Neurogenesis
of NSCs

Neurogenesis is the transition of proliferative and multipotent
NSCs to fully differentiated neurons. It occurs in multiple
brain areas, including the neocortex, piriform cortex, amygda-
la, substantia nigra, striatum, and hypothalamus (lannitelli
et al. 2017). Neurogenesis is the process by which neurons
are generated from neural stem cells and progenitor cells. It
precedes gliogenesis throughout the nervous system, and a
single progenitor can give rise to both neurons and astrocytes
(Bayer et al. 1991). Neurogenesis is tightly controlled owing
to its critical importance in proper physiological function, and
the multiple signals controlling the growth and directionality
of the relevant cell fate decision (Sun et al. 2001). To promote
neurogenesis, proneural basic helix-loop-helix (bHLH) tran-
scription factors, such as neurogenin-1 and Mash-1, not only

drive neurogenesis by activating the expression of a cascade
of neuronal genes (Frohman et al. 1999) but also through
inhibiting glial gene expression (Urban and Guillemot
2014). However, some neurogenic factors can regulate both
these processes, depending on the concentration of proneural
genes. For example, although bone morphogenetic proteins
promote neurogenesis in progenitor cells that express high
levels of neurogenin-1, it promotes gliogenesis in progenitor
cells that have a low level of neurogenin-1 expression
(Morrison 2001). Thus, embryonic neurogenesis is tightly
linked to cell fate specification. Moreover, according to recent
studies, the molecular and genetic factors influencing
neurogenesis notably include the Notch pathway; many genes
have been linked to Notch pathway regulation (Kageyama
et al. 2008; Rash et al. 2011).

How Does PLD1 Promote Neurogenesis in NSCs?

Over the past year several regulatory mechanisms, including
the promotion of neurogenesis by proneural bHLH genes and
the instruction of gliogenesis by signal transducers and acti-
vators of transcription 3 (STAT3) in a neurogenic capacity of
NSCs in culture, have been identified (Kang et al. 2016; Park
et al. 2017). STAT3 is an important transcription factor that
regulates glial fibrillary acidic protein (GFAP) expression.
Further, the DNA binding of STAT3 was affected by the phos-
phorylation of the Ser727 or/and Tyr 705 site (Yokogami et al.
2000). STAT3 binds to different domains of CBP/p300 and
the STAT/p300/Smad complex, acting at the STAT-binding
element in the astrocyte-specific GFAP promoter, which is
particularly effective at inducing astrocyte differentiation in
NSCs (Nakashima et al. 1999). SH2-domain-containing tyro-
sine phosphatase-1 (SHP-1) negatively regulates STAT3 sig-
naling through the direct de-phosphorylation of STAT3 (Tyr
705). Importantly, this SHP-1-dependent STAT3-inhibitory
mechanism is closely involved in PLD1-directed
neurogenesis in NSCs. PLD-derived PA interacts with and
inhibits SHP-1 activity (Frank et al. 1999). Exogenously
added PA induced phosphorylation of SHP-1 and de-
phosphorylation of STAT3 (Tyr 705) in a dose-dependent
manner in NSCs. Moreover, PLD1 knockdown inhibited
SHP-1 activity and affected the de-phosphorylation of
STAT3 (Tyr 705). Thus, PLD1 promotes neurogenesis and
suppresses gliogenesis by controlling the activation of SHP-
1/STAT3 in NSCs. Therefore, PLD1/PA/SHP-1/STAT3 sig-
naling is an important pathway in embryonic brain
neurogenesis.

Conclusions

To summarize the findings presented thus far, PLDI is
critical for neuronal differentiation, which is regulated by
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Fig.3 Phospholipase D1 (PLD1)-mediated multiple signals contribute to
promote neurogenesis of neural stem cells (NSCs). At least three different
signals are involved in the regulation of neuronal differentiation of NSCs.
Ca’*-dependent signaling (red arrows) is the most important among these
signals. Increased intracellular Ca®* induces hippocalcin (HPCA)-protein
kinase Ca (PKCw) activation, which facilitates PKCox-dependent PLD1
activation. Phosphatidic acid (PA), a functional product of PLD1, affects
the activation of SH2-domain-containing tyrosine phosphatase-1 (SHP-
1). SHP-1 inhibited the activation of STAT3 (Tyr 705) activation, thereby
inhibiting astrocytic differentiation and promoting neuronal
differentiation in NSCs. The second proposed model for pathway
signaling is the PLD1-mediated Bcl-2 expression during neuronal
differentiation of NSCs (blue arrows). The model suggests that Bcl-2
expression in neuronal differentiation of NSCs, including neurite out-
growth, depends on PLCy/PKC«/PLD1/PA/AA/EP4/PGE2/PKA/
p38MAPK/CREB/Bcl-2 signaling. The final pathway is the binding of
Cdc42 to PLDI1, which increased PLD1 activity during neuronal
differentiation of NSCs (black arrows). PLD1 activation by Cdc42
increased neurite outgrowth, suggesting that PLD1 activity is required
for neuronal differentiation in NSCs

multiple signals, contributing to the neuron-to-astrocyte
switch in NSCs from the rat E14 cortex (Fig. 3).
Therefore, PLD1 may have a positive role in neuronal dif-
ferentiation of NSCs. Conversely, however, it has also
been reported that PLD1 plays a negative role in neuronal
differentiation, especially in the dendritic branching of cul-
tured hippocampal neurons from rat E18 (Zhu et al. 2012).
In culture, progenitor cells isolated at different embryonic
stages behave in a manner that mimics the normal process
of development. Progenitor cells from rat E14 cortex (at
the peak of neurogenesis) primarily give rise to neurons
and dividing precursor cells. In contrast, E18 progenitor
cells immediately give rise to astrocytes (Sun et al.
2001). These studies have demonstrated that the role of
PLD1 may be reversed depending on the age and location
of the stem cell embryo. In this regard, we should now
consider the study of how PLDI1 regulates neurogenesis
according to the age and location of the embryo.
Addressing this will provide us with insights into the dif-
ferentiation mechanisms of neural stem cells following the
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developmental stages of the brain. Further, it may also help
us in the application of neural stem cells to repair the dam-
aged or degenerative nervous system.
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