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Abstract
Lung diseases carry a significant burden of morbidity and mortality worldwide. The advent of digital pathology
(DP) and an increase in computational power have led to the development of artificial intelligence (AI)-based tools
that can assist pathologists and pulmonologists in improving clinical workflow and patient management. While pre-
vious works have explored the advances in computational approaches for breast, prostate, and head and neck cancers,
there has been a growing interest in applying these technologies to lung diseases as well. The application of AI tools
on radiology images for better characterization of indeterminate lung nodules, fibrotic lung disease, and lung cancer
risk stratification has been well documented. In this article, we discuss methodologies used to build AI tools in lung
DP, describing the various hand-crafted and deep learning-based unsupervised feature approaches. Next, we review
AI tools across a wide spectrum of lung diseases including cancer, tuberculosis, idiopathic pulmonary fibrosis, and
COVID-19. We discuss the utility of novel imaging biomarkers for different types of clinical problems including
quantification of biomarkers like PD-L1, lung disease diagnosis, risk stratification, and prediction of response to
treatments such as immune checkpoint inhibitors. We also look briefly at some emerging applications of AI tools
in lung DP such as multimodal data analysis, 3D pathology, and transplant rejection. Lastly, we discuss the future
of DP-based AI tools, describing the challenges with regulatory approval, developing reimbursement models, plan-
ning clinical deployment, and addressing AI biases.
© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great
Britain and Ireland.
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Introduction

Lung diseases are among the leading causes of mortality
worldwide, accounting for nearly 1/6th of death [1]. Over
the last 2 years, theCOVID-19pandemichas had aprofound
impact across theglobe,withnearly5.6milliondeaths todate
[2]. Tuberculosis is one of themost common causes of death
in developing countries and the immunocompromised popu-
lation [3]. Meanwhile, lung cancer is the leading cause of
cancer-related mortality worldwide, with nearly 1.8 million
deaths in 2020 [4]. Non-small cell lung cancer (NSCLC) is
the predominant subtype, accounting for�85%of the cases,
and includes squamous cell and adenocarcinoma, which are
the most common histological subtypes [5]. Small cell lung
cancer, an aggressive form with high mortality, meanwhile
accounts for�15% of the cases [6].

Histopathologic tissue analysis forms the backbone of
lung disease characterization and management [7–9],
and histopathologic confirmation remains the gold stan-
dard in clinical workflow for diagnosis [10]. Tissue sam-
ples obtained from lung biopsies and resections are
analyzed by pathologists to detect and classify cells,
identify tumor morphology and subtype, and evaluate
features that predict response to treatment and prognosis
[7]. Lung pathology is unique, with several distinct bio-
markers. For instance, lung adenocarcinoma (LUAD) is
driven by accumulated genetic alterations (‘driver muta-
tions’) such as EGFR, KRAS mutations, and ALK rear-
rangements [11–13]. In this era of immunotherapy,
studies have focused on tumor-infiltrating lymphocytes
(TILs) and the tumor microenvironment to better charac-
terize the immune response to tumors. Similarly, fibro-
blast foci have been investigated as a morphologic
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marker in interstitial lung diseases, with prognostic
implications [14,15]. Studies from COVID-19 lung
autopsies have shown a distinct immune architecture
with neutrophilic and lymphocytic predominance [16–
18]. The vast number of biomarkers visually discernible
on histopathology images creates an opportunity to
apply artificial intelligence (AI) tools to assist clinical
workflow.
The advent of whole slide scanning along with

improvements in AI-based tools has paved the way
for advances in computational pathology (Table 1).
Mukhopadhyay et al [29] compared the diagnostic perfor-
mance of digital pathology (DP) and traditional
microscopy-based methods in a study with specimens
from 1,992 patients, evaluated by 16 surgical pathologists
from four institutions. The study found that DP was non-
inferior to conventional microscopy for primary diagnosis
in surgical pathology. The results paved the way for the
Food and Drug Administration (FDA) [30] approval of
whole slide imaging through the de novo premarket
review pathway [31] for primary diagnosis in surgical
pathology in the United States and its widespread imple-
mentation. Meanwhile, the FDA granted a 510(k)
clearance to the first DP-based AI tool, Paige Prostate,
for detecting prostate cancer on whole slide images
(WSIs) [32]. While many applications of AI in pathology
have focused on breast [33–36], prostate [37–40], and
head and neck cancers [41–44], there has been a steady
interest in applying these tools in the context of lung dis-
eases. The introduction of AI-based tools, with their
power to unlock pathological diagnostic, prognostic, and
predictive features, could assist pathologists, pulmonolo-
gists, and thoracic oncologists to guide patient

management [45] (Figure 1). In diagnostics, these tools
can assist in detecting and quantifyingmorphological fea-
tures, acting as a decision support system for pathologists.
Prognosis involves stratifying patients based on their risk
or likelihood of disease recurrence or progression and
would aid pulmonologists and oncologists to plan the
course of treatment. Additionally, AI tools could identify
sub-visual patterns which may predict response to treat-
ments such as radiotherapy and immunotherapy, thereby
assisting clinicians in selecting the appropriate treatment.

Previous works in lung cancer have focused on the use
of radiomics, which is a high throughput analysis of
radiologic images [46]. In this article, we look at DP-
based AI tools used in lung diseases. First, we discuss
various AI representations applied, elaborating on
hand-crafted and deep learning (DL)-based methods.
Next, we review the applications of AI approaches both
in the field of lung cancers [47–50] and in non-oncologic
diseases such as interstitial lung disease [51–53], tuber-
culosis [54–56], and COVID-19 [57]. Further, we look
at emerging applications, which we anticipate will be
explored in the context of lung diseases. Lastly, we dis-
cuss the opportunities and challenges while developing
AI algorithms regarding biases, regulatory approvals,
reimbursements, and the clinical deployment of these
tools.

AI approaches in lung pathology

AI is a broad discipline with multiple approaches to con-
struct a model for a particular task (Table 1) [45]. There

Table 1. Description of common computational pathology terms

Artificial intelligence Umbrella term to indicate technologies with the ability to simulate intelligent behavior, allowing it to function
appropriately and with foresight in its environment [19]

Digital pathology Also known as whole slide imaging, it is the dynamic, image-based environment that enables the acquisition, management,
and interpretation of pathology information generated from a digitized glass slide [20]. Digital pathology has a growing
interest in diagnostic medicine and lays the ground for AI tool deployment

Pathomics The high throughput extraction of quantitative features from digitized histopathology images, thereby converting images
into data [21]

Biomarker “A biological marker, or biomarker, is a characteristic that is objectively measured and evaluated as an indicator of normal
biological processes, pathogenic processes or a response to a therapeutic intervention” [22]. In digital pathology, it is an
image characteristic that can be quantitatively measured and analyzed, and is typically associated with a disease or
therapeutic outcome

Computational pathology The use of artificial intelligence tools to extract information from whole slide images and associated patient metadata for
specific clinical indications [23]

Machine learning A subtype of artificial intelligence in which the system uses a provided set of data (training data) to learn and structure it,
and subsequently uses a representative function to best describe the data and provide a prediction when presented with
previously unseen data [24]

Deep learning A type of machine learning technique with a representation-learning method. Deep learning attempts to learn by example
using neural networks [25]

Artificial neural network An architecture inspired by the neuronal networks found within the brain and capable of constructing non-linear
relationships. Each layer in an artificial neural network has multiple perceptrons, which function like neurons, capable of
receiving and sending signals [26]

Convolutional neural
network (CNN)

A subtype of artificial neural network commonly applied to medical images; its extensive use derives from the architecture
upholding the integrity of spatial relationships in image data. CNN is a feedforward network that specializes in filtering
spatial data to create feature maps [27]

Generative adversarial
network (GAN)

An example of generative AI, GAN is a deep learning approach that aims to ‘generate’ artificial data that resemble the real
data using a combination of two neural networks – a generator, which creates synthetic data, and a discriminator, which
scrutinizes the authenticity of the data [28]
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are two common ways to extract feature representations
for building an AI model: DL-based unsupervised fea-
ture learning and the hand-crafted approach. While the
former allows the system to identify features suitable
for automatic classification, the latter uses existing
domain expertise in lung histopathology to select the
features. DL-based unsupervised feature learning is
favored in low-level tasks such as cell and lung tumor
detection and classification. This is useful since visual
confirmation of the result is sufficient and does not require
interpretation of the selected features. This contrasts with
many high-level tasks such as prognosis or treatment
response prediction which require a certain level of inter-
pretability and hence hand-crafted domain-inspired fea-
tures may be favored by the medical community to
construct these models [58].

Deep learning (DL)-based unsupervised feature
learning
Most WSIs are unlabeled, and annotating architecturally
complex regions is laborious for pathologists, who are
already facing increasing clinical workload [59,60]. This
hinders the development of machine learning models,
which require well-annotated datasets. Unsupervised
feature learning is an approach in which the system auto-
matically learns and selects appropriate features from the
image to maximize class separability.

Convolutional neural network (CNN) [27] is a type of
DL approach that has been used extensively in computa-
tional pathology models for a variety of tasks, including
segmentation, object detection, and image classification
[52,55,56,61–70]. CNNs are composed of multiple
layers of networks and are designed to learn spatial hier-
archies of features automatically and adaptively through
a backpropagation algorithm. They do so by deconvolu-
tion of the image content into thousands of salient fea-
tures, followed by selection and aggregation of the

most meaningful features and recognition of these pat-
terns in yet-unseen images. CNN is well suited for
detecting, identifying, and classification of images. For
example, upon providing a CNN with a set of images
with the corresponding annotations, the network auto-
matically learns the features and generates a probability
map on a separate set of images. Inception v3 and
Resnet50 are two common types of CNNs, representing
supervised DL, that have been used in lung research for
various tasks such as classification of histologic sub-
types [65,70,71] or cell counting [72]. U-Net is another
CNN, where the ‘U architecture’ of the network com-
bines the structural detail with its spatial context [73].
Hence, such models are used for quick and accurate seg-
mentation of WSIs [74–77] (Figure 2). With a particular
interest in TILs as a prognostic biomarker in NSCLC,
AlexNet [56,75] has been employed in classifying TIL
shape and density. Trained DL models are often not
interpretable and hence are regarded as being ‘black-
box’ in nature [78]. This means that it is often challeng-
ing to mechanistically link the individual layers of a
neural network function to a corresponding output, or
which features from an image helped the DL model
attain corresponding results. For some tasks, such as
training a DL algorithm to identify nuclei or other struc-
tures, a visual confirmation of the output of the model by
a domain expert is sufficient to test its accuracy and sub-
sequently build imaging biomarkers that might be inter-
pretable [79]. On the other hand, if the DL model
generates a direct prognosis, the lack of interpretability
might undermine trust among the physicians [80].

Hand-crafted approach
In the hand-crafted approach, relevant features from the
data are manually selected. Domain knowledge is
employed for feature engineering, which is subsequently
used to construct machine learningmodels. This requires

Figure 1. Digital pathology-based AI tools add value to the workflow of the pulmonologist, oncologist, and pathologist. Created with Bioren
der.com.

Artificial intelligence in lung digital pathology 415

© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2022; 257: 413–429
www.thejournalofpathology.com

http://www.biorender.com
http://www.biorender.com
http://www.pathsoc.org
http://www.thejournalofpathology.com


close collaboration between clinicians and machine
learning engineers to construct appropriate AI models.
In contrast to DL-based unsupervised feature learning,
through incorporating the expertise of subject matter
experts, hand-crafted-based models lend themselves to
some interpretability. Hand-crafted features can be
either domain-agnostic or domain-inspired (Table 2).
The former may include morphometric features like
shape, texture, and gland features of nuclei, which are
common to multiple organs and tissue, while domain-
inspired features may have relevance to a particular dis-
ease site, like collagen fiber orientation, which was
recently implicated in determining the aggressiveness
of breast cancer [91]. In lung cancer, TILs [77] and can-
cer cell nuclei [74] have been explored as biomarkers to
predict recurrence and risk of recurrence or death in
NSCLC (Figure 3). For instance, the knowledge that
hyperchromatic nuclei in malignant cells lead to a folded
nuclear membrane [92] can be captured as pixel intensity
variation of cancer nuclei using AI tools. Similarly, there
has been a growing understanding that tumors behave
as a cluster of cells [93], allowing graph-based measure-
ments of the tumor nuclei to analyze the spatial relation-
ship within the tumor to assess its aggressiveness.

Hand-crafted features also facilitate the construction of
AI models rooted in the understanding of cellular archi-
tecture and morphology. Studies have demonstrated that
the density of TILs has a prognostic value [94]. An auto-
mated approach to quantify TIL density can overcome
the challenge with inter-reader variability in manual
assessment. Similarly, the relationship of cells in the
tumor microenvironment holds relevance, and mapping
them could add prognostic value. For example, a low
PD-1 to CD-8 ratio has been associated with a better
prognosis in NSCLC [95]. Hand-crafted features quanti-
tatively analyzing the spatial architecture of the cells
(immune, cancer, stroma) have been performed by con-
structing Delaunay triangulation (Figure 4). Likewise,
textural-based features have been analyzed using a gray
level co-occurrence matrix. For example, textural fea-
tures extracted from the peri-nuclear region in lung can-
cer may represent the consistency of cytoplasmic
staining, with heterogeneous cytoplasm indicative of
aggressive tumors. Lu et al [75] demonstrated a novel
method of constructing feature-driven local cell graphs
(FLocK) that take into account nuclear intensity in addi-
tion to nuclear proximity, thereby adding granularity to
the algorithm. They demonstrated that FLocK features

Table 2. Description of hand-crafted features used in lung pathology applications

Feature
class

Description Mathematical expression Lung pathology studies

Spatial
architecture

Describes the spatial organization of primitives
(e.g. nuclei or glands) in the tissue. Facilitates
identification of areas with a high disorder such
as cancerous regions

Voronoi diagram, Delaunay
triangulation, minimum
spanning tree, local graphs

Yao et al [81], Wang et al [82],
Vaidya et al [83]

Spatial
interplay

Extracts measures from the points where two or
more structures in the tissue come together and
affect each other

Intersection, neighborhood
diversity

Lu et al [75], Saltz et al [84],
Barrera et al [85], Corredor
et al [57], Corredor et al [77]

Texture Quantifies the spatial arrangement of color or
intensities in an image region. It is useful to
differentiate among different structures in the
tissue, for example, lymphocytes or cancerous
cells

Haralick (gray level co-occurrence
matrix), Gabor, Laplacian, Laws
features

Yao et al [81], Wang et al [82],
Vaidya et al [83], Sandino
et al [86], Corredor et al [87],
Wang et al [88], Alvarez-
Jimenez et al [89]

Shape Provides information on the physical appearance
(e.g. size or silhouette) of some structures in the
tissue such as cells, cartilages, vessels, nodules,
among others

Area, length of axes, eccentricity,
equivalent diameter, Zernike
moments

Wang et al [82], Vaidya et al
[83], Corredor et al [87],
Lu et al [75]

Color Extracts measures associated with the perception
derived from the spectrum of light interaction
with the human eye

Intensity, RGB channels, YUV
channels, CMYK channels, HSV
channels

Wang et al [82], Lu et al [90],
Corredor et al [86]

Orientation Provides metrics of the position of an element (e.g.
nucleus) in relation to its surroundings

Angle between axes Wang et al [82],
Vaidya et al [83]

Figure 2. Example of a neural network architecture for nuclei segmentation.

416 VS Viswanathan et al

© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2022; 257: 413–429
www.thejournalofpathology.com

http://www.pathsoc.org
http://www.thejournalofpathology.com


extracted from WSIs of early-stage NSCLC patients
were associated with overall survival. While such
hand-crafted approaches alleviate some of the apprehen-
sion associated with the black-box nature of DL models
and inspire confidence among clinicians, they require
extensive involvement of domain experts in defining
regions of interest and interpreting results.

AI applications in lung pathology

Biomarker quantification and histogenomics
In recent years, the need for an increased number of
ancillary studies such as immunohistochemistry, driver
mutations, and programmed death-ligand 1 (PD-L1)
has placed growing demands on pathologists, a scenario
where they have to ‘do more with less’ [96–98]. Compu-
tational approaches have been developed to automate the
estimation of biomarkers, as well as for the discovery of
newer ones by integrating complementary modalities of

data. For instance, computational pathology approaches
which provide spatial and morphological information of
the disease from WSIs have been combined with geno-
mics, which provides the molecular profile of disease
to aid in discovery of newer biomarkers [99,100].
Immunohistochemical determination of tumor PD-L1

status has become routine in identifying patients who
may benefit from programmed death-1 (PD-1)/PD-L1
inhibitors in NSCLC [101]. Currently, pathologists
visually estimate the fraction of tumor cells expressing
PD-L1 via a tumor proportion score (TPS) system,
which is constrained by ill-defined cutoffs, differences
in positivity estimation, and inter-observer variability,
making it a tedious and error-prone task. It is also chal-
lenged by inadequate tissue samples or a lack of
resources in peripheral settings [102]. Sha et al [103]
developed a ResNet-based DLmodel onWSIs to predict
PD-L1 status, thereby developing a ‘virtual stain’ using
H&E WSIs alone. They used H&E and immunohisto-
chemistry WSIs from 130 patients with pathologist-
annotated PD-L1 positive and negative tumor regions

Figure 3. Illustration of the use of hand-crafted features for risk stratification of lung cancer. Tissue microarray from low-risk and high-risk
lung cancer patients showing: (A, F) digitized H&E images; (B, G) features with automated nuclei detection; (C, H) features with Delaunay
triangulation – a type of global graph; (D, I) local graph based on the distance between closest nuclei; and (E, J) feature showing the spatial
architecture of tumor-infiltrating lymphocytes with lymphocytes (blue) and non-lymphocytes (green). Clusters are built based on distance
thresholds. If cells of the same type are closer than a threshold, they form a cluster.

Figure 4. Illustrative examples of hand-crafted features used in lung pathology applications. Left to right: Delaunay triangulations capturing
the spatial architecture; shape features: equivalent diameter, length of axes, and area; and color features demonstrating the RGB channels.
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on training samples as the ground truth. The model
remained effective over a range of PD-L1 cutoff thresh-
olds [area under the receiver operating characteristics
curve (AUC)= 0.67–0.81, p ≤ 0.01], even when differ-
ent proportions of the labels were randomly shuffled to
simulate inter-pathologist disagreement (AUC= 0.63–
0.77, p ≤ 0.03). Generative adversarial networks (GAN)
(Table 1) have been explored as an approach for virtual
H&E staining [104,105]. Bayramoglu et al [106] used
a conditional GAN model for virtual H&E staining of
unstained lung tissue, which can allow automating DP
workflow. Meanwhile, Kapil et al [107] developed a
semi-supervised GAN-based approach to automate an
objective PD-L1 expression scoring method for patients
with late-stage NSCLC, reducing the need for manual
annotations. Wu et al [108] developed a U-Net-based
end-to-end DL model to automatically detect tumors,
segment cells, and calculate the TPS of PD-L1 by
highlighting PD-L1-positive tumor cells. In a study with
437 NSCLC patients, Xia et al [109] demonstrated the
utility of computational pathology approaches in the dis-
covery of newer biomarkers. Using tissue microarrays,
they discovered a new histologic feature, the stroma
inflammation score, which was highly correlated with
patient overall survival in NSCLC. This biomarker was
subsequently validated by two blinded observers for
prognostic value.
The World Health Organization classification of lung

tumors has been recently modified [110] to emphasize
the role of genetic mutations, given our increasing
understanding of molecular profiles [110,111]. Identify-
ing the driver mutation is crucial for NSCLC manage-
ment [112]. For example, LUADs with EGFR, ALK,
ROS1, or RETmutations are associated with specific tar-
geted therapies, and the KRAS G12C mutation is tar-
geted by KRAS inhibitors [113,114]. Coudray et al
[71] trained a CNNmodel for a multi-task classification,
predicting the ten most common genetic mutations from
H&E-stained WSIs. The six commonly found mutations
including STK11, EGFR, FAT1, SETBP1, KRAS, and
TP53 were predicted by the model with AUCs between
0.733 and 0.856.
Lung adenocarcinoma is unique for having driver

mutations which are potential targets for therapy. The
recent approval of sotorasib for KRAS G12C-mutated
NSCLC [115] demonstrates the growing interest in
developing novel therapies that target driver mutations.
This often requires a companion diagnostic test that
checks for the presence of specific mutations. These
genomic assays often have longer turnaround times
[116], and the costs could be prohibitively expensive,
especially in lower-middle-income countries [117].
However, AI tools could be developed to detect the pres-
ence of point mutations from H&E slides alone, along
with being non-disruptive [118].
The diagnosis of idiopathic pulmonary fibrosis (IPF)

requires a pathologic or radiologic diagnosis of usual
interstitial pneumonia (UIP) [119]. In more than half of
the patients, the diagnosis of UIP cannot be made by
imaging alone, requiring a surgical biopsy, associated

with a risk of morbidity and mortality [120]. Although
transbronchial lung biopsy is a low-yield substitute, it
poses challenges for pathologists to confirm a diagnosis.
Raghu et al [51] trained a machine learning model using
histopathology and RNA sequence data from 90 patients
to identify UIP. With the addition of molecular data,
obtained along with biopsy samples, they demonstrated
a significant improvement in the performance of the
model. In addition, fibroblast foci are a known bio-
marker in IPF and increasing numbers of fibroblast foci
have been associated with a poorer prognosis in some
studies [15]. Mäkelä et al [52] trained a CNN to quantify
fibroblast foci, interstitial mononuclear inflammation,
and intra-alveolar macrophages, and analyzed the asso-
ciation of these parameters with survival. Interstitial
mononuclear inflammation and intra-alveolar macro-
phages were associated with prolonged survival, sug-
gesting their role as novel prognostic histologic
biomarkers in IPF. In addition, the CNN-based DL
model also confirmed the association between high num-
bers of fibroblast foci and poor prognosis for patients
with IPF.

Computer-aided diagnosis (CAD)
Traditional pathology involves the use of a microscope
by pathologists to analyze tissue samples for architec-
ture, cellular patterns, and structures, and interpretation
of these findings in the context of the clinical picture.
This process is inherently subjective and prone to inter-
observer variability [121–123]. In some instances, path-
ologic analysis requires repetitive tasks such as counting
mitoses in malignant cells or manual enumeration of
cells positive for certain immunohistochemical markers
(e.g. Ki-67). Since computational approaches automate
these processes, they have the potential to improve diag-
nostic accuracy and workflow efficiency, cutting down
the time that pathologists spend on time-consuming
tasks, allowing more time for intellectually demanding
aspects of interpretation [10,124].

An issue that has become a focus of interest over
the last 12 years due to advances in targeted therapies
has been accurate histologic subtyping of non-small cell
lung carcinomas (NSCLCs). Despite substantial advances
in immunohistochemical subtyping of NSCLC that have
facilitated tumor subtyping [125], the accurate interpreta-
tion of subtypes of NSCLC can occasionally be challeng-
ing, particularly in poorly differentiated examples with
overlapping immunophenotypes [126]. In one of the first
studies to demonstrate the utility of CNNs in distinguish-
ing between lung cancer subtypes, Coudray et al [71]
trained a de novo Inception v3 network using transfer
learning to automate the histologic type classification of
each slide. Notably, in contrast to real-life practice, where
pathologists need to pick between dozens of choices when
faced with a lung biopsy, the task in this study was limited
to the separation of LUAD and squamous cell carcinoma
of the lung. Another noteworthy point is that pathologists
were allowed to use H&Emorphology only, in contrast to
real-life practice, where immunohistochemistry is used for
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subtyping of cases that cannot be subtyped on H&E. Hav-
ing acknowledged these limitations, the tumor subtype
agreement between the DL model and the classification
provided by the gold standard for the study (The Cancer
Genome Atlas; TCGA) was higher than the agreement
between each pathologist and the TCGA. In analyzing
the slides that posed challenges to pathologists but were
correctly classified by the model, it performed well even
with poorly differentiated tumors, demonstrating the
advantage of CNN approaches in ambiguous cases.

In LUAD, in addition to the stage at the time of diagno-
sis, which has been the most important prognostic param-
eter for decades, the predominant tumor growth pattern
also impacts the outcome. The lepidic growth pattern is
the least aggressive; papillary and acinar growth patterns
are considered intermediate; and micropapillary and solid
growth patterns are categorized as the most aggressive,
associated with an increased likelihood of recurrence and
poor survival [127]. Recently, the cribriform pattern has
also been identified as a marker of unfavorable prognosis
in early-stage LUAD [128].

In another application, Gertych et al [64] constructed
a lightweight CNN using an AlexNet model. The goal
was to assess the accuracy of the CNN in identifying
four LUAD growth patterns (acinar, micropapillary,
solid, and cribriform) in surgically resected cases. Com-
pared with the gold standard (pathologist interpretation
of tumor versus non-tumor and LUAD growth patterns),
they also observed that de novo trained models per-
formed significantly better than pre-trained models and
that the model performed better in some validation sets
than in others. Wei et al [129] used a ResNet model for
a multi-label classification problem. They trained the
model on 422 WSIs of LUAD and compared the output
of the model in predicting the probability of six histolog-
ical subtypes against three pathologists. The model
achieved a Kappa score of 0.525 and showed an agree-
ment of 66.6%with three pathologists, which was higher
than the inter-pathologist Kappa score (0.485). Yu et al
[130] recently constructed a fully automated framework
to identify tumor regions and their histologic subtype,
and correlate them with individual transcriptomic pro-
files, allowing the tool to function as an end-to-end deci-
sion support system for thoracic pathologists in lung
cancer evaluation.

AI tools have also been applied to cytopathology sam-
ples obtained via fine needle aspiration, typically in the
form of individual cells and smaller tissue fragments.
They are less invasive than a biopsy and are increasingly
performed for the evaluation and staging of lung cancer
[131]. The individual cells seen in these samples can be
computationally analyzed for cellular and nuclear mor-
phology. In 2020, Gonzalez et al [132] studied cytology
and biopsy specimens from 40 patients and trained a
CNN-based DL algorithm to distinguish small cell lung
carcinoma (SCLC) and large cell neuroendocrine carci-
noma based on morphologic features. The number of
cases used was very small, although in this limited sam-
ple both the cytology algorithm and the biopsy algorithm
were able to correctly identify most cases of both tumors,

demonstrating the feasibility of using cytology speci-
mens for CAD systems.
One challenge for pathologists is to identifymetastatic

tumor deposits in lymph node biopsies and excisions,
which can be difficult in a background of lymphocytes,
histiocytes, endothelial cells, and other distractors. To
resolve this, Pham et al [61] developed a two-step DL
model with a CNN approach, in which the first algorithm
eliminated all lymphoid follicles from the WSI and sub-
sequently detected ‘true positive’ nodal metastasis in the
second step. Using this DL method, they reduced errors
by 36.4% on average and up to 89% in slides with reac-
tive lymphoid follicles. Although developed on lung
cancer patients, the detection of metastatic tumor cells
in a background of reactive immune cells can be
expanded to other disease indications as well.
Corredoretal [57]performedoneof thefirst studiesapply-

ing computational pathology approaches in COVID-19
to quantitatively characterize the spatial architecture of
lymphocytes and non-lymphocytic cells on digitized
autopsy images from patients who died of COVID-19
and compared it with those who died of H1N1, a compara-
ble viral infection.While visual assessment of lymphocytes
in COVID-19 samples has been performed [133,134], it
was qualitative with inter-reader variability. In contrast, in
this study, the authors used a watershed approach to seg-
ment the nuclei, a machine learning classifier to identify
lymphocytes, and subsequently constructed clusters of
cells to analyze spatial patterns.
Tuberculosis screening is a laborious task that

involves the detection of acid-fast bacilli on a pathology
slide stained with acid-fast stains such as the Ziehl–
Neelsen stain [135,136]. Experts have described best
practices for the detection of acid-fast bacteria in pathol-
ogy specimens, but these remain labor-intensive and
time-consuming [137]. In a complicated study that
involved errors both in the pathologist-based ground
truth and in the AI model, Xiong et al [54] developed a
CNN model, named tuberculosis AI (TB-AI) by feeding
patches from positive and negative regions of theWSI to
train the model. Although the TB-AI system initially
misdiagnosed several cases of dye residue and contami-
nants as acid-fast bacteria, the algorithm was improved
in a subsequent run, achieving 97.94% sensitivity and
83.65% specificity. Lo et al [56] developed a CNN clas-
sification model using 1,815 image blocks to identify
acid-fast bacilli with an accuracy of 95.3%. In addition,
they repeated the same experiment without color and
saw a drop of accuracy to 73.8%, thereby demonstrating
the role of color information in detections (Figure 5).

Prognostic and predictive applications
Pleural mesothelioma is a rare malignancy of the pleura,
with a poor prognosis [138]. Courtiol et al [67] devel-
oped MesoNet, a fully unsupervised deep CNN using
WSIs to predict the overall survival of mesothelioma
patients without any pathologist-provided locally anno-
tated regions. They validated the model on an internal
validation cohort and an independent cohort from the
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TCGA. Subsequently, they demonstrated the model to
be more accurate in predicting patient survival than cur-
rent pathology practices. However, unlike classical
black-box DLmethods, MesoNet identified regions con-
tributing to patient outcome prediction, primarily in the
stroma.
The classification of LUAD developed by the Interna-

tional Association for the Study of Lung Cancer
(IASLC), the American Thoracic Society (ATS), and the
European Respiratory Society (ERS) was an effort to
develop an integrated approach to classify NSCLC and
identify prognostic and predictive biomarkers [139].
While it demonstrated that growth patterns in LUAD are
prognostic, they are not currently used for clinical decision
making, and there remains a lack of robust and objective
biomarkers to determine the risk of recurrence and metas-
tasis in patients with early-stage LUAD. In early-stage
NSCLC treatedwith surgery, the added benefit of adjuvant
chemotherapy is unknown, and administration depends on
each patient’s risk of recurrence. However, there are no
validated biomarkers to predict the risk of recurrence accu-
rately and consistently.
Yu et al [140] developed a prognostic model for early-

stage NSCLC using quantitative histomorphometric
analysis by combining an automated feature extraction
method with a machine learning classifier. They ana-
lyzed local anatomical structures (nuclei and cytoplas-
mic shape) as well as global features (nuclear and
cellular texture) and found them to be predictive of
patient survival. In a similar study, Luo et al [141] dem-
onstrated that nuclear and cell texture features were inde-
pendently prognostic of survival across all stages of
NSCLC. In a study with 305 patients, Wang et al [82]
focused on graph features extracted from tumor nuclei
features of tumor cells on tissue microarray core images
to develop a supervised classification model for predict-
ing recurrence in early-stage NSCLC. Using a multivar-
iable Cox proportional hazard model, including
additional markers such as gender and disease stage,
the computationally derived risk score was found to be
independently prognostic. A unique prospect of compu-
tational pathology techniques is the ability to perform
multiple analyses stepwise. In a subsequent study with

over 1,000 patients, Wang et al [74] developed an image
risk score from nuclear and perinuclear histomorpho-
metric features which was prognostic in early-stage
NSCLC. In addition, it was one of first models in lung
cancers to additionally predict the added benefit of adju-
vant chemotherapy by demonstrating a subset of high-
risk patients treated with only surgery who might have
had a better survival if treated with adjuvant chemother-
apy. Saltz et al [84] used WSIs from the TCGA to study
the association of TIL patterns with molecular features
and overall survival. Corredor et al [77] analyzed the
spatial architecture of TILs and non-lymphocytes as well
as the interplay and co-localization of these cells, and
demonstrated features associated with recurrence in
early-stage NSCLC patients.

Lu et al [76] developed a feature classifier named
CellDiv, which analyzes the local cellular morphologi-
cal diversity displayed by lung cancer owing to its het-
erogeneity. CellDiv features showed a strong
correlation with overall survival in early-stage NSCLC
in addition to being able to distinguish KRAS mutation
status and being associated with biologic pathways of
cellular differentiation, apoptosis, and signaling. Vaidya
et al [83] took an approach combining the top predictive
features from lung CT scans and H&EWSIs to construct
an integrated ‘RaPtomic’ classifier to predict 5-year
recurrence free-survival in NSCLC. The integrated
model had a better performance (AUC 0.78; p < 0.005)
than radiomic (AUC 0.74; p < 0.01) and pathomic
(AUC 0.67; p < 0.05) features alone.

In SCLC, Jain et al [142] studied the association of
quantitative features of tumor nuclei extracted from
platinum-based chemotherapy-treated patients with
prognosis and observed that the top features capturing
nuclei shape, size, and texture were able to stratify
patients based on their overall survival.

In the last decade, several novel therapeutic agents
have been discovered to treat previously incurable lung
diseases [143–148]. While targeted agents such as
immunotherapy have shown high efficacy, they are
expensive and have low response rates [149–151].
Hence, there is a need to study the therapeutic response
and identify patients who are likely to benefit from

Figure 5. Applications of computational pathology in lung diseases.

420 VS Viswanathan et al

© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2022; 257: 413–429
www.thejournalofpathology.com

http://www.pathsoc.org
http://www.thejournalofpathology.com


treatment or are at a higher risk for adverse effects. With
the approval of the first immune checkpoint inhibitor
(ICI) pembrolizumab as a first-line drug for metastatic
NSCLC [152], there has been much interest in exploring
the tumor microenvironment and tumor-infiltrating lym-
phocytes in the hope of finding reliable biomarkers to
predict immunotherapy response [94,153,154].

In a study of 221 patients treated with nivolumab,
Gataa et al [155] analyzed the association of TILs with
treatment response to ICI. They employed a semi-
quantitative method by pathologists using H&E-stained
sections from archival pretreatment tumor tissue sample
to assess the TIL density and observed that a high TIL
density (>10%)was associated with response to ICI ther-
apy in advanced NSCLC, thereby raising the possibility
of TIL density as a potential biomarker for predicting
response to ICI.

Wang et al [156] quantitatively extracted features
related to the spatial arrangement of TILs and nuclei
from 82 NSCLC patients treated with the PD-1 inhibitor
nivolumab to construct a random forest classifier,
which yielded an AUC of 0.68 on the validation set.
Ofek et al [157] used a DL approach to analyze the spa-
tial arrangement of TILs in the tumor microenvironment.
This imaging biomarker was predictive of response to
pembrolizumab in patients with advanced NSCLC.
Barrera et al [85] took a hand-crafted approach by hav-
ing two expert pathologists manually delineate tumor
regions which were used to identify the TILs. Subse-
quently, TIL arrangement features were computed to
create a machine learning classifier that accurately dis-
tinguished patients who responded to nivolumab versus
those who did not. The detection and subsequent analy-
sis of TILs also pave the way for studying other bio-
markers such as tumor-associated macrophages in lung
cancer [158].

Jain et al [142], in a study of 106 SCLC patients,
trained a naïve Bayes classifier analyzing morphological
and functional features (shape, size, intensity, cellular
texture) of the cancer nuclei to predict response to
platinum-based chemotherapy. Barrera et al [159]
looked at a combination of textural and shape features
from WSIs with features from CT scans to construct a
machine learning classifier for predicting response to
chemotherapy in SCLC.

Emerging applications
Multi-omics

Intratumoral heterogeneity in NSCLC has been well
studied [160]. Recent studies have mapped spatial tran-
scriptomics onto histopathology feature maps to analyze
the role of different cell populations in cancers
[161,162]. The underlying molecular mechanisms for
several morphologic features in NSCLC have largely
remained unexplained [163]. Meanwhile, there are more
imaging features currently not readily evaluable by clini-
cians, yet associated with patient outcomes [164]. For
example, lung cancer can present either as ground-glass
opacities or as solid nodules on chest CT scans

[165,166]. Despite being the same clinical entity, their
appearance, and the clinical course, can differ, indicating
distinct tumor biology. With 538 LUAD cases from the
TCGA, Yu et al [167] used WSIs, RNA sequencing,
and proteomics data, and constructed a machine learning
model to identify molecular pathways associated with
morphologic features. Interestingly, the authors chose a
random forest [168], a machine learning algorithm
which works well with high-dimensional data such as
multi-omics, to correlate with outcomes. AbdulJabbar
et al [169] developed a DL tool integrating spatial histol-
ogy with multi-region exome sequencing data to map
regions of immune ‘hot spots’ and their association with
intratumoral heterogeneity. The tool, validated on squa-
mous cell carcinoma and LUAD patients from the
TraceRx study and LATTICe-A study, demonstrated
that the overall number of immune cold regions within
a tumor determined the prognosis of LUAD.
A radiologic examination is often the first modality of

investigation in lung disease due to its non-invasive
nature. However, one of the major drawbacks of radio-
graphic imaging is the inability to accurately define the
disease extent, which still requires histopathologic anal-
ysis. Recent computational approaches have allowed co-
registering or ‘mapping’ the histologic volume from
biopsies onto the CT scan volume to allow facilitating
early characterization of lung nodules’ extent on non-
invasive imaging modalities by avoiding biopsy [170].
Rusu et al [170] performed one of the first known stud-
ies in co-registering lung ex vivo pathology specimens
with CT scans. They demonstrated a method of first
constructing a 3D histological volume using group-
wise registration and subsequently co-registering the
CT scan with the reconstructed histology. Their
approach showed a Kappa value of 0.68, indicating
substantial agreement.

Microbiome

The lung microbiota has been shown to play a role in
lung cancer development as well as in prognosis and
response to treatments [171]. It is also associated with
the histological subtypes of lung cancer [172]. Given
its role in disease progression, there have been large-
scale efforts to collect microbiome and metabolome
data [173]. With the demand to process and analyze this
‘big data’, machine learning tools in combination with
image-based biomarkers captured from WSIs offer a
bright prospect.

3D pathology

Novel imaging techniques such as 3D microscopy [174]
have recently been utilized in DP workflows. The non-
destructive nature of the technology along with its ability
to analyze larger samples of tissue could help to over-
come challenges faced by spatial and temporal heteroge-
neity. Currently, it has been applied in the context of
prostate cancer in enhancing risk stratification [175].
With its ability to interrogate spatial relationships of var-
ious cell types by reconstructing entire tissue blocks,
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techniques such as 3D microscopy combined with DP
would be an invaluable tool in a pathologist’s
armamentarium.

Transplant rejection prediction

A major cause of mortality in lung transplant recipients
is graft failure, and predicting the risk of rejection poses
a challenge for clinicians as clinical criteria alone are
inaccurate [176]. Studies developing machine learning
models using WSIs of tissues from heart [177,178] and
kidney [179,180] transplant patients have demonstrated
unique morphological patterns related to lymphocytes
and stroma to predict the risk of transplant rejection.
Similar techniques could potentially be applied to lung
transplant recipients in the future.

Drug development and discovery

Recently, there has been renewed interest in drug
development for pulmonary diseases such as IPF and
pulmonary artery hypertension to address unmet med-
ical needs [181–183]. A crucial step is the estimation
of response to novel agents using scoring systems that
may involve manual assessment of histopathology
slides [184,185]. Computational approaches can accel-
erate the process by automated analysis of digitized
image data [186–189].

Challenges and opportunities

Challenges pertaining to both the technical development
of AI tools and their clinical translation need to be
addressed before adoption by the clinical community.
Past works have explored the various technical hurdles
such as batch effects, slide artifacts, and staining vari-
ability, and their solutions [190–192]. One of the issues
with the clinical translation of DP-based AI tools is the
appropriate regulatory approval pathways from agencies
such as the FDA, in the USA and the Conformité
Européenne (CE) mark in Europe [193]. Currently, no
specific regulatory pathways exist for the approval of
AI-based tools in the United States. The recent FDA
approval of Paige Prostate [32] for prostate cancer detec-
tion was classified as a Class II device, indicating a mod-
erate to high risk to patients [45]. It underwent the de
novo pathway [194] and was categorized as a ‘software
algorithm device to assist users in digital pathology’.
This creation of a new product code is expected to allow
more DP-based solutions to follow suit in obtaining
approvals for clinical translation [195]. While the tools
approved so far aid in diagnostics, regulation for predic-
tive tools is expected to be rigorous, with careful evalu-
ation of their performance owing to the downstream
impact they may have in patient management. Even after
approvals, diagnostic decision support systems will have
to be monitored via prospective trials to avoid misuse as
primary diagnostic tools [196]. While there are no DP-
based AI tools for lung cancer at the time of writing,
Optellum [197] received a 510(k) approval for ‘Virtual

Nodule Clinic’ as the first radiomics-based AI tool for
lung cancer detection, which demonstrates the interest
in these tools in pulmonary diseases.

Additionally, AI tools need to address issues with
reimbursement, which may be complicated since the
existing fee-for-service model cannot be applied
[198,199]. The American Medical Association (AMA)
current procedural terminology (CPT) codes and Centers
for Medicare & Medicaid Services (CMS) currently do
not have a payment pathway for DP-based AI tools.
The recent decision by the CMS to grant New Technol-
ogy Add-on Payment reimbursement to a stroke detec-
tion model by Viz.AI [200] performed under a unique
ICD-10 Procedure Coding System (ICD-10-PCS) proce-
dure code [201] is a step forward. One approach would
be to create a new CPT code for CAD tools [202],
whereas another might be to analyze andmodify existing
ones to incorporate DP services [203].

The clinical deployment of DP-based AI tools
requires collaboration between stakeholders, including
machine learning scientists, software developers, and
clinicians who are the end-users. While diagnostic
tools such as Paige Prostate have been deployed as
decision support tools integrated with image viewers,
such a process is yet to be developed for prognostic
and predictive tools [204]. DP-based AI tools can be
deployed either as Storage as a Service (SaaS) cloud
business model or as on-premise solutions [205].
While cloud-based programs may facilitate remote
access of these tools, the larger size of high-resolution
pathology images might favor an on-premise tool. The
mode of deployment may vary according to institu-
tions, and financial implications need to be taken into
consideration as well [206].

Given that results fromAI toolsmay have a far-reaching
impact on the life of a patient, there are important legal
challenges to be considered for their safer translation into
clinical practice [207]. An equitable liability scheme needs
to be designed to define the roles of AI tool developers,
physicians, and healthcare institutions. This discussion
would revolve around what is considered as the gold stan-
dard adopted by the clinical community, and whether AI
would continue to remain as assistive technology, or
become the gold standard against which the performance
of a physician is evaluated [208].

Finally, an important consideration before the integra-
tion of AI tools into clinical practice is to make sure that
these tools have been ethically trained and are not sub-
ject to bias [199]. While human errors in diagnostics
have been largely attributed to cognitive biases [209],
AI errors tend to be systematic and often introduced dur-
ing the training phase [210]. Efforts need to be taken to
ensure that future AI tools are trained and validated on
a plurality of populations. There have been attempts to
incorporate molecular and phenotype differences among
populations which may manifest as tissue morphology
differences into AI models. Studies in prostate [211],
breast [212], and endometrial [213] cancers suggest that
population-specific AI models could be more accurate in
stratifying patients based on their risk.

422 VS Viswanathan et al

© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2022; 257: 413–429
www.thejournalofpathology.com

http://www.pathsoc.org
http://www.thejournalofpathology.com


Conclusion

The use of AI tools in lung DP is expanding rapidly
[214]. While CNN-based DL models performing detec-
tion and pattern recognition are intuitively suited for
low-level tasks such as automated lung tissue segmenta-
tion, disease diagnosis, and quantifying biomarkers such
as PD-L1, hand-crafted models are being integrated with
clinical data and outcomes for risk stratification and pre-
diction of treatment response, which can be further made
interpretable by using domain-inspired hand-crafted fea-
tures [215]. Integration of DP in the clinical workflow
across major institutions remains a challenge, due to
organizational structures, the cost of initial set-up,
requirements of advanced security systems in hospitals,
and demands for storage of ‘big data’ [215–217]. Cur-
rently, most existing AI tools have been validated on
retrospective data [196], which does not represent real-
world scenarios. Validating the algorithms in random-
ized controlled trials and prospective studies will be a
crucial step towards clinical adoption [199]. There is still
hesitancy within the clinical community regarding the
black-box nature of some AI-based tools, which may
determine regulatory approvals as well as their acceptance
for clinical deployment. Hence, there is a growing interest
in interpretable AI [218]. DP-based AI tools hold
immense potential for improving workflow issues for
pathologists by reducing labor-intensive, time-consuming
tasks, and for pulmonologists and thoracic oncologists by
providing risk stratification and companion diagnostics
tools for lung diseases. While there are significant chal-
lenges in translating these technologies into clinical prac-
tice, recent regulatory approvals and deployment of these
tools [219] signal a changing trend.
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