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Protein S-sulfenylation is a fleeting molecular
switch that regulates non-enzymatic oxidative
folding
Amy E.M Beedle1, Steven Lynham2 & Sergi Garcia-Manyes1

The post-translational modification S-sulfenylation functions as a key sensor of oxidative

stress. Yet the dynamics of sulfenic acid in proteins remains largely elusive due to its fleeting

nature. Here we use single-molecule force-clamp spectroscopy and mass spectrometry to

directly capture the reactivity of an individual sulfenic acid embedded within the core of a

single Ig domain of the titin protein. Our results demonstrate that sulfenic acid is a crucial

short-lived intermediate that dictates the protein’s fate in a conformation-dependent manner.

When exposed to the solution, sulfenic acid rapidly undergoes further chemical modification,

leading to irreversible protein misfolding; when cryptic in the protein’s microenvironment, it

readily condenses with a neighbouring thiol to create a protective disulfide bond, which

assists the functional folding of the protein. This mechanism for non-enzymatic oxidative

folding provides a plausible explanation for redox-modulated stiffness of proteins that are

physiologically exposed to mechanical forces, such as cardiac titin.
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P
rotein folding defines a molecular self-assembly process that
is finely tuned by a subtle interplay between enthalpic and
entropic contributions1–3. An extra layer of complexity is

added when a native covalent disulfide bond needs to reform
along the folding pathway4,5. Other chemical alterations, such as
post-translational modifications, pose further challenges to the
successful completion of the folding process.

Cysteine is a principal target for post-translational modifica-
tions, especially those related to oxidative stress6. Due to the
presence of empty d-orbitals ready for bonding, the highly
polarizable sulfur atom can display oxidation states ranging from
� 2 to þ 6 (refs 7,8). Cysteine sulfenic acid (Cys-SOH) is the first
oxidation step of cysteinyl thiols (Cys-SH)9 and the resulting
post-translational modification, cysteine S-sulfenylation, has been
identified as a redox sensor in an increasing number of
proteins10,11. However, the unusually high reactivity of -SOH—
a consequence of its dual electrophilic and nucleophilic
character7,10,12—, together with its invisibility to ultraviolet–
visible and fluorescent spectroscopic detection13, has rendered
its characterization challenging. In general, stabilization of
protein sulfenic acid is highly dependent on the protein
microenvironment11, following the general notion that solvent-
exposed cysteines feature increased chemical lability14.

Identification of protein sulfenic acids has been mostly indirect,
through chemical labelling with 5,5-dimethyl-1,3-cyclohexadione
(dimedone)15, a mass-shifting molecular probe that specifically
traps -SOH moieties and is easily identifiable with mass
spectrometry (MS)16–18. Despite this phenomenal progress12,
given the irreversible nature of the detection methods, which
interfere with the intrinsically fast reactivity of Cys-SOH, direct
identification of the dynamics of a particular protein -SOH and
its implication on folding remains largely elusive.

Under oxidative conditions, Cys-SOH can be readily oxidized
to more stable products, namely sulfinic (Cys-SO2H) or sulfonic
(Cys-SO3H) acids6. The transition to these higher oxidation state
species has been generally regarded as irreversible, and a marker
for oxidative damage. Such deleterious pathway can be avoided if
the electrophilic sulfur atom in -SOH reacts with an
intramolecular neighbouring protein thiol nucleophile to form a
stable disulfide bond19,20. Such oxidant-mediated disulfide bond
formation process, typically occurring within the reducing
conditions of the cytosol on a transient increase in oxidative
stress, differs from the enzyme-catalysed formation of structural
disulfide bonds. This latter process takes place in the oxidizing
milieu of the endoplasmic reticulum or the mitochondrial inter
membrane space in eukaryotes or in the periplasmic space in
bacteria19,21 via the formation of a mixed disulfide intermediate
between the catalytic enzyme and the protein substrate22,23.
Despite its in vivo relevance, a comprehensive molecular
description of the formation of disulfide bonds within the
context of non-enzymatic oxidative folding is still missing.

Here we use a combination of single-molecule force-clamp
spectroscopy, protein engineering techniques and MS to directly
monitor the reactivity of an individual force-induced -SOH
moiety occurring within a single immunoglobulin domain of the
giant titin protein. Our results demonstrate that the fleeting -SOH
intermediate, the life-time of which is largely conformation
dependent, acts as a molecular switch that directly modulates
protein function. In a short window of opportunity in the second
timescale, the -SOH moiety is able to avoid irreversible protein
misfolding—induced by cysteine hyperoxidation and/or aldehyde
condensation—by readily forming a disulfide bond that guaran-
tees the functional final folding of the protein. We hypothesize
that this mechanism for non-enzymatic oxidative folding may be
a common place for oxidation-induced post-translational
modifications occurring on solvent-exposed cysteines, drastically

affecting the elastic properties of proteins that are exposed to
mechanical forces.

Results
-SOH triggers disulfide bond formation. -SOH is typically
induced by exposing a cysteine residue to high concentrations
of hydrogen peroxide (H2O2)24. However, its fast kinetics
(10–107 M� 1 s� 1)25,26 and its further reactivity to higher
oxidation state species often precludes the capture of this
transient -SOH intermediate. An alternative means to create a
protein -SOH in a much more controlled manner is based on the
alkaline hydrolysis of an individual disulfide bond, resulting in
the stoichiometric formation of a -SOH and a thiolate27–29

(Fig. 1a). Albeit admittedly less physiologically relevant, this
strategy is also found in nature30,31, as reported for phospho-
glycerate kinase reductase32,33.

Using an experimental single-molecule mechanical assay
designed previously34, an individual -SOH moiety can be
readily created by the hydrolysis of a single protein disulfide
bond under high-pH conditions (Fig. 1a). The atomistic detail of
this process has been provided by highly revealing molecular
quantum mechanics/molecular mechanics (QM/MM)
simulations35,36. We now set out to extend our experimental
approach to probe whether each cleaved disulfide bond can be
reformed in the absence of a catalytic enzyme, and how such
putative reformation process affects the entire protein folding
phenomena.

In our experiments, we used a single-molecule force-clamp
atomic force (AFM) spectrometer (Fig. 1b) to stretch under high
alkali conditions (pH¼ 12.8), a polyprotein containing eight
identical domains of a mutated titin Ig27 domain containing two
cysteines in positions 24 and 55, which readily form a structurally
buried disulfide bond (Fig. 1a). We designed a five-pulse force
protocol to measure the protein elongation over time, which
enables independent capture of each individual cleavage and
reformation event, with single bond resolution (Fig. 1c). Applying
an initial pulse of 150 pN for 0.5 s to the (I27E24C–K55C)8

polyprotein resulted first in the presence of fast elongation steps
of B15 nm (inset, grey), corresponding to the unfolding and
extension of each individual protein domain up to the rigid
disulfide bond, which became exposed to the solvent environment
(Fig. 1c, grey). A second force pulse at a much higher force
(500 pN) triggered the forced-induced scission of each individual
disulfide bond via a SN2 nucleophilic attack by the hydroxyl
(OH� ) anion. Each individual hydrolysis event is fingerprinted
by a step of B10 nm (inset, green), corresponding to the
extension of the amino acids that were trapped behind the
disulfide bridge (Fig. 1c, green). The two distinctive step-size
populations in these first two high-force pulses (initial pulse) are
clearly observed in the bimodal histogram shown in Fig. 1d.
Notably, after the cleavage of all disulfide bonds at 500 pN, the
fully unfolded and extended polyprotein is extended to almost its
contour length and all of its backbone residues are fully exposed
to the chemical environment of the measuring solution.

Shortly after the last individual rupture event, the stretching
force was completely withdrawn for tq¼ 5 s to trigger the folding
of the polypeptide. Such force-quench approach allows dissection
of the distinct phases involving mechanical folding from highly
extended states37–40. After the quenching pulse, a test pulse—
composed again of a stretching sequence of 0.5 s at 150 pN
followed by a pulse at a higher force of 500 pN— was applied to
the protein to probe its folding status.

The elongation pattern of the protein during the test pulse
enables discrimination among three different possible oxidative
folding scenarios; (i) if the protein has not been able to fold
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within the quench time, it will extend featuring the absence of
well-defined steps37,39. Instead, (ii) if the protein is able to
refold—thus regaining mechanical stability—but the disulfide
bond has not been reformed, the protein will extend featuring
steps of 25 nm, corresponding to the unfolding and stretching of
the fully folded protein in the absence of the mechanically rigid,
covalent disulfide bond38. Finally, (iii) if the protein has been able
to both successfully refold and reform the disulfide bond, the test
pulse will be then composed of the unfolding B15 nm steps
followed by the B10 nm steps corresponding to the (re)-rupture
of each successfully reformed disulfide bond. In summary, a
25 nm step provides the signature of a properly folded domain
with no disulfide, whereas a 15 nm step (followed by a 10 nm
step) indicates a properly folded domain with a formed disulfide.

The latter scenario was indeed observed in our folding
trajectories (Fig. 1c). The histogram corresponding to the
distribution of step sizes populating the test pulse hallmarks
the presence of both B15 nm and B10 nm steps (Fig. 1e).
Surprisingly, not a single event corresponding to the B25 nm
steps was observed. Interestingly, a small population (B4%) of
B21 nm events was also present in the high-force pulse,
corresponding to the scission of a non-native disulfide bond
formed between two contiguous domains within the polyprotein
chain40 (Supplementary Fig. 1). As a control experiment, we
verified that the oxidized protein was able to independently refold

under high-pH conditions, as shown in Supplementary Fig. 2.
Altogether, our experiments qualitatively show that an individual
disulfide bond is able to reform in the absence of catalytic
enzymes.

We next examined whether such oxidative folding scenario
could also be reproduced when the specific location of the
disulfide bond within the structure of the I27 protein was
changed. We repeated the experiments reported in Fig. 1 on a
distinct polyprotein construct, (I27G32C–A75C)8, in which the
cysteine mutations were engineered in different positions of the
I27 sequence. The resulting trajectories (Supplementary Fig. 3)
qualitatively certified the successful reformation of the disulfide
bond along the folding pathway.

The kinetics of disulfide bond reformation. To quantify the
kinetics of disulfide bond reformation, we repeated the experi-
ments shown in Fig. 1 and varied the quench time (tq) within the
range spanning tq¼ 0.5–15 s (Fig. 2). As observed in the indivi-
dual trajectories shown in Fig. 2a,b, the longer the protein was
allowed to refold in the absence of force, the higher the percen-
tage of disulfide bonds that reformed (hallmarked by the
appearance of B10 nm steps in the test pulse). As shown in
Fig. 2c, the per cent of disulfide bond reformation increased
exponentially with the quench duration, suggesting that the

200
150
100
50

0N
um

be
r 

of
 e

ve
nt

s

302520151050

100
80
60
40
20

0N
um

be
r 

of
 e

ve
nt

s

302520151050
Step size (nm)Step size (nm)

TestInitial

2 s

 1
0 

nm
 

 1
0 

nm
 

0.1 s

0.1 s

 1
5 

nm

150 pN
500 pN

0 pN
150 pN

500 pN

F

0.1 s

10
 n

m
 

 1
5 

nm
 

0.1 s

SS

OHOHOH –
S–

F F

*
*

*

*
*

*
*

*
*

tq = 5 s

a

c

d e

b
S – SS S–

Figure 1 | Single-molecule force-clamp spectroscopy captures the non-enzymatic reformation of individual disulfide bonds. (a) The hydrolysis of the

protein disulfide bond via a SN2 attack by hydroxide anions results in the creation of a sulfenic acid and thiolate. (b) Schematics of the engineered (I27E24C–

K55C)8 polyprotein being stretched in the AFM set-up. (c) Pulling on an individual polyprotein at constant force using a specifically designed pulse-protocol

captures oxidative protein folding. The initial pulse unfolds the protein and ruptures the disulfide bond; the first pulse F¼ 150 pN unfolds and extends all the

modules of the (I27E24C–K55C)8 polyprotein to the mechanical clamp created by the disulfide bonds, which exposes them to the solution (grey line). Each

unfolding event is marked by a step increase of B15 nm (inset, grey line). A second stronger force pulse (F¼ 500 pN) triggers disulfide rupture (green

line), fingerprinted by equally spaced B10 nm steps (inset, green line) that correspond to the extension of the peptide chain released on the scission of

each disulfide bond (red asterisks). Releasing the pulling force (F¼0 pN) triggers the protein to collapse and fold for a time quench tq¼ 5 s. The

subsequent test pulse probes the folding status of the protein. Mirroring the initial pulse, a force pulse of F¼ 150 pN unfolds and extends the refolded

protein up to the newly created disulfide bond (inset, grey line) whereas the last F¼ 500 pN pulse is able to rupture it again (inset, green line). The step-

size histograms corresponding to the (d) initial and (e) test pulse highlight in both cases the presence of B10 nm and B15 nm steps.
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reformation of the protein disulfide bond is a two-state process
with an associated characteristic time of kref¼ 0.45 s� 1. This is
consistent with a scenario where the nucleophilic thiol would
attack the electrophilic -SOH centre via a concerted SN2 reaction,
occurring through a well-defined transition state41,42, to reform
the disulfide bond. Noteworthy, the measured reformation rate is
expected to be pH dependent, since the nucleophilic capacity of
the free thiolate to attack the electrophilic -SOH will be largely
dependent on the thiolate being completely deprotonated.
However, given the expected pKaB8 for each free cysteine, we
do not anticipate these rates to be significantly affected in our
high-pH experiments, although this might have an effect at
lower pH values. Remarkably, the measured rate of disulfide
reformation for the (I27G32C–A75C)8 construct (kref¼ 0.42 s� 1)
was found to be almost identical to that measured for the
(I27E24C–K55C)8 polyprotein, thus demonstrating that the disulfide
bond reformation kinetics is not significantly altered by changing

the position of the disulfide bond within the protein structure
(Supplementary Fig. 3).

Reactivity of -SOH depends on solvent accessibility. While
generally short, the life-time of -SOH has been described to
crucially depend on the degree of solvent exposure20,43. Force-
clamp AFM allows to explore new protein conformations that are
not usually sampled in classical ensemble experiments conducted
in the bulk44. In particular, the force-triggered low-entropy,
highly extended unfolded state fully exposes the backbone
residues to the solvent environment45. To interrogate the
conformation-dependent reactivity of -SOH, we systematically
changed the time the fully reduced and mechanically stretched
protein was exposed to the solvent, text, thereby increasing the
probability to be chemically modified, while keeping the quench
time constant (tq¼ 8 s, Fig. 3a,b). Leaving the protein stretched
for text¼ 0.5 s resulted in a B55% disulfide bond reformation.
Substantially increasing the extended time up to text¼ 30 s
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yet time to fold. (c) The percentage of disulfide bond reformation increases

exponentially with tq with an associated rate constant of kref¼0.45 s� 1

(solid green line, w2
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(a,b) Increasing the time, text, the protein is reduced and stretched at high

force (F¼ 500 pN) results in a drastic decrease of successful oxidative

folding (marked by the decrease of both B10 nm steps, red asterisks, and

B15 nm steps in the test pulse). (c) While the decrease in the % of

disulfide bond reformation as a function of text can be fitted with a single

exponential (dotted grey line) with a rate constant k¼0.17 s� 1

(w2
red¼ 5.02), the trend is best described (w2

red¼ 2.78) by a double

exponential fit (solid blue line), with associated rate constants

k1¼0.065 s� 1 and k2¼0.695 s� 1, reminiscent of two competing

processes occurring concomitantly.
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considerably decreased the reformation probability down to
B5%. The absence of disulfide bond reformation inevitably
resulted in protein misfolding, since we never observed the
presence of a 15 nm step without the companion 10 nm step in
the test pulse. The evolution of the per cent of disulfide bond
reformation as a function of text showed a marked, fast decrease
(Fig.3c). While fitting a single exponential to the data qualitatively
described the time-course of the process with an associated
decaying rate of k¼ 0.17 s� 1 (w2

red¼ 5.02), a double exponential
(k1¼ 0.065 s� 1 and k2¼ 0.695 s� 1) slightly increased the
goodness of the fit (w2

red¼ 2.78, Supplementary Fig. 4),
reminiscent of two independent reaction pathways occurring
concomitantly.

To directly quantify the relationship between the degree of
solvent exposure and -SOH reactivity, we systematically varied
the stretching force after triggering the formation of -SOH. Using
a six-pulse force protocol (Fig. 4), the initial two pulses unfolded
the protein (150 pN, 0.3 s) and triggered the rupture of the
disulfide bond within a short time (500 pN, 2 s). The force was
then varied within a range spanning 0–500 pN during 4 s
(grey box) before being withdrawn (0 pN, tq¼ 8 s) to trigger
collapse39 and oxidative folding. As before, the folding success
was probed by two high force test pulses (150 pN followed by
500 pN). The folding trajectories shown in Fig. 4a qualitatively
show that the number of 10 nm steps observed in the test pulse
(red asterisks) significantly decreased as the stretching force was
increased. This tendency was quantitatively verified in Fig. 4b,
displaying the percentage of disulfide bond reformation as a
function of the stretching force. Crucially, the observed trend can
be nicely reproduced by the worm-like chain (WLC) model of
polymer elasticity (using a persistence length P¼ 1.2 nm)45,
which relates the protein’s end-to-end length with the pulling
force. At each defined force, the WLC model defines an
equilibrium end-to-end conformation that is characterized by a
different degree of solvent exposure of the protein residues46.
Altogether, these experiments demonstrate that the reactivity of
-SOH—intimately related to the oxidative folding fate of the
protein— is largely determined by the protein’s conformation.

To investigate the molecular origin of the chemical modifica-
tion that prevented the reformation of the disulfide bond at high
pulling forces, we conducted MS measurements on the mono-
meric I27E24C–K55C protein under high-pH conditions. MS spectra
revealed the presence of both sulfinic and sulfonic acid, thus
suggesting the successive irreversible oxidation of -SOH
(Supplementary Figs 5 and 6 and Supplementary Table 1).
Notably, the presence of aldehyde (with a concomitant loss of
H2S) was also detected with good evidence (Supplementary Fig. 7
and Supplementary Table 1). Indeed, aldehyde formation has
been long reported as a sub-product of the decomposition of
-SOH under high alkali conditions28,47,48. While both the protein
conformation and the timescales sampled in the MS and single-
molecule mechanics experimental approaches are certainly
different, the MS data provide excellent complementary
information that illustrates the most plausible chemical
processes responsible for the misfolding events captured in the
nanomechanical experiments, greatly affecting the folding and
elastic properties of the individual titin polyproteins.

Dimedone binding confirms the presence of -SOH. To provide
a final, unambiguous proof that -SOH is actively involved in the
molecular mechanism driving the reformation of disulfide bonds,
we directly tested the effect of dimedone on the outcome of our
oxidative folding assay. Dimedone has been vastly demonstrated
to effectively react with -SOH (but not with thiols) with high
specificity (Fig. 5a)7,15. Addition of 30 mM of dimedone to the
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local protein environment shields the sulfenic acid, allowing it to condense

into a reformed disulfide bond that ensures successful oxidative folding. By

contrast, at higher forces the sulfenic acid is fully exposed to the solution

and undergoes further chemical modification, ultimately leading to protein

misfolding, hallmarked by the inability of the protein to recover its native

mechanical stability.
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measuring solution markedly blocked both the reformation of the
disulfide bond and the folding of the protein (Fig.5b), decreasing
the bond reformation efficiency down to B15% (Fig. 5c). This
drastic decrease in the reformation (and subsequent refolding)
efficiency was further exacerbated (down to a residual B6%)
when the protein was left fully extended at high forces for a
longer period of time, text¼ 10 s, promoting dimedone binding
(Fig. 5c). By contrast, dimedone did not prevent the protein from
successfully refolding when the disulfide bond remained oxidized
(Supplementary Fig. 8). To indisputably verify the presence of the
covalent S-dimedone adduct, we conducted MS measurements on
the monomeric I27E24C–K55C protein under high-pH conditions.
The resulting MS/MS fragmentation spectra identified, for
both 24 and 55 cysteines, a shift in Dm/z¼ þ 138 Da (Fig. 5d,
Supplementary Fig. 9 and Supplementary Table 2), which
confirmed the presence of dimedone.

Discussion
Oxidative stress defines elevated intracellular levels of reactive
oxygen species (ROS)—mostly including superoxide anion,
hydrogen peroxide and hydroxyl radicals—that cause damage
to DNA, lipids and proteins49. While ROS were originally known
for oxidizing various cellular compartments and promoting aging
and a broad range of pathologies, more recent evidence shows
that ROS also acts as signalling molecules that regulate basic
cellular processes including growth, differentiation and cell
migration26,50. It is increasingly clear that a major mechanism
of redox signalling is the dynamic regulation of protein function
by the chemiselective oxidation of cysteine residues. The first

product of oxidation is Cys-SOH, exhibiting an oxidation state of
(0). Despite its ephemeral nature, -SOH has been trapped in a
number of crystallized proteins12,51. These carry a wide range of
functionalities12, encompassing enzyme catalysis (such as protein
tyrosine phosphatases52, kinases53 and cysteine proteases54),
transcription factors (including OxyR55, Yap1 (ref. 56) and
NF-kB57) and ion channels (such as ORAI1 (ref. 58) and Kv1.5
(ref. 59)). This progress notwithstanding these structures provide
a static snapshot, and the fast dynamics of such important
post-translational modification often evaded characterization.

The relatively small number of crystallized proteins contrasts
with the increasingly larger number of proteins where -SOH has
been identified in vivo. Indeed, the dimedone-based cell-perme-
able chemical probe DAz-2, capable of detecting SOH-modified
proteins directly in living cells50, has allowed for a comprehensive
analysis of the cellular ‘sulfenome’18, revealing the presence of
(41,000) S-sulfenylation sites on more than 700 proteins in
intact cells, highly prevalent in different cancer cell lines14,60.
Importantly, these newly identified protein targets largely expand
the diversity of functionalities of the already identified sulfe-
nylated proteins. Therefore, unveiling the molecular mechanisms
defining -SOH reactivity is an essential requirement for the
understanding of redox regulation in cells.

Our single-molecule approach allows independent measure-
ment of the protein folding and disulfide bond formation
processes, enabling us to directly visualize the molecular events
defining the complex kinetics of the oxidative folding mechanism.
The crucial role of disulfide reformation in protein refolding was
further probed in experiments on the pre-reduced (I27E24C–K55C)8

polyprotein at pH¼ 12.8. While the oxidized protein was able to
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refold under high-pH conditions (Supplementary Fig. 10), the
folding efficiency of the pre-reduced protein was significantly
decreased down to B20%, exhibiting a seemingly slow folding
kinetics, kfold¼ 0.10 s� 1 (Supplementary Fig. 10). This result
contrasts with the much higher folding efficiency of the
sulfenylated protein, which folds on the reformation of the
disulfide bond (kref¼ 0.45 s� 1), ultimately setting the associated
folding rate (kfold¼ 0.46 s� 1). These experiments demonstrate
that while the protein is mostly unable to successfully refold on its
own under high pH, the reformation of the disulfide bond
dramatically increases its folding efficiency. In this sense, -SOH
emerges as a key molecular player able to rescue the protein from
misfolding by forming a protective disulfide bond that allows the
protein to successfully refold. This kinetic scheme seems to differ
from the enzyme-mediated oxidative folding findings catalysed by
PDI40 and DsbA61, whereby the same I27 protein mutant was
able to refold on its own while keeping the catalytic enzyme
attached through a mixed disulfide conformation before the
disulfide bond was successfully reformed at a later stage, the
overall kinetics being largely controlled by the off-rate dynamics
of the catalytic enzyme.

We postulate that the oxidative folding mechanism promoted
by -SOH condensation with a neighbouring intramolecular
thiolate is mechanistically different from the process where the
reformation of the disulfide bond occurs through a mixed
disulfide intermediate, which characterizes the enzyme-catalysed
oxidative folding process22. To test this hypothesis, we repeated
the force-quench experiments at pH¼ 7.2 using the small thiol
3-mercapto-1-propanol as the attacking nucleophile41 (Supple-
mentary Fig. 11). In this case, the rupture of each individual
disulfide bond resulted in the formation of a thiolate and the
newly formed mixed disulfide. Unlike the case where -SOH could
readily reform the cleaved disulfide, thus triggering the protein to
correctly fold, when 3-mercapto-1-propanol was used as a
nucleophile, the number of reformation events was vanishingly
small. By contrast, these experiments highlighted (albeit with a
relatively low abundance) the presence of 25 nm steps in the test
pulse. Altogether, our experiments demonstrate the unique
capabilities of -SOH to form a disulfide bond employing a
chemical mechanism that is fundamentally different from that
occurring during enzyme-mediated protein folding22,40. In this
novel -SOH-mediated scenario, the newly formed disulfide
reduces the conformational space of the protein, and subse-
quently triggers almost ‘instantaneous’ folding of the remaining
protein in the timescale of our experiments. Thus, the kinetics of
disulfide bond formation is the rate-limiting step that defines the
overall kinetics of the non-enzymatic oxidative folding process. It
is certainly remarkable that enzyme-free oxidative folding occurs
under high pH conditions at a similar rate (kref¼ 0.45 s� 1)
than that catalysed by a dedicated enzyme such as PDI
(kref¼ 0.35 s� 1) and DsbA (kref¼ 0.70 s� 1)40,61.

Our experiments demonstrate that the probability of reforming
the disulfide bond increases exponentially with time (Fig. 2). This
implies that, when the protein lies within the non-folded
collapsed conformation after the force-quench, the highly reactive
-SOH moiety is sterically stabilized within the microenvironment
of the collapsed protein, most likely through becoming cryptic to
the solvent. This situation contrasts with the fast evolution of the
-SOH in the fully extended state (Fig. 3). At the present stage it is
difficult to unambiguously pinpoint the exact origin of the fast
reactivity undergone by the solvent-exposed -SOH. Due to the
relatively short timescale of our single-molecule experiments, it is
unlikely that the progression to higher oxidation state species is
favoured, and hence we hypothesize that the aldehyde formation
mechanism might be prevalent28,47,48, which would account for
the main pathway described by the single exponential fit. Given

the slightly higher accuracy of the double exponential fit, we
postulate a possible competition between the high oxidation
pathway (promoted by the dissolved oxygen in solution) and the
aldehyde formation mechanism, exhibiting similar rate constants.
Noteworthy, we cannot rule out the possibility that a fraction of
the aldehyde population found in our MS experiments is a result
of the direct alkali-mediated cleavage of the disulfide bond
through an a-elimination mechanism, which competes with a
b-elimination and the hydroxyl-mediated SN2 nucleophilic
attack27–29,62 (Supplementary Fig. 12). Indeed, our MS spectra
show evidence of the three competing pathways (Supplementary
Figs 7, 13 and 14 and Supplementary Table 1). However, it is very
likely that, in the presence of force, the hydrolysis (SN2) pathway
is largely favoured over the elimination route, as suggested by
recent quantum mechanical simulations under force63, in which
case the presence of aldehyde is likely to stem mostly from the
evolution of -SOH. Further verification of the plausible
competing reaction pathways under force, probably guided by
ab initio simulations, might provide a comprehensive
understanding of this complex reactivity landscape. In any case,
while the high-pH conditions tested in our experiments probably
trigger a faster -SOH reactivity towards the aldehyde product
than one would perhaps expect under more physiologically
relevant conditions, our experiments readily demonstrate that the
reactivity of -SOH is largely conformation dependent, crucially
contributing to the folding fate of the protein. We speculate that
this mechanism might hold true in situations where -SOH is
triggered by other biologically occurring oxidative species such as
H2O2. To test this hypothesis, we conducted folding experiments
on the wt-I27 immunoglobulin module (containing two cryptic
and native cysteines in positions 47 and 63 that do not form a
disulfide bond) in the presence of 300 mM H2O2 at neutral pH
(Supplementary Fig. 15). Stretching and unfolding the (wt-I27)8

polyprotein exposed the cryptic cysteines to the oxidative
conditions. Quenching the force and re-unfolding back again
resulted in (i) the misfolding of the protein, fingerprinted by the
absence of recovery of mechanical stability, and (ii) the inability
of the protein to completely re-extend up to its unfolded contour
length, suggestive of the presence of a stiff, non-native (probably
interdomain) disulfide bond. Controls were performed with the
double mutant (I27C47A–C63A)8 polyprotein (devoid of both
cysteines) showing full refolding and complete protein
extensibility. These experiments, conducted in the presence of
the less controllable yet physiologically more relevant H2O2

oxidative agent, strongly suggest that, when solvent exposed on
mechanical unfolding64, cryptic cysteines undergo post-
translational modifications that markedly block protein folding,
while lending further support to the SOH-mediated mechanism
of disulfide bond formation that we investigated using the high-
pH experimental strategy.

Taken together, our nanomechanical experiments put forward
a rather unique kinetic scheme (Fig. 6) that captures the intricate
conformation-dependent reactivity of the transitory -SOH
intermediate, directly linked with the folding fate of the protein.
In the case of titin, a protein that is physiologically exposed to
mechanical force, such SOH-regulated folding scenario might
have important consequences for the functional protein elasticity.

Titin is a molecular ruler that determines the passive elasticity
of muscle, and is key to ensure, for example, cardiac function65.
Indeed, alterations in the stiffness of cardiac titin are related to a
number of myopathies, such as diastolic dysfunction66. The
I-band region of titin is formed by a compliant, unstructured
region (PEVK and N2B) intercalated between folded
immunoglobulin domains, which are mechanically resistant67.
To adapt to the mechanical perturbations induced by the
heartbeats, titin needs to reversibly modulate its length by
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entropic extension/recoil of the compliant region and unfolding/
refolding (at least of the mechanically weak) immunoglobulin
domains64. On immunoglobulin domain unfolding, the stiffness
of the protein is greatly reduced, and it is increased back again on
refolding. Recent pioneering evidence shows that S-glutathio-
nylation of cryptic cysteines blocks titin refolding64. Our results
are likely to add S-sulfenylation to the toolbox of post-
translational modifications that regulate titin elasticity; whereas
cysteine hyperoxidation irreversibly suppresses Ig27 refolding,
thus severely decreasing its stiffness, the reformation of a
protective disulfide bond has the opposing effect. In this sense,
-SOH would act as ‘mechanical switch’, helping titin adapt its
elasticity in response to the fluctuating oxidative stress conditions.
We hence speculate that -SOH might work as an active redox
sensor that directly regulates protein elasticity.

Methods
Protein engineering. The (I27E24C–K55C)8, (I27G32C–A75C)8, (I27)8 and
(I27C47A–C63A)8 polyproteins were subcloned using the BamHI, BglII and KpnI
restriction sites. The multidomain proteins and the I27E24C–K55C monomer were
cloned into the pQE80L (Qiagen) expression vector, and transformed into the
BLR(DE3) Escherichia coli expression strain. The cells were grown in LB broth
supplemented with 100mg ml� 1 ampicillin at 37 �C. After reaching an OD600 of
B0.6, the cultures were induced with Isopropyl b-D-1-thiogalactopyranoside
(1 mM) and incubated overnight at 20 �C. After collecting the cells, disruption
using a French Press was performed. The polyproteins from the lysate were
purified by metal affinity chromatography on Talon resin (Clontech) followed by
gel filtration using a Superdex 200 10/300 GL column (GE Biosciences). Protein
concentration in the samples was estimated using the Bradford protein assay.

Force spectroscopy. Single-molecule force-clamp spectroscopy AFM experiments
were conducted at room temperature using both a home-made set-up68 and
a commercial Luigs and Neumann force spectrometer69. The sample was
prepared by depositing 1–10 ml of protein in PBS solution (at a concentration
of 1–10 mg ml� 1) onto a freshly evaporated gold coverslide. Each cantilever
(Si3N4 Bruker MLCT-AUHW) was individually calibrated using the equipartition

theorem, giving rise to a typical spring constant of B12–17 pN nm� 1. Single
proteins were picked up from the surface and pulled at a constant force. Individual
polyproteins were fished by pushing the cantilever onto the surface exerting a
contact force of 500–1,500 pN so as to promote the non-specific adhesion of the
proteins on the cantilever surface. The piezoelectric actuator was then retracted to
produce a set deflection (force), which was set constant throughout the experiment
(B8–45 s) thanks to an external, active feedback mechanism while the extension
was recorded. The force feedback was based on a proportional, integral and
differential amplifier whose output was fed to the piezoelectric positioner. The
feedback response is limited to B3–5 ms. Thanks to the high-resolution
piezoelectric actuator, our measurements of protein length have a peak-to-peak
resolution of B0.5 nm. Data of the force traces was filtered using a pole Bessel filter
at 1 kHz. In all instances the protein was unfolded at 150 pN for 0.5 s, followed by a
high-force pulse of 500 pN, except when the protein was extended for very short
times (0.5 and 0.75 s) when a pulse of 800 pN was applied. Experiments were
carried out in a sodium phosphate buffer solution, specifically, 50 mM sodium
phosphate (Na2HPO4 and NaH2PO4), 150 mM NaCl. The pH was adjusted at
pH¼ 7.4 and pH¼ 12.8. The final pH value in each solution was adjusted by
adding the required amounts of NaOH solutions. Measuring solutions were filtered
through a 0.2-mm membrane before each experiment. In the case of the dimedone
experiments, 5,5-Dimethyl-1,3-cyclohexanedione (Sigma-Aldrich, 95%) was
dissolved in pH¼ 12.8 PBS buffer to give a final concentration of 30 mM. The pH
of the dimedone solution was checked before each experiment. 3-Mercapto-1-
propanol (Sigma-Aldrich, 95%) was freshly prepared before every experiment,
dissolved in pH¼ 7.4 PBS buffer to give a final concentration of 400 mM. Pre-
reduced (I27E24C–K55C)8 polyproteins were obtained by incubating the polyproteins
in 10 mM Tris(2-carboxyethyl)phosphine hydrochloride (TCEP, Sigma-Aldrich)
for 20 min before AFM experiments. Hydrogen peroxide solutions (H2O2, Sigma-
Aldrich) were obtained by dissolving the 30% (v/v) solution in PBS to a final
concentration of 300mM H2O2.

Data analysis. All data were recorded and analysed using custom software written
in Igor Pro 6.0 (Wavemetrics). For all polyproteins, only recordings showing the
signature of at least 5 unfolding events (15 nm steps) followed by 5 reduction
events (10 nm steps) were analysed. We considered only recordings corresponding
to the test pulse in which the protein was extended back to the same full unfolded
length characterizing the initial pulse, to ensure that the same protein was
completely stretched in the two pulses. No traces that included unfolding events
during the high force pulse were included in the analysis. The number of
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Figure 6 | Kinetic scheme for the force-triggered, conformation-dependent reactivity of sulfenic acid and its implications for oxidative protein folding.

On the application of mechanical force, the hydroxide anions rupture a protein disulfide bond, creating a sulfenic acid and a thiolate. In the absence of force

(F¼0 pN) during the quench time (tq) the sulfenic acid moiety remains cryptic in the protein’s collapsed state. Under these conditions, the longer tq, the

higher the probability the thiolate anion can attack the sulfenic acid moiety (in the absence of dimedone), thus creating a disulfide bond with an associated

rate of kref¼0.45 s� 1. The reformation of the disulfide bond triggers the ‘instantaneous’ refolding of the protein (essentially set by the disulfide bond

reformation rate). By contrast, when the protein is reduced and stretched at high force (F¼ 500 pN), sulfenic acid is fully exposed to the solvent and

undergoes further modification either to the formation of sulfinic acid (which may be further oxidized to sulfinic acid) or to aldehyde. Such further reactivity

of sulfenic acid results in irreversible misfolding of the reduced (I27E24C–K55C)8 polyprotein, with a consequent decrease in its stiffness properties.
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independent observations, N, for a particular condition was counted as the total
number of protein domains (as observed in the initial pulse). S.e.m. for the
refolding fraction was estimated through the boostrap method, where each
recording was treated as an independent data point. s.e.m. for the fit parameters
was determined as standard error for the coefficient in the fit, accounting for the
measurement errors of the individual data points. To assess the goodness of the fits
in Fig. 2 and Fig. 3, we conducted reduced w2, w2

red, analysis. Data in Fig. 4b was
compared with the WLC model of polymer elasticity70, using as fixed parameters
Lc¼ 28.5 nm, P¼ 1.2 nm.

MS experiments. Enzymatic digestion. The monomeric protein samples were
prepared by diluting 20 ml of protein (0.5 mg ml� 1) in 20 ml of either PBS pH 7.4,
PBS pH12.8 or PBS pH12.8þ 30 mM dimedone. The high-pH samples had a
calculated final pH¼ 12.5. In-solution digestion with trypsin of 5 mg of total
protein monomers was performed before subsequent analysis by MS. Trypsin
digestion at a ratio of 1:20 (enzyme:substrate) was carried out for 2 h at 37 �C.

LC-MS/MS. Chromatographic separations were performed using an EASY
NanoLC system (ThermoFisherScientific, UK). Peptides from a total protein
amount of 2 mg on column were resolved by reversed phase chromatography on a
75mm C18 column using a three step linear gradient of acetonitrile in 0.1% formic
acid. The gradient was delivered to elute the peptides at a flow rate of 300 nl min� 1

over 60 min. The eluate was ionized by electrospray ionization using an Orbitrap
Velos Pro (ThermoFisherScientific, UK) operating under Xcalibur v2.2. The
instrument was programmed to acquire in automated data-dependent switching
mode, selecting precursor ions based on their intensity for sequencing by collision-
induced fragmentation using a Top20 CID method. The MS/MS analyses were
conducted using collision energy profiles that were chosen based on the mass-to-
charge ratio (m/z) and the charge state of the peptide.

MS database searching. Raw MS data were processed into peak list files using
Proteome Discoverer (ThermoScientific; v1.4). Processed raw data was searched
using the Mascot search algorithm (www.matrixscience.com) against an in-house
database containing the sequence of the mutant protein monomer. The data was
also searched using the Error Tolerant function which by iterating through a
comprehensive list of chemical and post-translational modifications, determines
the mass of additions or losses from the residues in the peptide sequences without
prior knowledge of the expected modifications. LC/MS/MS analysis has success-
fully identified 100% sequence coverage of the mutant protein monomer with
various forms of oxoacid modifications. The Mascot database searching algorithm
applies a 95% probability CI in the MOWSE scoring that is an identification
threshold. Mascot search output files were uploaded into the Scaffold spectral
visualization software (v.4.4.6; www.proteomesoftware.com) which allows statis-
tical filtering of the data at the protein and peptide level for which these filters were
applied to the data at a the lowest stringency of 5% confidence interval (CI) for
minimum protein, 0% CI for peptide values and minimum one peptide assignment.
This was chosen to include all assigned peptides that may have fallen below the
database applied 95% CI due to poor fragmentation matching and incorrect
sequence assignment. All fragmentation spectra were verified manually to deter-
mine correct assignment of sequences and post-translation modifications.

Initial data searching concentrated on finding -SOH modifications after the
addition of the cyclic diketone compound, dimedone. Dimedone specifically traps
this oxoacid form and binds covalently to the cysteine residue. This binding with
the subsequent loss of two protons adds a mass of 138.1 Da to the residue, which is
detected on the peptide by fragmentation in MS/MS mode in the mass
spectrometer.

Under conditions of high pH and without the presence of dimedone to
specifically trap the -SOH, there is possible evolution of the oxoacids to be present
in their different forms. The protein monomer treated with high pH alone was
searched against the in-house database, which included the modifications -SOH,
sulfinic acid and sulfonic acid. Further in-depth searching of the database was also
performed with the modifications aldehyde, dehydroalanine and sulfide. Database
searching assigned 99% sequence coverage of the protein monomers and also
assigned various oxoacid modifications on the cysteine residues of interest.

Further analysis was performed using a fresh sample of monomers in a high pH
only environment and treated with enzymatic digestion as previously described.
This sample was digested almost immediately following the addition of the
high-pH buffer. This was performed to determine whether the previously identified
oxoacid modifications were present at point of treatment, or if they had evolved
over the length of time it had spent in the buffer before trypsin digestion. Almost
complete sequence coverage was achieved once again following database searching
of the mass spectrometer raw data. Oxoacid cysteine modifications sulfonic
and sulfinic acid were identified at residue Cys55 as were the products of both
a-elimination, aldehyde and b-elimination, persulfide and dehydroalanine.

Data availability. The MS proteomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE partner repository with the dataset iden-
tifier PXD004514. Additional information and the data supporting this research,
including the single-molecule nanomechanics experiments, can be obtained from
the corresponding author on request.
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