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A B S T R A C T   

Spinal cord magnetic resonance imaging (MRI) has a central role in multiple sclerosis (MS) clinical practice for 
diagnosis and disease monitoring. Advanced MRI sequences capable of visualizing and quantifying tissue macro- 
and microstructure and reflecting different pathological disease processes have been used in MS research; 
however, the spinal cord remains under-explored, partly due to technical obstacles inherent to imaging this 
structure. We propose that the study of the spinal cord merits equal ambition in overcoming technical challenges, 
and that there is much information to be exploited to make valuable contributions to our understanding of MS. 

We present a narrative review on the latest progress in advanced spinal cord MRI in MS, covering in the first 
part structural, functional, metabolic and vascular imaging methods. We focus on recent studies of MS and those 
making significant technical steps, noting the challenges that remain to be addressed and what stands to be 
gained from such advances. Throughout we also refer to other works that presend more in-depth review on 
specific themes. In the second part, we present several topics that, in our view, hold particular potential. The 
need for better imaging of gray matter is discussed. We stress the importance of developing imaging beyond the 
cervical spinal cord, and explore the use of ultra-high field MRI. Finally, some recommendations are given for 
future research, from study design to newer developments in analysis, and the need for harmonization of se-
quences and methods within the field. 

This review is aimed at researchers and clinicians with an interest in gaining an overview of the current state 
of advanced MRI research in this field and what is primed to be the future of spinal cord imaging in MS research.   

1. Introduction 

Imaging of the spinal cord (SC) with magnetic resonance imaging 
(MRI) plays a central role in the diagnosis and clinical management of 
multiple sclerosis (MS). Assessment of SC pathology has value in pre-
dicting accrual of disability and conversion to a progressive course 
(Bischof et al., 2022; Ruggieri et al., 2021); recently introduced concepts 
like the topographical model of MS (Krieger et al., 2016) and the idea of 
SC ‘reserve’ (Sastre-Garriga et al., 2022b) also stress its importance and 
prognostic value. As technical advances are made, SC imaging has the 
potential to provide markers able to quantify axonal and myelin dam-
age, protection and repair; to improve our understanding of MS 

pathology beyond radiological observations; and ultimately to provide 
outcome measures for clinical trials and to monitor patients over time. 

In this paper, we focus on research MRI applications in the SC in MS 
at high field strength. Two recent reviews (Chen et al., 2020; Moccia 
et al., 2019) have to be mentioned that summarize advances and per-
spectives in SC imaging for MS; we build upon these and others by of-
fering a perspective on the most promising topics in current research. 

In the first part, we go over current techniques used for assessing SC 
tissue structure and microstructure. Discussed below are recent ad-
vancements in diffusion MRI, myelin water imaging, and saturation 
transfer-based methods. We then go over the methods for assessing 
function and metabolism, including functional MRI (fMRI), 
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spectroscopy and susceptibility-based imaging. While issues of valida-
tion and reproducibility, which are crucial to clinical translation, are 
discussed throughout, we refer to work by Granziera et al. (2021) for a 
more comprehensive reflection on the clinical maturity of these 
methods. 

In the second part, we discuss topics deemed relevant to the future of 
the field, highlighting the need for improved imaging of gray matter 
(GM) pathology; imaging beyond the cervical cord, and the value of 
concurrent brain-SC imaging; and going over necessary methodological 
advancements, including the use of ultra-high field (UHF) and consid-
erations on study design and analysis methods. 

2. Advanced imaging methods 

2.1. Macro- and microstructural imaging 

2.1.1. Diffusion MRI 
Diffusion MRI (dMRI) harnesses the diffusion of water molecules, 

restricted and influenced by interactions with tissue components 
including macromolecules and membranes, to generate image contrast. 
In the SC, this offers the potential to detect and characterize specific 
tissue and cell types and measure changes associated with pathology. 
The commonly used diffusion tensor imaging (DTI) results in quantita-
tive measures describing the magnitude of diffusion both perpendicular 
and parallel to the cord (radial and axial diffusivities) as well as mea-
sures of the coherence of the diffusion process (fractional anisotropy). 
DTI measures have shown a strong correlation with EDSS scores, 
providing solid evidence that microstructural changes contribute to 
disability (Kearney et al., 2015). For example, decreased anisotropy and 
increased radial diffusivity are observed in the MS cord compared to 
controls (Kearney et al., 2015; Klawiter et al., 2011; Toosy et al., 2014). 
However, while DTI measures are highly sensitive, they are not specific 
to any individual changes in tissue microstructure (Jones and Cer-
cignani, 2010; Wheeler-Kingshott and Cercignani, 2009). 

Here, biophysical models (or multi-compartment models) offer a 
solution in attempting to explicitly characterize the geometry, size, and 
diffusion properties of individual tissue compartments, resulting in 
potentially more meaningful and specific parameters of the tissue 
microstructure (Jelescu et al., 2016, 2015; Novikov et al., 2019, 2018). 
For example, offering the ability to measure neurite orientations and 
dispersion, the intra- and extra- axonal volume fractions and diffusivities 
(Jelescu et al., 2015; Kaden et al., 2016; Palombo et al., 2020; Zhang 
et al., 2012), soma and dendritic cell sizes (Palombo et al., 2020), free 
water partial volume (Pasternak et al., 2009; Zhang et al., 2012), or even 
axon radii (Alexander et al., 2010; Assaf et al., 2008; Barazany et al., 
2009; Fan et al., 2018; Veraart et al., 2020) thus allowing to provide 
more specific information about pathology, separating and quantifying 
edema, demyelination, or axonal loss. This is particularly important in 
light of the fact that current clinical protocols do not provide that 
pathological specificity. Despite this potential, multi-compartment 
models of diffusion have been rarely implemented in the cord (By 
et al., 2018b, 2017; Collorone et al., 2020; Grussu et al., 2020, 2019, 
2017, 2015; Schilling et al., 2019b), and even less in MS pathology (By 
et al., 2017; Collorone et al., 2020; Grussu et al., 2017). Improvements 
and innovation in acquisition, pre-processing, and biophysical model-
ling are needed to make SC diffusion MRI a useful biomedical tool for 
MS. 

Although a standard protocol was recently proposed and validated to 
serve as a starting point for clinicians and researchers studying the cord 
with dMRI (Cohen-Adad et al., 2021b), advances are needed to acquire 
high SNR data (particularly relevant for dMRI where the diffusion pro-
cess already attenuates the MR signal), with resolution high enough to 
ensure intra-cord contrast while minimizing distortions. This may 
include optimized diffusion encoding (Jones et al., 1999; Landman et al., 
2007), or patient-specific diffusion encoding schemes to take advantages 
of the orientation of the cord, reduced field-of-view or multi-shot 

acquisition schemes (Jeong et al., 2013; Karampinos et al., 2009; 
Wilm et al., 2007) to minimize distortions, or investigations of alter-
native readouts (e.g., turbo/fast spin echo, propeller), to get the most 
SNR out of images. 

Advances are also expected in pre-processing. The excellent review 
by Tax et al. covers new and novel pre-processing strategies developed 
for diffusion MRI (Tax et al., 2022); here, future developments and 
improvements are anticipated using deep learning networks for tissue 
masking (Kleesiek et al., 2016), utilizing complex data (Cordero-Grande 
et al., 2019), data redundancy (Veraart et al., 2016), or machine 
learning (Fadnavis et al., 2020) for noise bias removal or denoising, 
advances in signal representation for motion and outlier detection 
(Christiaens et al., 2021; Tax et al., 2015), and deep learning for 
distortion corrections (Qiao and Shi, 2020; Schilling et al., 2019a, 
2020). While most of these are developed and optimized for the brain, 
the Spinal Cord Toolbox (SCT; see ‘Analysis tools’ section) already offers 
motion correction, cord masking, and robust model fitting for dMRI. 
Moreover, denoising algorithms have shown feasibility in the cord using 
high-quality, multi-contrast datasets (Grussu et al., 2020) and on clinical 
quality low-direction diffusion datasets (Schilling et al., 2021). Never-
theless, advances are still needed to improve susceptibility distortion 
and motion correction (Snoussi et al., 2021), particularly at high b- 
values and with low SNR data. 

While as described above, diffusion modelling has shown feasibility 
using SC data, little validation has been performed specifically in the 
cord, which may have different tissue microstructural characteristics 
than many fiber pathways in the brain – including larger or more 
heterogenous axon diameters, different GM constituents, and more 
extreme partial volume effects. Future works should investigate which 
biophysical models are appropriate for the cord; for example, it may be 
possible to sensitize sequences to the larger axon diameters, and models 
utilizing stick-components (i.e. zero radius axons) may be less appro-
priate. It will be critical to assess existing and new models for the cord, 
and the MS cord in particular, evaluating not only model fit, but also 
sensitivity and specificity to physiological changes in the tissue (Jelescu 
et al., 2020). Additionally, multi-dimensional or advanced diffusion 
encodings (Andersen et al., 2020; Lundell et al., 2019; Nery et al., 2019; 
Topgaard, 2017; Westin et al., 2016), which may enable robust model 
fitting or enhanced sensitivity to specific tissue features (different scales 
of anisotropy, size variances, orientational coherence) have been 
underexplored in the SC. 

Reproducibility of dMRI of the SC has been thoroughly characterized 
for within sessions (i.e., scan-rescan), across sites, and across vendors. A 
study of a single subject scanned in 19 centers, and 260 subjects scanned 
at 42 centers enabled the production of normative values within and 
along the SC (Cohen-Adad et al., 2021a). Notably, while DTI measures 
show very little intra- and inter-site variability, there were significant 
differences across vendors, largely attributed to noise properties, coils, 
reconstruction, and different strategies for reducing field of view and 
motion correction (Cohen-Adad et al., 2021a, 2021b). Similarly, 
normative values have been provided for multi-compartment models, 
including NODDI and Spherical Mean Techniques (By et al., 2018b; 
Grussu et al., 2015; Schilling et al., 2019b), again showing high repro-
ducibility, even with clinically feasible acquisitions (By et al., 2018b, 
2016). 

Lastly, diffusion MRI enables mapping the structural connections of 
the CNS through fiber tractography (Basser et al., 2000; Behrens et al., 
2003; Catani et al., 2002). While this may seem rather uninteresting in 
the cord, typically resulting in a single large superior-inferiorly orien-
tated bundle, improvements in acquisition, pre-processing, and model-
ling of the cord may facilitate enhanced structural connectomic 
investigations. Future work may also utilize tractography to study intra- 
segment connections, cluster or parcellate ascending or descending 
pathways of the cord, or integrate brain and cord structural connections 
(see ‘Brain and cord imaging’ section). 
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2.1.2. Myelin imaging 

2.1.2.1. Myelin water imaging. Myelin water imaging (MWI) is a tradi-
tionally T2 relaxation-based method for the quantification of myelin 
water fraction, a surrogate measure of myelin content. MWI was 
recently identified by MAGNIMS (Granziera et al., 2021), along with 
quantitative T1 mapping and MTR, as among the most ‘mature’, and the 
furthest along towards clinical applicability and utility among several 
advanced SC imaging techniques. The advantages of MWI are the rela-
tively high reproducibility and specificity for myelin. While brain MWI 
has already made several contributions to the understanding of structure 
vs function relationships in MS (see (Edwards et al., 2022) for a review), 
there remains room for applying the same designs in the SC. (Lee et al., 
2020) point out several barriers to the further deployment of MWI, 
including the limited vendor availability of most advanced sequences, 
and the complexity of the post-processing. To help remedy this, im-
provements have been made recently in terms of rapid imaging, ease and 
speed of processing, specificity and stability of algorithm fitting 
methods, and availability of normative datasets. Ljungberg et al. (2017) 
implemented a 3D gradient and spin echo (GRASE) T2 relaxation 
experiment covering 4 cm at the C2-C3 level in the inferior-posterior 
direction in a 8.5 min acquisition, which showed sensitivity to lesional 
damage in MS (Dvorak et al., 2019) and helped differentiate between 
relapsing and progressive subtypes (Lee et al., 2021). Liu et al. (2020b) 
optimized a fitting algorithm using a neural network as an alternative to 
the existing NNLS method for T2 decay curve fitting, taking the pro-
cessing time from 15 min to 4 s for single-subject GRASE data, further 
reducing hardware and computing demands and thus bringing it closer 
to large-scale feasibility. Liu et al. (2020a) employed z-score mapping to 
highlight abnormal areas of myelin water fraction (MWF) and geometric 
mean T2 in the cervical SC (CSC) in three participants with relapsing- 
remitting MS (RRMS) compared to a control group, using the afore-
mentioned GRASE sequence. One could envision further applications of 
this method for the visualization and quantification of damage assessed 
by MWI, provided that compatibility with data from different scanners/ 
sequences, greater anatomical coverage, and inclusion of a control 
population with broader demographic characteristics could be achieved. 
Moreover, Dvorak et al. (2021) compared T2-based MWI methods in 
controls and people with MS (pwMS; mcDESPOT vs GRASE), and dis-
cussed both with regards to sensitivity to MS-related demyelination in 
brain and CSC. Use of MWI in the SC in MS is supported by ongoing work 
on histological validation in both healthy and MS brain and cord tissue 
(see Laule and Moore, 2018 for a review), including making use of UHF 
(Laule et al., 2016; McDowell et al., 2022), as well as a substantial body 
of work on acquisition strategies, algorithm stability, and intra- and 
inter-site reproducibility (Alonso-Ortiz et al., 2015). 

Somewhat akin to myelin water imaging, the Rapid Estimation of 
Myelin for Diagnostic Imaging (REMyDI), a variant of synthetic imaging 
based on fast, simultaneous measurement of T1, T2 and proton density, 
enables reconstruction of various image contrasts with different 
weightings, including ‘myelin fraction’ maps (Warntjes et al., 2016). 
Preliminary result have shown good repeatability and inter-site repro-
ducibility, and sensitivity to MS myelin pathology in and ex vivo in the 
brain (Ouellette et al., 2020a); adaptation to the SC would represent 
another promising development in myelin quantification. 

2.1.2.2. Magnetization transfer and quantitative MT. Magnetization 
Transfer (MT) MRI is one of several MRI methods that can provide 
sensitivity to myelin damage, loss and repair. MT imaging has been 
extensively explored in the brain and, to a lesser degree, in the SC, 
primarily due to the simplicity of the pulse sequence and relative ease of 
post-processing. The MT Ratio (MTR) has been shown to be sensitive to 
de- and re-myelination (Chen et al., 2008), yet uncertainty still remains 
about its specificity for myelin (Vavasour et al., 2011) and its repro-
ducibility (van der Weijden et al., 2021), including in the SC specifically 

(Combès et al., 2019; Lévy et al., 2018). As such, it is not ideally posi-
tioned to be considered for large, multi-center trials due to its sensitivity 
to pulse sequence design, non-physiological indices, vendor differences, 
and field strength. 

To that end, quantitative MT (qMT) has been designed to calculate 
physiological parameters such as the pool size ratio (PSR), the related 
metric macromolecular pool fraction (MPF), and MT exchange rate. 
QMT-derived indices have shown sensitivity to differences in myelin 
content between brain normal-appearing white matter (WM), de- and 
re-myelinated MS lesions in post-mortem brain tissue (Schmierer et al., 
2007), and correlated strongly with myelin in a number of animal 
validation studies (Kisel et al., 2022); development and applications to 
study MS pathology in brain GM and WM have been numerous (York 
et al., 2022). However, qMT can in practice be quite slow. Whether 
performed by selective inversion recovery (SIR) or pulsed saturation 
(Smith et al., 2017), multiple images must be obtained and co- 
registered. In the SC, the number of acquisitions in combination with 
the demand for high resolution can lead to very long and prohibitive 
scan times. In addition, the fitting routines required to extract these 
parameters are computationally costly, all of which currently presents 
significant challenges against potential clinical adoption. Conversely, 
using the qMT formalism presented by Yarnykh et al. (Yarnykh, 2012), 
Smith et al. (2017) showed that B1 and B0-corrected single-point qMT 
can, indeed, be performed in the SC with improved scan time and 
sensitivity to MS pathology. As seen in Fig. 1, the PSR (and ΔPSR: the 
difference in PSR for a participant with MS compared to a control group 
average) is reduced throughout the SC, which may reflect the presence 
of demyelinating lesions. Other approaches for acquisition in the SC 
have been proposed: EPI-based with a reduced field-of-view, which 
showed adequate single-subject reproducibility and agreement of 
quantitative indices with previous work (Battiston et al., 2018), and 
another as part of a multi-parametric protocol with unified read-out 
(Grussu et al., 2020). Both currently await application to MS. 

Looking forward, the two most pressing needs for SC qMT and their 
application to MS are as follows. First is scan efficiency: minimizing scan 
time while maintaining high-fidelity, high-confidence PSR calculations. 
The single-point method shows that it is possible to calculate the PSR in 
the SC of pwMS while correcting for non-physiological variables; how-
ever, it has not been studied in large trials or across vendors. More so-
phisticated approaches such as artificial intelligence (AI) or deep 
learning could be considered to improve the fitting of noisy data or to 
minimize the number of acquisitions necessary for high-fidelity PSR 
indices. Secondly, further understanding the sensitivity and specificity 
of MT in the SC to de- and re-myelination could have applications in 
clinical trials of MS. 

2.1.2.3. Inhomogeneous magnetization transfer. As stated above, con-
ventional MT imaging, including MTR and qMT, lacks specificity for 
myelin, since MT imaging reflects the communication between all 
macromolecular protons and water. An alternative approach, inhomo-
geneous MT (ihMT), has been developed and utilizes the differences in 
saturation transfer among three different saturation schemes: saturation 
at positive offset frequencies, saturation at negative offset frequencies, 
and dual frequency saturation (positive and negative) to improve 
specificity for myelin rich tissues. ihMT has shown higher GM:WM 
contrast, as well as sensitivity to MS lesions in the brain (Van Obberghen 
et al., 2018). The promise of increased specificity for myelin content and 
loss is enticing; however, ihMT also suffers from long acquisition times, 
sensitivity to B1, and other non-physiological constraints that MT faces. 
Recent work by Girard et al. (2017) improves on ihMT for SC applica-
tions by removing CSF pulsation artifacts and showing that ihMT- 
weighted contrast can be obtained in an approachable scan time. 
Zhang et al. (2019) reviewed preclinical and validation studies of ihMT 
and showed good intra- and inter-scanner reproducibility in vivo in 
human cerebral WM tract; further development and validation are 
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underway (Cohen-Adad, 2018). Lastly, Rasoanandrianina et al. (2020) 
showed that ihMTR was significantly different in the SC of pwMS 
compared to controls, and that ihMTR showed higher sensitivity to those 
changes than DTI or MTR metrics. This first study applying ihMTR to the 
MS SC is promising, and future studies should test the reproducibility of 
these findings. 

2.1.3. Chemical exchange saturation transfer 
Chemical Exchange Saturation Transfer (CEST) is similar in pro-

cedure to MT and ihMT, but distinct in its contrast mechanism. CEST 
contrast is generated by the transfer of spectrally specific RF saturation 
from labile protons and the surrounding water through direct chemical 
exchange rather than dipole–dipole interactions as is seen for MT. CEST 
is sensitive to small, mobile molecules that have exchangeable protons 
resonating at frequencies sufficiently distinct from water, exchange rates 
on the slow to intermediate time scales, and in sufficient abundance. The 
most common CEST method is Amide Proton Transfer (APT) which has 
been studied extensively in cerebral ischemia (Sun et al., 2007) and 
stroke (Msayib et al., 2019), and cancer. APT has been shown to be 
sensitive to proteins and peptides through the amide protons of the 
protein backbone and reflects changes in pH and protein concentration 
(Van Zijl and Yadav, 2011). APT-CEST in the CSC has been shown to be 
altered in pwMS compared to healthy controls (By et al., 2018a; Dula 
et al., 2016a), demonstrating potential for a new contrast mechanism in 
the SC. APT-CEST could be sensitive to increases in proteins/peptides 
observed during neuroinflammation processes underlying MS 
pathology. 

Another advantage of CEST is that it can be ‘tuned’ to be sensitive to 
other metabolites or molecules of interest. Kogan et al. (2013) showed 
that glutamate sensitive CEST (GluCEST) can be obtained in the SC at 7 
Tesla (T), opening opportunities to study neurotransmission and 
toxicity. 

Even though there is a wealth of CEST opportunities in the MRI 
community, the vast majority have not been translated to the SC due to 
the long acquisition times, sensitivity to B1 and B0 effects, and relatively 
low sensitivity to its measurement targets. Providing a contrast mech-
anism that is sensitive to neuroinflammation, neurotransmitter 

aberrations, pH, or other progenitors of MS disease evolution would be 
highly desirable. Technical advancements, simulation, validation, 
reproducibility studies and evaluation of sensitivity and specificity for 
SC applications remain on the horizon. 

2.2. Functional, metabolic, and vascular measures 

2.2.1. Functional MRI 
Task-based and resting-state functional MRI (fMRI) studies have 

shown the complex effects of MS on the brain’s functional architecture 
and its evolution over the course of the disease; they can be explored in 
the CSC and have seen a few applications in MS research. 

Previous block-design studies employing a tactile stimulation para-
digm showed increased activation and alterations in recruitment pat-
terns in the CSC in pwRRMS, compared to controls (Agosta et al., 2008a, 
2008b; Valsasina et al., 2012), which also correlated with disability 
status (Valsasina et al., 2010). A related study provided preliminary 
evidence that neural correlates of MS-related fatigue may be measured 
in the CSC: the spatial extent of recruitment during tactile stimulation 
was greater in fatigued vs non-fatigued pwRRMS (Rocca et al., 2012). 
With newer acquisition schemes in the transverse plane and improved 
spatial resolution, GM horns can now be visualized axially, and the 
resting-state functional connectivity properties of the CSC in healthy 
volunteers have been described (Barry et al., 2016, 2014; Kong et al., 
2014). One resting-state fMRI study of the CSC at 7T found no global 
differences in functional connectivity between pwMS and controls using 
a region-pair seed-based approach. WM lesions were found to have 
complex effects, causing both increases and decreases in connectivity 
metrics on different within-segment same-level functional networks 
depending on their location in different tracts and whether up- or down- 
stream of the GM networks of interest (Conrad et al., 2018). Another 
study at 3T observed a link between increased resting-state connectivity 
in the CSC sensory network in pwRRMS and greater tissue damage as 
measured by DTI, suggesting that functional compensatory mechanisms 
may exist in the cord similarly to those observed in the brain in the early 
disease stages (Combes et al., 2022). 

Further clinical applications will be facilitated as advances in 

Fig. 1. Left: mean anatomical mFFE, APTasym and PSR for five healthy controls obtained at 3T. Note the high contrast between the internal gray matter and sur-
rounding white matter for the mFFE acquisition. Right: single-subject mFFE, APTasym, PSR (top three rows) for five pwMS. An increase in the APT signal, and a 
concomitant decrease in the PSR are seen where lesions are identified on the mFFE. The bottom two rows shows ΔAPT and ΔPSR, or the difference of the APTasym and 
PSR in each patient from the average healthy control image shown on the left panel. This calculation highlights the areas within the spinal cord that are distinct from 
healthy controls, and shows the potential contrast that could be used to study MS pathology over time. APT = Amide Proton Transfer; mFFE = multi-echo Fast Field 
Echo; PSR = Pool Size Ratio. 
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acquisition (Barry et al., 2018a; Kinany et al., 2022), quality assessment 
and pre-processing (Eippert et al., 2017) are made. The use of 7T can 
benefit SC fMRI via increased sensitivity to susceptibility effects for 
BOLD effect-based (T2*) contrast, and greater SNR which enables ac-
quisitions with sub-millimeter in-plane resolution. In the research 
setting, higher spatial resolution may prove useful to help reduce partial 
volume effects and, ideally, examine activity in specific neuronal pop-
ulations underlying motor and sensory processing, including noci-
ception (Kolesar et al., 2015). Data-driven methods like the Independent 
Component Analysis (ICA) can be used in the CSC (Kong et al., 2014) 
and may be applied to study GM circuits in the MS cord. An illustration 
of the main methods for analyzing SC resting-state fMRI data is shown in 
Fig. 2. 

While theoretical and methodological validation is a complex issue, 
knowledge can be gained from the extensive research field of brain 

fMRI, and preclinical work in non-human primates that allows for 
simultaneous electrophysiological recordings to validate the origins and 
properties of the fMRI signal in the SC (Wu et al., 2019). Other existing 
methods developed for functional imaging of the brain may be applied 
in the future, including but not limited to exploring the features of the 
hemodynamic response function in the cord, fMRI of the WM which 
could reveal information on the functional properties of affected tracts, 
and dynamic connectivity approaches (Kinany et al., 2020). The 
development of simultaneous brain and CSC fMRI protocols (Cohen- 
Adad et al., 2010; Finsterbusch et al., 2013; Islam et al., 2019) may also 
enable investigations of cortico-spinal activity at rest and during motor 
or sensory tasks, which may be of value when studying impairments in 
sensorimotor function (Vahdat et al., 2020), nociception and neurogenic 
pain mechanisms (Tinnermann et al., 2021), and functional plasticity 
across the neuraxis. Finally, a few investigations have reported 

Fig. 2. Illustration of the main post-processing methods for resting-state functional MRI of the spinal cord. Example outputs are shown for region of interest-based, 
seed-based, and Independent Component (ICA) analyses. ROI analysis: a single axial slice showing regions of interest in the four grey matter horns and corresponding 
extracted time-series. Correlations can be computed between any two time-series, giving a coefficient as an outcome measure of functional connectivity. Those 
measures can be obtained between any two regions within or across slices or spinal levels. Seed-based analysis: example of a single-subject exploratory analysis, 
showing positive and negative voxelwise correlations (thresholded at r < -0.25 and r > 0.25), with a seed voxel placed in the anterior grey matter horn shown with 
green crosshairs. Correlated regions are seen by order of magnitude in the contralateral ventral horn, the ipsilateral dorsal horn, and the contralateral dorsal horn 
within-slice. ICA: two Independent Component maps corresponding to the ventral grey matter network at two spinal levels in the cervical cord are shown, derived 
from five subjects’ data. Other approaches include dynamic connectivity methods, amplitude of low frequency fluctuations (ALFF), regional homogeneity analysis 
(ReHo), haemodynamic response function (HRF) deconvolution, and among others. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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moderate-to-good within-session reproducibility of ventral and dorsal 
networks functional connectivity (Barry et al., 2016; Hu et al., 2018), as 
well as consistency between acquisition methods (Kinany et al., 2022) 
and across studies, which lends credibility to SC fMRI as a research tool, 
although more test–retest and longitudinal studies are required. 

2.2.2. MR spectroscopy and sodium imaging 
Proton magnetic resonance spectroscopy (MRS) allows for the in vivo 

quantification of several metabolites reflecting neural and glial function, 
some of which are thought to be implicated in MS pathophysiology. 
Moccia and Ciccarelli (2017) provide an extensive discussion of the 
applications of MRS to study brain and SC tissue in MS, organized by 
metabolite. Swanberg et al. (2019) review the influence of various 
methodological factors at play in MRS studies of MS, from study design 
to metabolite estimation. More specifically, studies using MRS in the 
CSC in MS are briefly discussed by Basha et al. (2018) and further 
reviewed by Chen et al. (2020); overall, reduced levels of N-acetyl 
aspartate and increased myo-inositol can be found in pwMS, are 
generally correlated with EDSS but not with cross-sectional area (CSA). 
The particular obstacles to SC MRS include the necessity for adequate B0 
shimming, and the inherent low spatial resolution of the method pre-
venting tissue type-specific measurement, which will need to be 
addressed before its clinical potential can be exploited. 

One particularly promising application of MRS is sodium quantifi-
cation. Sodium accumulation, via expansion of the extracellular space 
and metabolic disruption of axonal ion channels, may be a contributing 
factor for neurodegeneration in MS (Huhn et al., 2019). Sodium imaging 
has been adapted for use in the CSC using MRS and a reference phantom 
(Solanky et al., 2013). Solanky et al. (2020) used 23Na-MRS at 3T in the 
CSC in pwRRMS compared with controls and found an increase in total 
sodium concentration (TSC) controlling for demographic factors and 
independently of CSA. TSC was correlated with whole-cord (GM and 
WM, including lesioned tissue) FA in pwMS, and associations were noted 
with mediolateral postural stability, albeit in a small sample. The large 
effect size of the group comparison and observed relationship of TSC 
with microstructural WM damage, as measured with DWI, is promising 
given the biological specificity of this method and its high reproduc-
ibility in healthy controls (Solanky et al., 2013). However, it also ap-
pears to have a relatively high data quality rejection rate which should 
be addressed in future studies. 

2.2.3. Susceptibility imaging 
The central vein sign (CVS), i.e. the presence of a visible central vein 

on T2*-weighted imaging or susceptibility-weighted imaging (SWI), can 
be identified in cerebral WM T2 lesions. Histopathological reports of the 
CVS exist since some of the earlier descriptions of MS (Dawson, 1916), 
and it has been proposed as a robust imaging marker capable of differ-
entiating between MS and other conditions with high sensitivity and 
specificity (Sati et al., 2016; Sinnecker et al., 2019). With MS having a 
heterogeneous clinical and radiological presentation and many 
“mimics”, the value of identifying the CVS to aid the diagnosis of MS in 
and beyond the brain represents an attractive research goal with evident 
clinical utility. In the brain, the CVS has been studied across all scanning 
platforms, susceptibility-weighted protocols and field strengths 
demonstrating its potential usefulness in a diagnostic setting (Samar-
aweera et al., 2017; Sati et al., 2016; Sinnecker et al., 2019). Possible 
lines of investigation on the ‘hunt’ for the CVS in the SC include using 
high-resolution, high-field T2*-weighted imaging, SWI, and the poten-
tial use of a contrast agent (see Chen et al., 2020). Encouragingly, one 
group recently showed the feasibility of imaging the CVS in upper CSC 
inflammatory lesions in patients with MS and other conditions, using a 
SWI protocol with a head coil at 3T (Jensen-Kondering et al., 2022). 

An extension of SWI is quantitative susceptibility mapping (QSM). 
Although QSM is sensitive to iron and myelin content, the most pertinent 
application in MS may be the identification of paramagnetic rim lesions, 
a subset of chronic active brain lesions identified on SWI as having a 

paramagnetic rim. These lesions, characterized by demyelination within 
the lesion’s core and a rim of iron-laden macrophages and microglia on 
the lesion’s edge (Bagnato et al., 2011), tend to fail to repair, slowly 
expand over time and, similarly to the CVS, may have potential diag-
nostic applications (Absinta et al., 2016; Clarke et al., 2020; Dal-Bianco 
et al., 2017). However, there are so far no applications of SWI or QSM in 
the MS cord, making this an exciting target for future developments. 

2.2.4. Perfusion 
Implementation of perfusion measures in the cord without exoge-

nous contrast agents has been challenging (Lévy et al., 2020). While 
some headway has been made with regards to the pathological origins 
and clinical value of perfusion measures in MS (Granziera et al., 2021; 
Lapointe et al., 2018), its merit in the cord for the study of MS remains to 
be ascertained. 

3. Avenues for future research 

3.1. Better measures of gray matter pathology 

GM damage in the SC, as measured by atrophy and presence or 
extension of lesions into the GM, is an independent determinant of 
clinical status and disability (Bonacchi et al., 2020; Kearney et al., 2015; 
Schlaeger et al., 2015). Isolation and quantification of GM damage is, 
however, currently lacking as most sequences are tailored for the 
assessment of WM pathology; thus, more sensitive and specific measures 
are much needed. 

SC GM area is best measured on T1-weighted phase-sensitive inver-
sion recovery (PSIR; Papinutto et al., 2015; Schlaeger et al., 2015, 2014) 
or gradient-echo T2*-weighted axial images, both of which provide good 
GM/WM contrast. Recent work comparing different sequences and field 
strengths for GM visualization (Cohen-Adad et al., 2022; Papinutto and 
Henry, 2019), as well as a framework for the quantitative evaluation 
thereof, paves the way for further development of better SC GM struc-
tural imaging. 

There are, to the authors’ knowledge, no reports of regional SC GM 
atrophy in MS beyond looking at GM and WM compartments. Assess-
ment of regional atrophy (e.g. different horns) would, in theory, be 
made possible with higher spatial resolution acquisitions, scans with 
improved GM:WM contrast, and using standard space atlases. Voxel- 
wise mapping methods have already been used to assess whole-cord 
atrophy (Freund et al., 2022; Valsasina et al., 2013). Another candi-
date is tensor-based morphometry, a method based on extracting the 
Jacobian matrix of the warp fields to a template space, which has been 
used to look at cord and GM regional volumes between younger and 
older healthy adults (Taso et al., 2015). 

Relatively little attention has been paid to lesion identification in the 
GM specifically, although GM lesion load in the CSC has been estimated 
as only 28 % smaller than in the WM for RRMS, and that difference is 
even smaller in progressive subtypes (Eden et al., 2019). Current im-
aging techniques capable of identifying GM-only lesions, as opposed to 
WM or mixed WM/GM lesions, are lacking, despite their presence being 
known from histopathology (Gilmore et al., 2006). Among available 
sequences, 3D T1-weighted PSIR (Fechner et al., 2019; Mirafzal et al., 
2020) and proton density/T2*-weighted gradient-echo (Fast Field Echo 
sequences; MERGE/MEDIC) are best suited for lesion identification, 
although those have not yet been adopted into clinical practice. Other 
proposed methods are discussed in Moccia et al. (2019), who also note 
the lack of sequences optimized for GM lesion identification. 

SC lesions often extend across the WM/GM boundary and have 
‘blurry’ edges. Furthermore, lesion intensity on T2*-weighted images is 
similar to that of GM and so differentiating healthy-appearing from 
lesioned GM tissue is not an easy task, even when performed by expe-
rienced raters. Lesions may also confound the measurement of GM area 
in cases where it may have been a clinically pertinent marker (Sastre- 
Garriga et al., 2022a). The CNN lesion detection algorithm proposed by 
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Gros et al. (2019) has a priori knowledge of the healthy GM contour; 
however, the accuracy of automated lesion segmentation in WM vs GM 
was not assessed in this study. Future proposed developments include 
making use of different image contrasts when available, and including 
measures of lesion delineation uncertainty to prompt human interven-
tion in particular cases (Gros et al., 2019). 

GM demyelination has been measured in the normal-appearing 
cortex and cerebral deep GM structures, with the former being partic-
ularly clinically relevant; pathology studies have shown that cervical 
GM demyelination is as severe as that seen in cortical GM (Gilmore et al., 
2009). However, in vivo SC MR methods with sensitivity to GM pathol-
ogy beyond gross atrophy and lesion load are limited. Loss of axonal 
density, neuronal shrinkage and loss may also be present and may 
contribute to GM atrophy (Schmierer et al., 2018). 

Quantitative T1 mapping has high sensitivity but low specificity to 
pathological changes in general; however, its relative ease of acquisition 
and processing make it an attractive option. Dvorak et al. (2019) found 
similar MWF but higher T1 in the SC GM of one pwRRMS. High- 
resolution T1 mapping may hold promise for resolving fine anatomy of 
GM sub-regions (Massire et al., 2020), and quantifying and tracking 
changes in tissue over time. 

The T1-weighted/T2-weighted ratio measurement has been proposed 
for evaluating cortical myelination from standard T1- and T2-weighted 
scans. The pros (Nakamura et al., 2022) and cons (Mühlau, 2022) of 
construing this measure as an indicator of myelin content have been 
debated. To the authors’ knowledge, those measures have only been 
tested once in the SC of a single younger pwMS with a relatively short 
disease duration, compared to a range of control values, showing qual-
itative difference in lesioned tissue, but not in normal-appearing GM 
(Teraguchi et al., 2014). 

Sequences designed to evaluate WM damage may be applied in the 
GM, although they typically suffer from reduced SNR. MWF measure-
ments have lower accuracy and reliability in the GM, since myelin 
content is lower (Lee et al., 2020; MacKay and Laule, 2016). The 
macromolecular proton fraction from single-point qMT imaging showed 
acceptable test–retest reliability in the GM (Smith et al., 2014), although 
further work is needed to determine whether those methods have 
enough sensitivity to detect non-lesional myelin loss in the SC GM. 
Advanced diffusion models (e.g. NODDI, diffusion kurtosis imaging) 
may also find applications in the GM to study microstructural tissue 
properties other than myelination, such as various aspects of neurite 
morphology. Particularly promising, the NDI showed differences be-
tween pwMS and controls in CSC normal-appearing GM (By et al., 2017) 
and normal-appearing WM (Collorone et al., 2020), although normal- 
appearing tissue differences have not yet been corroborated by pathol-
ogy (Grussu et al., 2017), and potential confounding factors may require 
further investigation. For overviews of the application of DWI models to 
MS pathology, including in the SC, see Cercignani and Wheeler- 
Kingshott (2019) and Lakhani et al. (2020). 

3.2. Beyond the cervical spinal cord 

While the CSC is a site of high disease activity in MS (Ouellette et al., 
2020b), and has shown most improvement in advanced MRI methods, 
imaging of other cord areas is even less developed and further compli-
cated by proximity to bone, heart and lungs, greater B0 field in-
homogeneity, and the lack of dedicated hardware. In this section, 
general considerations regarding MRI of the cervical and thoracolumbar 
spine, integration of brain and CSC imaging, and imaging of the pe-
ripheral nervous system (PNS) in MS are discussed. 

3.2.1. Optimizing CSC coverage 
Advanced MR scans in the CSC are most often done in the transverse 

plane to highlight intra-cord anatomies, sometimes limiting coverage in 
the rostro-caudal direction. Acquisitions with smaller fields of view are 
usually centered above the cervical enlargement, which offers several 

anatomical advantages: a straighter segment of the cord, less motion, 
and predominate location of MS lesions (Eden et al., 2019). Below C5, 
issues of B0 inhomogeneity and motion related to proximity to the heart 
and lungs arise, often leading to lower data quality in those segments 
(Massire et al., 2018a). This, in turn, can confound results, for instance, 
in correctly identifying lesions (e.g. Kerbrat et al., 2020). 

The mobility and curvature of the cord in the CSC present a partic-
ular challenge. The use of several stacks to roughly align with the cord 
(for an example, see Ouellette et al., 2020) may be valuable at the 
expense of increased acquisition times and more elaborate manual 
intervention during scan pre-planning. Another approach is using a 
multi-slice-multi-angle (MSMA) strategy, enabling transverse acquisi-
tion of several slices orthogonally to the curvature of the cord at 
different angles each. This configuration aims to limit partial volume 
effects and allows for a more accurate representation of anatomy, in less 
time than the acquisition of multiple stacks. Massire et al. (2018b) 
demonstrated feasibility of a DWI sequence using MSMA at 7T (~6 min 
for 7 mid-vertebral slices from C1 to C7) and showed good reproduc-
ibility of the obtained indices. There are currently no studies evaluating 
the benefit, if any, of such acquisition schemes compared to typical ones 
for lesion detection or repeatability of imaging metrics in MS. 

3.2.2. Brain and cord imaging 
Concurrent brain and cord imaging studies are surprisingly scarce, 

likely resulting from the associated time constraints as well as the 
relative lack of maturity of advanced SC imaging methods. Most of these 
studies only include cord involvement as a binary ‘yes/no’ measure, or 
summary measures of CSC area and/or lesion load, since the scans are 
often included in clinical work-up. Several studies found that upper CSC 
area is the strongest predictor of EDSS (Song et al., 2020), particularly in 
progressive subtypes (Furby et al., 2008; Ingle et al., 2003) and patients 
with longer disease duration (Daams et al., 2014). Cord atrophy is also 
generally unrelated to global brain atrophy (A. B. Cohen et al., 2012; 
Ingle et al., 2003; Ruggieri et al., 2015). This suggests that pathology in 
those compartments progresses at least partially independently; those 
observations make a case for imaging both structures, and for the CSC 
area to be included in ‘composite measures of neurodegeneration’ 
(Furby et al., 2008). However, a more refined look into regional GM in 
relation to upper CSC area revealed relationships with infratentorial 
volumes (Bellenberg et al., 2015). Imaging of GM structures, WM tracts, 
and regional volumes in both brain and cord would help describe both 
independent and related (e.g. via Wallerian degeneration) measures of 
CNS damage across the neuraxis. 

In the spirit of leveraging brain datasets to include upper CSC atro-
phy measures, several groups have looked into quantifying cord atrophy 
from routinely acquired brain scans (Liu et al., 2016, 2015; Lukas et al., 
2021; Papinutto et al., 2018; Taheri et al., 2022). Bischof et al. (2022) 
inspected cord atrophy in a large legacy dataset of over 400 progressive 
pwMS with a 12-year follow-up, looking at C1 area in relation to disease 
progression trajectories, and showing that an accelerated atrophy rate in 
RRMS before conversion to secondary progressive (SP) disease. Freund 
et al. (2022) used the BSC-SPM framework (see ‘Analysis tools’ section) 
to perform voxel-based morphometry (VBM) in the brain and CSC of 
pwMS and controls, showing feasibility of a unified analysis pipeline for 
concurrent assessment of regional brain and cord atrophy on T1- 
weighted MPRAGE images using a template extending to the upper CSC. 

Yet, few studies have used advanced methods to look at tissue 
damage beyond simple measures of lesion load in both brain and SC. 
Using the ICBM152 brain and PAM50 cord templates (both in MNI 
space) and an automated SCT-based pipeline, Kerbrat et al. (2020) 
performed voxelwise lesion mapping in the cortico-spinal tract (CST) 
from brain to cervical cord in 290 pwMS from 8 centers, and examined 
lesion distribution along the whole CST, the impact of CST lesion load 
and location on disability, and the predictive power of those measures 
for disability progression at two years. Ouellette et al. (2020) observed 
the spatial distribution of lesions in the brain and entire CSC in RR and 
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SPMS participants, taking advantage of the greater spatial resolution, 
SNR and CNR afforded at 7T, although the brain and SC protocols were 
acquired separately. Weber et al. (2022) found greater CSC atrophy and 
lesion load in pwRRMS with brain iron rim lesions, compared to those 
without. 

Beyond structural and lesion load measures, Vaithianathar et al. 
(2003) looked at T1 in the CSC, brain GM and WM in pwMS, and found 
that in addition to T1 differentiating between subtypes, cord and cere-
bral WM T1 were related, suggesting that secondary degeneration pro-
cesses may underlie this relationship. In a series of investigations, 
Rovaris et al. used atrophy and MTR measures in both CSC and brain in 
participants with primary progressive (PP) MS, finding no correlations 
between the two, but confirming a role of cord CSA in explaining 
disability separately from brain measures, and thus confirming those 
measures as complementary (Rovaris et al., 2008, 2001, 2000). Filippi 
et al. (2002) also found correlations between MTR in the CSC, and fMRI 
measures of cerebellar activation during a motor task in pwPPMS. 
Kolind et al. (2015) used brain and cervical cord MWI to assess atrophy 
and demyelination in relation to clinical indices in a PPMS group. Lema 
et al. (2016) found that median whole-brain MTsat and peak whole-cord 
MTsat were correlated at the trend level, controlling for age. Collorone 
et al. (2020) applied whole-brain and CSC NODDI, and found that cord 
metrics showed stronger correlations with EDSS, although relationships 
between brain and spine metrics were not assessed. Bonacchi et al. 
(2020) investigated 120 pwMS with structural brain and CSC measures, 
in addition to diffusion-weighted imaging (DWI) in the cord, and iden-
tified CSC measures (CSC GM lesion load, GM atrophy, and lateral 
funiculi FA) as the most relevant variables for explaining EDSS scores, 
and differentiating relapsing vs progressive pwMS in multivariate ana-
lyses that included volumetric brain measures. Taken together, these 
studies suggest that brain and CSC damage provide complementary in-
formation that help explain disease status and prognosis. Multi-
parametric assessments may be valuable in identifying the relative 
contributions of brain and cord parameters in explaining and predicting 
disease status, and thus identifying the best markers of disease pro-
gression, conversion to progressive disease, and measuring neuro-
protective effects of therapies in clinical trials. 

Further advancements are also making possible the simultaneous 
acquisition of brain and cord data (for discussion of brain-cord func-
tional MRI, see ‘Functional MRI’ section). Cohen-Adad (2021) presented 
an application of the SIEMENS syngo-RESOLVE (“readout segmentation 

of long variable echo-trains”) sequence to image brain and CSC 
concurrently, enabling high-resolution (2.2 mm isotropic) tractography; 
this acquisition was possible at 3T with b = 800 s/mm2 and 30 diffusion- 
weighted directions in <11 min. An example of DTI-based tractography 
from the cortex to the CSC, which would be useful to map and assess the 
integrity of cerebrospinal WM pathways, is shown in Fig. 3. For-
odighasemabadi et al. (2021) developed a combined brain and whole 
cervical MP2RAGE acquisition with sub-millimeter resolution in <8 
min, with particular attention to mitigating B1

+ inhomogeneity, enabling 
anatomical and segmentation and quantification of T1 in the main CSC 
WM tracts as well as brain regions of interest with high scan-rescan 
reproducibility. Finally, with regards to data processing, the SPM-BSC 
currently only includes the upper four cervical levels, although future 
extension to the whole CSC is planned (Freund et al., 2022). The pres-
ently available PAM50 template is also compatible with the MNI coor-
dinate system, awaiting further applications in simultaneous or 
concurrent brain/cord imaging. 

3.2.3. Thoracolumbar imaging 
While SC motion is less prominent in lower-thoracic and lumbar 

segments relative to cervical and upper-thoracic segments (Figley et al., 
2008), imaging the thoracolumbar SC is subject to other challenges 
including its smaller size (~1 cm), pulsating CSF flow, position within 
large bones (B0 inhomogeneity), temporally varying B0 inhomogeneity 
due to respiration, and wrap artefacts from the torso. In comparison to 
the CSC, the thoracolumbar SC remains understudied with MRI, in part 
due to these challenges, even though thoracolumbar lesions were found 
in 41 % of patients in a heterogeneous MS cohort, albeit less frequently 
than cervical lesions (Weier et al., 2012) (see Fig. 4). However, the 
presence of thoracic lesions can be predicted by CSC lesion load, and 
thus, assuming similar pathological mechanisms in the thoracic, 
compared to other portions of the cord, it has been suggested that there 
may be limited added value in further advanced imaging of the thoracic 
portions (Hua et al., 2015). 

Cord atrophy is consistently more pronounced in cervical than 
thoracic regions. Mina et al. (2021) hypothesized this could be owing to 
either limitations of imaging sequences, or a “floor effect”, i.e. a lesser 
capacity for tissue loss given the smaller starting volume of the thoracic 
cord. Thoracic volume was unrelated to brain and cervical atrophy 
measures in a mildly impaired RRMS group, and was not correlated with 
clinical indices (EDSS and T25FW) (Cohen et al., 2012). However, 

Fig. 3. Single-subject tractography of the motor tract from cortex to upper cervical cord, constructed by combination of separate brain and cervical cord acquisitions 
in a healthy volunteer at 3T. Variations in Diffusion Tensor Imaging (DTI) and Spherical Mean Technique (SMT) multi-compartmental modeling are shown along the 
tract. FA = Fractional Anisotropy, RD = Radial Diffusivity, AD = Axial Diffusivity, INTRA = intra-neurite volume fraction, EXTRA-TRANS = transverse microscopic 
diffusivity of the extra-neurite compartment, DIFF = tissue intrinsic diffusivity. 
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inclusion of thoracic metrics was shown in a larger, more heterogeneous 
sample to improve grouping of patient phenotypes and correlations with 
clinical disability (Mina et al., 2021). Moreover, Schlaeger et al. (2015) 
showed that GM area at the T8-T9 level contributed to predicting EDSS 
score, independently of CSC CSA. 

Those findings for lesions and atrophy may point towards the CSC as 
the more advantageous target for further investigation, at least for some 
purposes (e.g. biomarker development for clinical trials), and imaging of 
the thoracic and lower sections is currently not recommended for 
diagnosis, unless symptoms suggest involvement of those regions; if 
feasible, the upper thoracic region should be prioritized (Filippi et al., 
2019; Traboulsee et al., 2016; Wattjes et al., 2021). There is however a 
dearth of advanced MRI studies in the cord beyond the CSC, and the 
added value of thoracolumbar imaging may be underestimated due to 
the lack of sensitivity of the ‘gross’ summary methods currently used 
(atrophy and lesion load). Current advances in hardware and acquisi-
tion, including the use of UHF, may eventually be deployed for lower 
cervical and thoracic cord (Gass et al., 2015) to address this. Further, 
studying the lumbar cord may provide insight into the mechanisms 
behind prevalent symptoms including bladder, bowel, and sexual 
dysfunction due to disrupted autonomic pathways and lower limb 
dysfunction, which causes mild or greater gait disability in 59 % of 
patients by 10 years of disease duration (Kister et al., 2013). The greater 
prevalence of impaired gait relative to hand dysfunction (Kister et al., 
2013) and the effects of these symptoms on quality of life for patients (e. 
g. at least 75 % of patients with MS experience bladder dysfunction; 
Browne et al., 2015) also highlight the need to optimize MRI methods for 
lower SC segments. 

3.2.4. Peripheral nervous system MRI 
There are few investigations of the PNS in MS using MRI. Jende et al. 

(2017) used MR neurography to highlight differences in proton spin 
density and T2 relaxation time in peripheral nerve lesions in the lower 
limbs. However, subgroups of pwMS with and without SC lesions did not 
differ from each other, suggesting that peripheral inflammation or 
demyelination reflected by those parameters may be a co-occurring, but 
independent process; and that taking this damage into account may 
contribute to reduce discrepancies between imaging and clinical status. 
Boonsuth et al. (2021) found lower MTR values in the sciatic nerve, but 
not the lumbar plexus of an MS group, further pointing towards pe-
ripheral pathological co-demyelination, rather than Wallerian degen-
eration stemming from possible SC lesions. Future similar studies could 
be strengthened by employing MRN for nerve region delineation, MTR 
and DWI, and lumbar cord imaging. Imaging the PNS concurrently with 
the CNS could inform on the common or distinct pathophysiological 
mechanisms underlying demyelination in both compartments, and may 
also have implications for patient monitoring, as nerve tissue can be 
collected in vivo by biopsy (Oudejans et al., 2021). 

3.3. More and better data: from study design to analysis 

3.3.1. Study design: validation, reproducibility and harmonization 
MRI markers capable of accurately quantifying demyelination and 

axonal damage have evident utility in research and clinical trials of MS; 
thus, there is great interest in in vivo histology (i.e. microstructural im-
aging with high biological specificity) as well as validation of existing 
methods based on comparison of MRI of ex vivo animal or human tissue 
with histology or other imaging methods. An extensive review by 
Cohen-Adad (2018) describes the principles of microstructural imaging 

Fig. 4. Example sagittal T2-weighted turbo spin echo and axial multi-echo fast field echo acquisitions at 3T for the cervical and lumbar spinal cord. Shown are one 
control (48-year-old female) and one participant with RRMS (35-year-old male, disease duration < 2 years, EDSS = 0). Cervical and lumbar scans were acquired 
separately. Blue arrows point to lesions on the patient scan, illustrating disease burden across two locations of the central nervous system. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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using MRI in the SC, and details methods for validation of MR methods 
that purport to characterize tissue microstructure, including the chal-
lenges inherent to validation methods themselves. Schmierer et al. 
(2018) review post-mortem MRI studies combined with histology in the 
MS cord specifically, highlighting the potential of combined histology/ 
MRI studies. Van der Weijden et al. (2021) review validation of several 
myelin imaging methods including those discussed above (see ‘Myelin 
imaging’ section), with reference to both preclinical and post-mortem 
validation studies, and human brain and SC reproducibility studies. 

As different modalities are sensitive to different aspects of pathology, 
many have made the case for multi-parametric studies and combination 
of several modalities for improved tissue characterization (Cohen-Adad, 
2018; Lévy et al., 2018; van der Weijden et al., 2021). An example of a 
composite metric that can be obtained by combining two sequences is 
the g-ratio, or ratio of axonal to myelin sheath diameter. G-ratio- 
weighted maps have been obtained in the CSC by using two sequences 
and combining axon diameter and myelin density measurements from 
DWI and proton density-based imaging, respectively (Duval et al., 
2017), pointing out some current hurdles to repeatability (Duval et al., 
2018). In the context of multi-parametric studies, scan time can be 
maximized by devising multi-contrast acquisitions; one example was 
proposed by Grussu et al., using a unified read-out and including MT and 
T1, with the advantage of providing quantitative maps in the same space 
in a single acquisition, and potential for increased inter-site reproduc-
ibility (Grussu et al., 2020). 

A strength of the MS MRI research field is the existence of interna-
tional collaborative initiatives (e.g. MAGNIMS, CMSC, NAIMS, MS- 
PATHS) that propose to pool resources, data and knowledge to tackle 
important research questions. Harmonization efforts are also being un-
dertaken by the SC research community, with the recent proposal of a 
‘consensus’ research acquisition protocol for the CSC, including guide-
lines for participant positioning and scan prescription (Cohen-Adad 
et al., 2021b). In the context of MS, valuable additions to this protocol 
may be sequences to improve lesion detection, such as a 3D T1-weighted 
PSIR or a sagittal STIR image, as per MAGNIMS recommendations 
(Wattjes et al., 2021). The 3D MP2RAGE sequence has also been pro-
posed to improve CSC lesion detection compared with a typical clinical 
work-up (Demortière et al., 2020), includes the brain in an acceptable 
scan time (7 min), and also produces a T1 map, which has the benefit of 
high reliability and sensitivity to pathology. Future prospective studies, 
which would benefit from deployment across research centers, are 
required. In the authors’ opinion, susceptibility-based sequences 
capable of revealing vascular features have the potential for clinical 
impact and may benefit from further investigation. 

Such multi-site reproducibility studies are also necessary to establish 
robust research protocols, as are single-subject ‘travelling-spine’ reli-
ability studies (Cohen-Adad et al., 2021a; Lukas et al., 2021). The 
obtention of well-validated, reliable MRI markers are, in turn, para-
mount in establishing well-powered and efficient longitudinal studies 
and clinical trials. Finally, open-access datasets (Cohen-Adad et al., 
2021a; Lukas et al., 2021) enable development of analysis tools. 

3.3.2. Analysis tools 
The development of freely available analysis tools has been instru-

mental in propelling the advanced SC imaging research forward. 
Although not cost-free, the JIM software is widely used for semi- 
automated segmentation using an active surface model (Horsfield 
et al., 2010; https://www.xinapse.com/). The SCT (https://spinalco 
rdtoolbox.com/) has become a reference in the field, and includes pre- 
processing, general structural image manipulation, segmentation as 
well as individual processing tools for DWI, MT and fMRI data, including 
a lesion segmentation tool (De Leener et al., 2017; Gros et al., 2019). 
Prados et al. (2017) presented several algorithms for CSC GM segmen-
tation as part of a community challenge, including links and an open- 
access training dataset. Toolboxes have also been developed for spinal 
fMRI specifically: ‘pyspinalfmri’ (https://www.queensu.ca/academia/s 

tromanlab/dr-patrick-stroman/fmri-analysis-software) and the 
Neptune Toolbox (https://www.fmriresearch.com/neptune-toolbox/). 

Regarding common-space atlases, De Leener et al. (2018) reviewed 
previous initiatives in constructing (cervical) SC templates from smaller 
datasets, before introducing the more widely-used PAM50 template, 
which spans the whole SC in MNI space, is compatible with several 
contrasts, and includes vertebral and spinal levels, GM subregions and 
WM tracts (available within the SCT; the code for template generation is 
available at https://github.com/neuropoly/template/). Also in MNI 
space, the BSC template within the SPM framework (Azzarito et al., 
2021; Blaiotta et al., 2018) covers the brain and the first four cervical 
segments, with seven tissue classes (GM, WM, CSF, fat, non-neural tis-
sues, soft tissues, bone/air mixture). Liu et al. (2020a) proposed a MWF 
and geometric mean T2 CSC atlas (8 slices at C2-C3) from 20 control 
participants’ data, based on a GRASE sequence (available in PAM50 
space at https://sourceforge.net/projects/mwi-spinal-cord-atlases/). 

The availability of consensus protocols (Cohen-Adad et al., 2021b) 
and free analysis tools will facilitate multi-center studies, increasing 
participant numbers. While larger datasets pose their own challenges in 
term of data storage and handling, they are invaluable for answering 
clinical research questions (De Stefano et al., 2022). One example of the 
potential utility of advanced SC imaging tools is the implementation of 
the generalized boundary shift integral (GBSI) method for longitudinal 
atrophy assessment, which relies partly on SCT software, and has been 
shown to theoretically decrease the required sample size for a clinical 
trial in PPMS (Moccia et al., 2020). In another example, Eden et al. 
(2019) were able to recruit 642 pwMS across 13 sites (with varying 
protocols, vendors, and field strengths), and used an automatic SCT- 
based processing pipeline to perform voxelwise lesion mapping in the 
CSC. This study with a considerable sample size showed that the greatest 
lesion burden was found in pwMS with higher EDSS but shorter disease 
duration, i.e. an ‘aggressive’ disease course – an observation that con-
tributes to our increased understanding of the disease. 

3.3.3. Ultra-high field imaging 
UHF imaging refers to scanner strengths beyond 3T, i.e. 7T (and 

theoretically above, although all research cited below was conducted at 
7T). Higher field strength offers greater SNR, allowing for acquisitions 
with higher spatial resolution, which is especially useful for resolving 
the small size of the SC and minimizing partial volume effects between 
CSF, WM and GM. Drawbacks include increased sensitivity to physio-
logical noise, and difficulty of clinical implementation due to increased 
safety requirements and the scarcity of commercially-available SC coils. 
Specific absorption rate limitations may also impede implementation of 
certain advanced techniques (e.g. MT-based methods that rely on high- 
power saturation pulses). 

There are, so far, few investigations of the SC in MS at 7T. Dula et al. 
(2016b) showed that 7T CSC imaging improved detection of CSC lesions 
by 52 % compared to a clinical 3T protocol using sagittal T2*-weighted, 
axial T1-weighted and T2*-weighted scans in 15 pwRRMS, and improved 
visualization of anatomical features such as nerve roots. An example of 
acquisitions at 3 and 7T in a control and two pwMS is shown in Fig. 5. 
They also showed a significant increase in SNR and in GM:WM contrast- 
to-noise ratio between a typical 3T multi-echo Fast Field Echo (FFE) and 
a 7T single-echo FFE scan. Ouellette et al. (2020) used 7T to investigate 
the spatial distribution of CSC lesions in RR and SPMS at high resolution 
(0.40x0.40x3 mm3), demonstrating an “outside-in” gradient from outer 
subpial surface to central canal in RRMS, and following an inverse 
pattern in SPMS. Dula et al. (2016a) evaluated optimized pulse pa-
rameters and B1

+ homogeneity for an amide proton transfer CEST 
sequence at 7T and showed broad differences in Z-spectra features in 
normal-appearing WM and lesioned tissue between pwMS and controls. 
Preliminary investigations have used 7T to demonstrate increased lesion 
conspicuity in the thoracic cord (Lefeuvre et al., 2016), anterior vein 
enlargement (Witt et al., 2019), as well as atrophic features and 
abnormal lesional tissue values using DTI and T1 relaxometry (Massire 
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et al., 2019). Further investigations of the improved sensitivity of UHF 
for lesion detection in larger samples, across subtypes and lesion types, 
are needed to ascertain clinical utility, balanced against the challenges 
of UHF scanning in a medical setting. The higher spatial resolution and 
SNR achievable, and the greater sensitivity to susceptibility effects at 7T 
may prove useful for investigations requiring high-resolution anatom-
ical imaging, fMRI, glutamate-CEST (Kogan et al., 2013), and 
susceptibility-based methods. There is, in theory, improved sensitivity to 
gadolinium contrast enhancement for lesion identification at 7T, which 
has not yet been formally investigated in the SC (Kreiter et al., 2022). 
For further reading, see Barry et al. (2018) for a technical overview of 
the advantages and challenges of 7T SC imaging, Ineichen et al. (2021) 
for advances in UHF applied to MS, and Kreiter et al. (2022) for a 
literature review on UHF MRI in the MS SC specifically. 

3.3.4. Applications of artificial intelligence 
Applications of artificial intelligence (AI) in brain MS research 

include aiding tissue class and lesion segmentation, patient classification 
(e.g. for differential diagnosis or between subtypes) and future disability 
and disease progression predictions; see reviews by Afzal et al. (2022) 
and Kontopodis et al. (2021). It stands to reason that similar methods 
may prove equally useful with SC data. AI is already used in processing 
tools: for automated segmentation of cord and CSF on T1, T2, T2*, or 
diffusion-weighted images (Gros et al., 2019), and GM on T2*-weighted 
images (Perone et al., 2018), both using neural networks within the SCT 
framework. A similar algorithm also exists within SCT for segmenting 
cord lesions on either sagittal or axial T2-weighted scans (Gros et al., 
2019). AI may further help with outstanding challenges in MS data 
analysis such as automated lesion identification, including using multi- 
contrast and longitudinal data (for tracking existing lesions and identi-
fying new ones), and extracting information from large datasets. Deep 
learning may also assist in speeding up processing methods, such as 
CEST and fMRI, bringing them closer to being performed at the scanner 
or in clinic; an existing example is rapid MWI processing using a neural 
network (Liu et al., 2020b; see ‘MWI’ section above). Further 

applications may include patient classification (e.g. Toufani et al., 2021) 
and prediction of conversion to clinically-definite disease (Yoo et al., 
2019), as have been more widely implemented in the brain. 

4. Conclusion 

Refinements in SC imaging were being identified 15 years ago as an 
important advancement in MS research, with the potential to clarify our 
understanding of the substrates of clinical disability (Bakshi et al., 
2008). As reviewed herein, the field has made tremendous leaps in the 
last decade. From some of the first images showing the possibility of 
obtaining functional, macro- and microstructural images, to larger 
studies demonstrating the utility of these measurements in patient 
studies, it is evident that innovation and creativity from the SC imaging 
community have led to the development of instruments that can, and 
will continue to, increase our understanding of MS. As an example of 
success, the value of large-scale studies (e.g. Eden et al., 2019; Kerbrat 
et al., 2020) is clear, made possible by unified acquisition protocols, 
collaboration between centers, and semi-automated analysis tools. 

However, even with the progresses made since then, the need for 
further and better imaging of the SC is still being recognized as crucial 
(Krieger, 2022). The big-picture opportunities for SC MRI in MS could be 
categorized in two arenas: 1) developing and utilizing fast, reliable 
imaging with high sensitivity and specificity, showing correlations with 
neurological status and relationships to evolving pathology, as pre-
sented here, to inform our understanding of the pathological mecha-
nisms of MS and disease evolution; 2) addressing the relative stagnancy 
in the routine diagnostic portfolio. Indeed, as a counterpoint to the 
apparent improvements in advanced MRI, conventional SC MRI has not 
evolved nearly as much. The hope is that technical advancements gained 
from the research field may translate to clinical systems, by solving 
challenges related to anatomy, size, acquisition speed, etc. Examples 
include the advent of compressed sensing, AI-driven noise reduction, 
and continually improving coils and hardware. As we look forward, let 
us not forget to look side to side and recognize the need for improving 

Fig. 5. T2*-w multi-echo Fast Field Echo images in the cervical spinal cord at 3T (top row) and 7T (bottom row) in a healthy participant and two people with 
relapsing-remitting MS (pwMS). In the control participant (46-year-old female), greater anatomical detail is seen at 7T: nerve roots can be seen, and anterior and 
posterior spinal veins are more apparent. In pwMS 1 (35-year-old female, disease duration 1 year, EDSS 0), a lesion in the lateral column is seen at both field 
strengths; the anterior vein is visible at 7T. In pwMS 2 (35-year-old female, disease duration 1.5 year, EDSS 0), in the 7T scan which was acquired after a 6-month 
interval, a new lesion can be seen in the lateral column. Signal inhomogeneity within the dorsal lesion can be appreciated at 7T. The ‘irregular’ periphery of the cord 
reflects vasculature including the anterior vein. For both patients, while lesion conspicuity is comparable, more detail can be seen at higher field strength. 
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even the most basic sequences, as these can ultimately have the most 
direct clinical impact. As such, incremental improvements in diagnostic 
SC MRI should continue to be expected. 

Finally, the advances discussed here for MRI of MS are also likely to 
see valuable applications in other inflammatory and/or neurodegener-
ative diseases affecting the SC, among which neuromyelitis optica 
spectrum disorder, MOG antibody-associated disease, transverse 
myelitis, and amyotrophic lateral sclerosis, where differential diagnosis, 
investigation of disease mechanisms, treatment efficacy monitoring and 
clinical trials all stand to benefit from advances in SC imaging. 
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Dostál, M., Valošek, J., Samson, R.S., Grussu, F., Battiston, M., Gandini Wheeler- 
Kingshott, C.A.M., Yiannakas, M.C., Gilbert, G., Schneider, T., Johnson, B., 
Prados, F., 2022. Comparison of multicenter <scp>MRI</scp> protocols for 
visualizing the spinal cord gray matter. Magn. Reson. Med. https://doi.org/10.1002/ 
MRM.29249. 

Collorone, S., Cawley, N., Grussu, F., Prados, F., Tona, F., Calvi, A., Kanber, B., 
Schneider, T., Kipp, L., Zhang, H., Alexander, D.C., Thompson, A.J., Toosy, A., 
Wheeler-Kingshott, C.A.G., Ciccarelli, O., 2020. Reduced neurite density in the brain 
and cervical spinal cord in relapsing–remitting multiple sclerosis: A NODDI study. 
Mult. Scler. J. 26, 1647–1657. https://doi.org/10.1177/1352458519885107. 

Combès, B., Monteau, L., Bannier, E., Callot, V., Labauge, P., Ayrignac, X., Carra 
Dallière, C., Pelletier, J., Maarouf, A., de Seze, J., Collongues, N., Barillot, C., 
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