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Mapping barrier island soil 
moisture using a radiative transfer 
model of hyperspectral imagery 
from an unmanned aerial system
Rehman S. Eon & Charles M. Bachmann*

The advent of remote sensing from unmanned aerial systems (UAS) has opened the door to more 
affordable and effective methods of imaging and mapping of surface geophysical properties with 
many important applications in areas such as coastal zone management, ecology, agriculture, and 
defense. We describe a study to validate and improve soil moisture content retrieval and mapping 
from hyperspectral imagery collected by a UAS system. Our approach uses a recently developed 
model known as the multilayer radiative transfer model of soil reflectance (MARMIT). MARMIT 
partitions contributions due to water and the sediment surface into equivalent but separate layers 
and describes these layers using an equivalent slab model formalism. The model water layer thickness 
along with the fraction of wet surface become parameters that must be optimized in a calibration 
step, with extinction due to water absorption being applied in the model based on equivalent water 
layer thickness, while transmission and reflection coefficients follow the Fresnel formalism. In this 
work, we evaluate the model in both field settings, using UAS hyperspectral imagery, and laboratory 
settings, using hyperspectral spectra obtained with a goniometer. Sediment samples obtained from 
four different field sites representing disparate environmental settings comprised the laboratory 
analysis while field validation used hyperspectral UAS imagery and coordinated ground truth obtained 
on a barrier island shore during field campaigns in 2018 and 2019. Analysis of the most significant 
wavelengths for retrieval indicate a number of different wavelengths in the short-wave infra-red 
(SWIR) that provide accurate fits to measured soil moisture content in the laboratory with normalized 
root mean square error (NRMSE)< 0.145, while independent evaluation from sequestered test data 
from the hyperspectral UAS imagery obtained during the field campaign obtained an average NRMSE 
= 0.169 and median NRMSE = 0.152 in a bootstrap analysis.

In recent years unmanned aerial system (UAS) technology has increased the accessibility and impact of 
remote sensing imagery in a wide variety of applications1 including environmental science2, monitoring and 
stewardship3,4 of coastal zone management5, agriculture6–8, defense9, and industry10–12. The ability to rap-
idly deploy and analyze data from such platforms allows for greater flexibility and the possibility of frequent 
data acquisitions at low cost that would not otherwise be possible from conventional aircraft. Many types 
of remote sensing systems have been flown on UAS platforms13 including thermal7,14,15, multi-spectral5,14,15, 
hyperspectral15,16, LiDAR15–17, and more recently synthetic aperture RADAR (SAR)18,19. While multi-spectral 
and LiDAR have been among the more frequently used imaging systems, lower-weight imaging spectrometer 
systems that can be used on UAS platforms are now becoming standard. For geophysical mapping of surface 
conditions, hyperspectral imagery has a distinct advantage over conventional RGB and multi-spectral imagery 
due to greater information content. Soil moisture content (SMC) is an important geophysical variable that 
plays a critical role in many of the applications just listed, and accurate retrieval of this geophysical parameter, 
therefore, is an important goal. Hyperspectral imaging provides the possibility of more accurately quantifying 
SMC for these applications, and the use of such imaging systems onboard UAS provides a means of more cost-
effectively mapping SMC.

In sediment, retrieval of moisture content is complicated by the fact that water occupies a pore space of vari-
able size within a matrix of potentially variable composition. A number of approaches have been taken to model 
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soil moisture content from spectral data, including the use of spectral indices20–22, band depth of water absorption 
features20,23, and simplified radiative transfer models, such as those based on a two-stream approximation for 
diffuse reflectance using the Kubelka–Monk model24,25. In this work, we employ a recently developed radiative 
transfer model that incorporates the possibility of a directional source and has produced promising results in a 
laboratory setting26,27. While we considered more than one of these alternative approaches that could in principle 
be applied to hyperspectral imagery, the primary models that address the problem at hand of modeling water in 
the sediment pore space were the two-stream approach based on Kubelka–Munk (K–M) theory24 and the model 
which we analyze in depth in this work, the multilayer radiative transfer model of soil reflectance (MARMIT)26,27. 
Comparisons of these two approaches demonstrated that MARMIT obtained more robust results. This is not 
surprising given the fact that Kubelka–Munk theory is a model of diffuse reflectance and does not address the 
directional nature of the solar source, while MARMIT does incorporate a directional source. Sadeghi et al.24 did 
describe an alternative version of their K–M based approach that could incorporate directional sources through 
use of the Fresnel equations to describe directional illumination, however, their analysis nonetheless excluded 
this modification due to difficulty of physical interpretation. As we will describe below, while MARMIT does 
require a calibration step, Bablet et al.26 do suggest potential physical interpretations for some of the calibra-
tion parameters, and in addition, here, we present evidence that the model does have some ability to generalize 
beyond an immediate locale. To that end, in this paper, our bootstrap validation analysis considers two distinct 
sites separated by ∼ 0.25 km from two field campaigns conducted in different years (2018 and 2019). The fact 
that the bootstrap analysis incorporated both spatially and temporally disjoint data supports the conclusion 
that MARMIT does allow for generalization beyond immediate circumstances. Given all of these factors, in this 
work, our analysis focuses on MARMIT.

MARMIT26,27 makes the simplifying assumption that the embedded SMC can be treated by means of a layer 
of equivalent water thickness, with an assumed efficiency parameter, which weights the fraction of wet surface 
area present in a given location. The model treats soil and water as separate layers and uses the familiar Fresnel 
formalism for reflection and transmission at the boundaries of both the soil layer and the equivalent water layer. 
Successive orders of internal reflection and transmission factors modeled by Fresnel coefficients at the sedi-
ment/water boundary and air/water boundary appear in the model along with absorption modeled using the 
Beer–Lambert law along each transit between boundaries. To date MARMIT has been applied only to laboratory 
reflectance measurements from point spectrometers26 and laboratory-based hyperspectral imaging systems27. 
In the present work, we validate this model in a field setting from a UAS platform15 and undertake additional 
laboratory tests across a set of disparate sediment types, varying in composition, surface roughness, and grain 
size distribution, derived from different locations within the U.S. to demonstrate the promise of this approach for 
practical use. In its current form, MARMIT is appropriate for bare soil SMC retrieval. In the future, MARMIT 
in principle could be adapted to work with vegetated surfaces, however to do so, would require the addition of 
a layer of vegetation within the model.

Results
Spectral analysis.  Figure 1 shows the evolution of the soil spectra as a function of SMC for the four dis-
tinctly different laboratory soil types. For all soil types, the reflectance is highest when completely dry. In the dry 
state, the reflectance increases with wavelength from visible to the infrared part of the electromagnetic spectrum. 
As the SMC increases, we notice a decrease in reflectance across all wavelengths, with the drop in reflectance 
being more evident in the infrared. The change in moisture content is most pronounced at the two major water 
absorptions bands at 1440 nm and 1930 nm. We also observe weak water absorption features at 970 nm and 
1160 nm for some of the spectra. This is prominent in the high-SMC reflectance spectra for the HOGB sediment 
sample (Fig. 1d). The change in band depth is more pronounced in the SWIR and clearly nonlinear compared to 
the visible part of the spectrum. However, from our experiments, we notice that the reflectance does not always 
decrease with an increase in water content. For example, the NEV soil does not follow this trend for some of the 
low SMC spectra. The NEV soil sample had high clay content, and physical changes in this sediment with drying 
are typically different than sediments with lower clay fraction. The spectra for 6–8% SMC are higher than the 
reflectance at SMC values of 2–4%, which is not consistent with the other soil types. The rate of change in reflec-
tance is different for each of the sediment types as well. We see a big drop in reflectance for the HOGP (Fig. 1c) 
and HOGB (Fig. 1d) samples. The different rates of change in reflectance as a function of SMC were partially 
influenced by the time in between each measurement. Of the 4 soil samples, the HOGB sample was the only soil 
sample in the study that reached complete saturation. This level of saturation was evident with nearly complete 
absorption or almost zero reflectance in the SWIR at the high SMC values. The complete absorption of the spec-
tra is only evident in the strong absorption features (1440 nm and 1930 nm) for the other three data sets that did 
not reach saturation. The strong change in absorption in the SWIR bands as a function of SMC suggest that this 
wavelength region will be most effective for the characterization of water content using the MARMIT model.

SMC retrieval using MARMIT.  SMC retrieval in MARMIT depends on fitting a logistic function relation-
ship between the mean equivalent water thickness and SMC (Eq. 5). Bablet et al.26 explain that it is not possible 
to determine a unique relationship between equivalent water thickness and SMC that is valid for all types of 
sediment. The variation in the sediment characteristics, as well the methodology used in preparing the samples 
for the laboratory analysis (e.g. the sediment wetting and drying protocol), has a significant influence on the 
relationship between mean equivalent water thickness and SMC. As a result, we developed a model for each 
sediment sample separately, with a unique logistic function relating the SMC to the equivalent water thickness 
for each sediment type. Figure 1(column 3) shows the S-shaped logistic curve for each of the four different soil 
types. The logistic functions shown represent the model for the wavelength where we obtained the best fit for 
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each of the different soils. The best fit obtained depended on the sample: 2082 nm, 1320 nm, 1550 nm, and 1572 
nm for the ALG, NEV, HOGP and HOGB soil samples respectively. For these wavelengths, the accuracy of the 
fit was very high with normalized root mean square error (NRMSE) in the range NRMSE < 0.145 ; in this work, 
we define NRMSE to be the ratio of mean squared error to mean measured value29,30, also sometimes referred to 

as the “Scatter Index”29,31, in a given bootstrap trial: NRMSE =

√

1
N

∑N
i=1(SMCi,pred−SMCi,gt )

2

SMC
 , where SMCi,pred and  

SMCi,gt represent respectively the model prediction and measured (ground truth) values of the SMC for the ith 
sample in the specific bootstrap test and SMC represents the average ground truth SMC value over the same set 
of bootstrap samples. While these were the best wavelength models found in each case, there were several wave-
lengths where the NRMSE was relatively low in the SWIR range, so that good model fits could be obtained for 
more than one wavelength. In contrast, the accuracy of the fit between SMC and mean equivalent water thick-

Figure 1.   (First column) Photos of dry (top photo) and wet (bottom photo) soil samples for the four sites: 
(a) Algodones, (b) Nevada, (c) Hog Panne, and (d) Hog Beach. (Second column) Corresponding spectral 
reflectance plots of the four types of sediments at a sensor orientation with zenith angle = 0◦ and relative 
azimuth angle (to the light source) = 36◦ over a progression of moisture levels; color of reflectance curves 
corresponds to moisture level (right colorbar of each plot). (Third column) Best model fit found, over all 
possible combinations of wavelength and sensor zenith/azimuth orientations, relating SMC and mean water 
thickness (range of NRMSE = 0.044–0.145 and regression coefficient of determination28, R2 = 0.92–0.99). 
(Fourth column) NRMSE of all models as a function of sensor relative azimuth and wavelength with color key 
representing the error level.
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ness was very poor in the VIS-NIR wavelength range. The fourth column of Fig. 1 illustrates these points by com-
paring the NRMSE for each sediment sample for the complete wavelength range (350–2500 nm) and the sensor 
azimuth of the hyperspectral goniometer system, the Goniometer of the Rochester Institute of Technology-Two 
(GRIT-T)32. We only observed a small variation in the NRMSE across view-geometry. Interestingly, the NRMSE 
varied more with sensor azimuth compared to sensor zenith. The NRMSE plots show that the accuracy in fitting 
SMC to mean equivalent water thickness using the MARMIT model depended more on the wavelength than on 
the observation direction of the reflectance and that a number of different wavelengths in the SWIR would be 
suitable for accurately modeling the data. A plot of the measured SMC versus the estimated SMC for all sediment 
samples from the laboratory study appears in Fig. 2 (NRMSE = 0.078). The error in the estimated laboratory 
SMC values represent the variation in the model estimated SMC over sensor zenith and azimuth direction.

Having validated the inversion methodology in a set of controlled laboratory experiments, we now turn our 
attention to the retrieval of the SMC from data collected by a UAS-based hyperspectral imaging (HSI) system 
with coordinated ground truth measurements, focusing particularly on a more realistic bootstrap analysis of 
models developed from in-scene calibration points and then tested on sequestered test data also within the 
hyperspectral scenes.

We collected hyperspectral data along the shore on the southern tip of Hog island, VA, using UAS-based imag-
ing platforms15 during field campaigns in 2018 and 201933. From the UAS platforms, we collected hyperspectral 
imagery from two HSI systems, one a Headwall Nano-Hyperspec with 270 spectral bands in the visible and near 
infrared (0.4–1.0 µm ), and the second a Headwall Micro-Hyperspec with 267 spectral bands in the shortwave 
infrared (SWIR) (0.9–2.5 µm ) . However, based on the results of our lab experiments, we decided to use only the 
SWIR hyperspectral imagery to perform the inversion of the MARMIT model to retrieve SMC. A typical logistic 
function relating ground measurements of SMC to mean equivalent water thickness of a calibrated MARMIT 
model appears in Fig. 3b. For the bootstrap trial shown in Fig. 3b, we found that the best agreement between 
the model output SMC for the calibration data and the ground truth at these sites occurred at a wavelength of 
2077 nm with NRMSE value of 0.084, a result similar to the result obtained for the beach data in our lab study 
(Fig. 1d). To assess the validity of the MARMIT approach to estimating SMC, we undertook a bootstrap analy-
sis, partitioning randomly selected pairs of SMC field measurements and associated UAS SWIR hyperspectral 
reflectance data into separate calibration and sequestered test sets for evaluation of the model as described in the 
“Methods” section. The bootstrap trials consisted of calibration and sequestered test data sets of equal size. For 
each bootstrap trial, we calibrated both the MARMIT model and choose the wavelength using the calibration 
data set, with the selected wavelength corresponding to the case of best agreement between model output SMC 
and ground truth SMC over the calibration data set in the trial. Then we evaluated the model independently on 
the sequestered test data set of the bootstrap trial. A histogram (Fig. 3a) of the sequestered test set results over 
1000 bootstrap trials illustrates that the SMC model estimates from the UAS SWIR hyperspectral system agree 
well with the measured field SMC at the sequestered test sites with mean NRMSE = 0.169 and median NRMSE 
= 0.152 and with the majority of trials having NRMSE values between 0.1 and 0.25 for the sequestered test data. 
The heavy tail of the distribution certainly results from the limited number of field samples available for calibra-
tion and testing in each trial, a total of 26 positions evenly split between the two sets in each bootstrap iteration. 
Figure 3b illustrates a typical bootstrap MARMITforSMC calibration curve. Figure 3c uses the same calibrated 
model illustrated in Fig. 3b and now compares the model estimated SMC for the sequestered test data to the 
measured field SMC. A retrospective analysis following the test result in Fig. 3c compares what would have hap-
pened had a different wavelength been selected at the calibration stage: the NRMSE as a function of wavelength 
for the test data set appears (Fig. 3d); here we have removed the atmospheric absorption bands. Similar to our 

Figure 2.   (b) Relationship between the estimated model SMC and measured SMC for laboratory samples 
from the four field test sites: (a) Algodones (ALG), Nevada (NEV), Hog Island Panne (HOGP), and Hog Island 
Beach (HOGB). (b) Circles represent the best matched moisture obtained across all sensor zenith and azimuth 
measurements and wavelength combinations, while y-error bars represent the variation of the SMC output by 
the model at a specific wavelength over the spectral reflectance recorded by GRIT-T over all zenith and azimuth 
angles.
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observations from the lab, there are several wavelengths in the 1000–2500 nm range with small NRMSE suitable 
for retrieving SMC with good accuracy. To illustrate performance of the model over the study area, we used the 
MARMIT model for which the derived logistic function appears in Fig. 3b to map SMC across our beach study 
site. The resulting SMC superimposed on a mosaic of the UAS hyperspectral imagery appears in Fig. 4. The SMC 
map was derived using the 2077 nm band, which gave us the best fit for the logistic function on the calibra-
tion data of the bootstrap trial in Fig. 3b. Beyond our specific knowledge of the ground validation sites used in 
calibrating and testing our model, we know from visual inspection during the field surveys that the sediment 
close to the shoreline had a higher water content, followed by a region of low, high and again low SMC moving 
away from the shoreline toward the dunes. A ground photo of the study site appearing in Fig. 4 illustrates these 
sediment moisture zones which the retrieved SMC map, also shown in Fig. 4, delineates.

Discussion
The change in spectral reflectance with varying moisture content of the soil is generally based on two different 
processes: (1) the internal reflection of the incident photons between the water and soil layer, resulting in the 
darkening of the soil, and (2) the absorption of the incoming photon by the water layer34. In this study, we use a 
physics based model, MARMIT26, that takes into account these two phenomena in expressing the effect of soil 
moisture content. Detailed in the “Methods” section, MARMIT is a recent improvement to the work of Bach 
and Mauser34 in modeling reflectance of soils under varying moisture conditions.

A number of soil properties also influence reflectance35,36. Among others, these include composition, density, 
grain size distribution, and roughness. While it is true that MARMIT does not quantify surface roughness explic-
itly, roughness is implicitly embedded in the reflectance of the soil, for example, in the dry reflectance component 
of the model. The presence of water obviously may change the roughness of the soil surface, and to some extent 
the “equivalent” nature of the water thickness layer in MARMIT potentially accounts for this property of the soil. 
Relationships such as these should be further explored in future studies. While there are some radiative transfer 
models such as those due to Hapke36,37 that explicitly attempt to account for macroscopic roughness, some of 

Figure 3.   Results of the bootstrap test of the MARMIT model using the SWIR UAS imagery. (a) Histogram 
of the NRMSE value for the relationship between the model predicted SMC of the sequestered test data vs 
the measured SMC, using 1000 repetitions of the bootstrap test with 50% of the data randomly chosen for 
calibration and the remaining 50% as the sequestered test data in each trial. Histogram mean NRMSE = 0.169 
and median NRMSE = 0.152 for the test data. (b) Calibration of a typical model for � = 2077 nm showing the 
model (black curve) obtained from the calibration data relating mean water thickness and soil moisture content. 
Also shown: model outputs for the test data (red points) for this bootstrap trial. (c) Typical model output for 
one of the bootstrap iterations comparing the model estimated SMC for the sequestered test data points against 
the actual SMC measured in the field. (d) Normalized root mean-square error of the selected model shown in 
(b) and (c) as a function of wavelength on the test data from that bootstrap iteration, illustrating that multiple 
wavelengths would provide similar performance.
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our past studies38 and those of other authors39 have found significant discrepancies, especially in the forward 
scatter direction38. These are areas that require active continued research. In their original article introducing 
MARMIT, Bablet et al.26 suggested that parameters in the SMC sigmoidal calibration curve may be related to 
other important geophysical parameters that describe soil structure and influence soil reflectance. For example, 
the asymptote K in Eq. (5) is likely correlated with sediment porosity26. Other radiative transfer models such as 
those due to Hapke explicitly parameterize sediment fill factor36,40, and we have successfully used a variant of 
this model to retrieve sediment fill factor from multi-view hyperspectral imagery33,41; however, models such as 
these have more free parameters that must be optimized.

We have focused on the retrieval of the soil moisture content through the inversion of MARMIT from five 
different soil data sets. Four of these sediment data sets involved the validation of the MARMIT model under 
controlled laboratory conditions. The four sets of laboratory samples are from distinctly different soil types with 
varying physical characteristics such as mineralogy, salinity, texture, organic matter content and roughness. We 
routinely perform geotechnical analyses with our soil samples acquired in our field campaigns to determine 
parameters such as grain size distribution, moisture content, and bulk density, among others. In this study, 
we focus primarily on the soil moisture content. The laboratory experiments examined the dependence of the 
retrieval of SMC on wavelength and relative sensor azimuth. The SMC estimates from the MARMIT model 
fit the measured laboratory SMC with high accuracy for all four sediment samples. We developed model fits 
with MARMIT for the SMC independently for each sediment sample and on a per wavelength basis. While we 
obtained the best result at a different wavelength for each of the four soil data sets, with the NRMSE value less 
than 0.145, there were numerous wavelengths in the SWIR where the retrieved SMC was highly accurate across 
all four data sets. Overall the SWIR model fit represented by the NMRSE was more accurate than in the VIS-NIR 
portion of the spectrum. Although the shape of the BRDF for sediments varied substantially with the presence of 
water, the inversion methodology to retrieve SMC was not substantially affected by the sensor relative azimuth 
(sensor azimuth relative to illumination orientation).

Following our laboratory validation studies, we modeled SMC from data collected by a UAS-based SWIR HSI 
sensor. Our area of study was the shoreline on the southern tip of Hog island. The MARMIT fit to SMC calibration 
data had a NRMSE = 0.084 similar to the lab experiments, while independent tests of model performance using 
a bootstrap analysis achieved on average an agreement between predicted SMC and field measured SMC with 
NRMSE = 0.169 over 1000 bootstrap trials and a median agreement of NRMSE = 0.152. The MARMIT model 
provided us a way to map moisture content on the shore of Hog Island with data collected from a UAS-mounted 

Figure 4.   (b) MARMIT model fit for a typical model (the one shown in part Fig. 3b applied to a SWIR 
hyperspectral imagery mosaic collected over the Hog Island beach site on July 14, 2018, showing the retrieved 
SMC over the entire beach and dune region covered by the drone in one sortie. Wavelength used for the model 
was 2077 nm. (a) Field site, as seen from the dunes, showing beach zones with distinctive contrast in SMC and 
UAS system overhead. Visible stakes mark some of the ground truth positions used in the study. The wet zone 
closest to the waterline is not visible in this photo due to the slope of the terrain.The 2018 ground survey points 
used in this study are located on a 50 m radius around 37◦ 22 ′  14.45′′ N, 75◦ 43 ′  36.06′′ W. The survey points 
from 2019 were ∼ 0.25 km from the 2018 site at 37◦ 22 ′  8.65′′ N, 75◦ 43 ′  28.16′′ W.
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SWIR HSI sensor. While MARMIT does require a calibration step, the fact that spatially and temporally disjoint 
data taken ∼ 0.25 km and a full year apart could be used successfully in the bootstrap validation analysis of this 
work, suggests that it should be feasible to calibrate models to specific regions. In the future, the well-documented 
ability of hyperspectral data to be used to distinguish soil types42 offers a paradigm for how this might be used 
in an end-to-end system, where in the first stage of processing, spectral signatures would be used to filter data 
into appropriate regional MARMIT models. Thus, future studies should focus on extending the retrieval of SMC 
using MARMIT over a variety of soil types with several different physical properties (composition, roughness, 
grain size, density, texture, etc.), to investigate the fidelity of MARMIT to characterize SMC over a wider range 
of possible surface conditions and soil types, and the validity of such region-specific models should be tested 
with hyperspectral imagery and appropriate ground truth as has been done in this work.

Methods
MARMIT model.  The MARMIT26 belongs to a category of radiative transfer models sometimes referred to 
as “equivalent slab models”36. MARMIT traces its roots historically to the work of Ångström who was the first to 
model the “darkness” of wet soil in 192526,43. Ångström explained this phenomena using a first order approach, 
where the diffuse reflection from a rough surface results in total internal reflection at the liquid–air interface of 
the water layer covering the surface. The total internal reflection increases the absorption of light by the parti-
cles, which produces the darkening effect of wet soil34,43. Lekner and Dorf (L&D) in 198844 further improved 
Ångström’s model for wet surfaces by incorporating the effects of spectral reflectance and the influence of the 
wavelength dependency of the index of refraction of water26,34,44. L&D assumed water absorption is negligible 
in the VIS-NIR. This is a limiting assumption because the model cannot, therefore, be applied in the SWIR, 
where there are strong absorption bands for water. In 199434, Bach and Mauser introduced absorption features 
into the reflectance model, using the Beer–Lambert model to describe transmittance within the water layer. The 
MARMIT model introduced by Bablet et al.26 is a recent improvement to the Bach model accounting for the 
transmittance of light across the liquid–air layer. Their model expresses the total reflectance of the wet soil ( Rws ) 
as a summation of the successive reflections and refractions at the surface:

where r12 and t12 are the unpolarized Fresnel reflection and transmission coefficients at the air–liquid interface 
respectively, r21 and t21 are the unpolarized Fresnel reflection coefficient and transmission coefficients at the 
liquid–air interface respectively, Rd is the reflectance of dry soil, and Tw is the transmittance of the light ray 
calculated using the Beer–Lambert law:

where αB [m−1] is the specific absorption coefficient of water and L [m] is the thickness of the equivalent water 
layer. To obtain the unpolarized Fresnel coefficients for r12 , t12 , r21 , and t21 , the model uses averages of the parallel 
and perpendicular components of the Fresnel coefficients. The MARMIT model also represents the soil surface 
reflectance ( Rmod ) as a combination of wet and dry areas, by introducing an efficiency parameter ( ε ), to represent 
the fraction of wet soil present:

Inversion methodology.  The MARMIT inversion methodology for soil moisture content (MARMITfor-
SMC)26 minimizes the residual between the estimated Rmod (Eq. 3) and measured total reflectance Rmeasured of 
the wet soil for acquired hyperspectral reflectance data at different moisture levels. In our study, the minimiza-
tion also involved hyperspectral data acquisition over different illumination and sensor view geometries, in 
both laboratory and field settings. The minimization employs a two-parameter search over the thickness of 
the water level, L [m], and the efficiency factor, ε , using the gradient based Nelder–Mead simplex method45. 
MARMITforSMC26 compares the measured soil moisture content (SMC) with the mean equivalent water thick-
ness, φ , which Bablet et al.26 identify as the mean light path, defined by:

MARMITforSMC assumes that a logistic function describes the relationship between SMC and mean water 
thickness26:

where K is the maximum (asymptotic) value of the logistic function, ψ is the steepness of the curve, and α is 
a translational factor along the x-axis (equivalent water thickness φ ). Bablet et al.26 suggest, and provide some 
supporting evidence, that the free parameters of the sigmoid calibration step may be related to geophysical 
properties of the sediment: for example, K may depend on sediment porosity26.

The calculation of the reflectance for wet soil using the MARMIT model requires the spectral index of refrac-
tion for water, based on values tabulated by Segelstein46. We also need the spectral absorption coefficient of water, 
derived by Pope and Fry47 and Kou et al.48. These values for the water absorption coefficients and refractive index 
are available online49.

(1)Rws = r12 +
t12t21RdT

2
w

1− r21RdT2
w

,

(2)Tw = e−αB×L
,

(3)Rmod = εRws + (1− ε)Rd .

(4)φ = L× ε.

(5)SMC =
K

1+ αe−ψφ
,
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Experimental design.  Our laboratory experiments included bi-conical reflectance factor (BCRF)50 meas-
urements of four different sediment samples using GRIT-T32. The four samples represent distinctly different 
soil types, varying in physical characteristics such as mineralogy, salinity, texture, organic matter content and 
roughness. The samples were acquired from the Algodones Dunes51,52 in California, a lakebed region in North-
west Nevada53, and Hog Island, VA33,54 in the Delmarva Peninsula of Virginia. The Algodones sediment sample 
(ALG) is typically composed of quartz, feldspar, rock fragment and an assortment of heavy minerals55. The 
Nevada sample (NEV) is mostly composed of clay. One of the sediment samples from Hog Island is from a salt-
panne (HOGP) environment33 and soil from this region can be considered to be a loam, consisting of mostly 
clay, silt and sand. Like the ALG desert sediment, the other sample from the island is also a sandy sediment taken 
from the beach shore on Hog Island (HOGB). In the experiments, we varied the soil moisture content of the 
samples using a Cornell Sprinkle Infiltrometer56 to determine the effect on observed BCRF.

We initially dried each of the four samples over a 24 h period at 110 ◦ C to remove all moisture from the sedi-
ment. To ensure that all samples in our experiments had approximately the same initial dry density, we prepared 
the samples using a dry pluviation process57,58. The drop height of the sediment within the pluviation apparatus 
is correlated with the relative density of the sediment. Thus, by maintaining the same drop height for all our 
samples, we could ensure approximately the same initial dry density of the sample.

The four samples then underwent BCRF measurements using GRIT-T. Following the BCRF measurements 
with the dry samples, we introduced water into the sample using a sprinkle infiltrometer. The sprinkle infil-
trometer is a rainfall simulator59, which introduces moisture into the sample at a wide range of predetermined 
rates. The apparatus wets the soil in a more natural manner and removes the possibility of soil slaking due to the 
introduction of water. The instrument also creates a realistic boundary condition for the soil layer, which includes 
the effect due to roughness of the soil sample that can greatly influence the infiltration process59. The saturated 
soil sample then underwent BCRF measurements using GRIT-T32, and we continued to collect BCRF measure-
ments every few minutes as the sample slowly air-dried, reducing its SMC. For each soil sample, we achieved 
approximately 20 BCRF measurements for different levels of SMC. This data was the basis for the retrieval of 
SMC from inversion of the MARMIT model described above. The BCRF measurement from the dry sample 
served as the dry reflectance Rd described in Eq. (3).

Following the laboratory studies, we applied the MARMIT model to extract soil moisture content from 
remotely sensed hyperspectral imagery collected from a UAS during field campaigns in 2018 and 2019. We 
undertook the field campaign at Hog Island (37◦ 25 ′  5.91′′ N, 75◦ 41 ′  36.71′′ W), a barrier island off the coast of 
Delmarva Peninsula, Virginia. The island is part of the Virginia Coast Reserve/Long Term Ecological Research 
(VCR/LTER) site60,61, which has been involved in extensive ecological and geological studies62–68. Hog Island 
bounds a shallow coastal bay, 14 km off the mainland, and is approximately 10 km long and 2.5 km in width.

This study was part of a broader field campaign conducted in summers of 2018 and 2019 to study the beach 
and intertidal zone sediments33 as well as to characterize and map the salt marsh ecosystem69,70 in the southern 
portion of Hog island. The data collected for this study took place specifically along the shore on the southern 
tip of the island. We imaged the region of interest (ROI) of our study using two different hyperspectral imag-
ing (HSI) sensors onboard a UAS. One of the sensors was a Headwall Nano-Hyperspec, which is a pushbroom 
system providing spectral measurements from 400 to 1000 nm with 270 spectral bands and 640 across-track 
spatial pixels. We also imaged using a Headwall Micro-Hyperspec SWIR sensor, another pushbroom system 
providing spectral measurements from 900 to 2500 nm with 267 spectral bands and 384 across-track spatial 
pixels. Contemporaneously, we collected extensive ground validation data, including SMC, all georeferenced 
over our ROI using a Trimble R10 kinematic GPS. The ground truth SMC data collected at positions within the 
field of view of the hyperspectral imagery served as a validation set for the bootstrap analysis that we reported 
in the “Results” section. For each iteration of the bootstrap analysis, we randomly partitioned pairs of field 
SMC data and corresponding UAS hyperspectral SWIR reflectance spectra into two sets: a calibration set and a 
sequestered test set, with 50% of the paired field positions and spectra assigned to the calibration set (13 points) 
and the remaining 13 pairs assigned to the sequestered test set. The data from one additional field position, not 
part of the calibration or test pair sets, served as the dry reflectance Rd in Eq. (3). During the calibration phase 
of each bootstrap iteration, we used the calibration pairs of UAS reflectance and ground SMC to implement the 
Nelder–Mead optimization of the free parameters L and ε and to fit the logistic relationship between SMC and 
equivalent water thickness φ (Eq. 5). Across wavelength, we selected the best model for evaluation by determining 
the wavelength for which there was the best agreement between the optimized MARMIT model SMC output for 
the calibration data set and field SMC. Once we had completed the calibration and wavelength selection using 
the calibration data set, we then used the sequestered test data pairs to evaluate the model in comparison to the 
measured ground truth at these test positions in each bootstrap trial. In this study, we used 1000 bootstrap trials 
to develop the evaluation statistics for the MARMIT model.

Data availability
The BCRF dataset of four different sediment samples generated and analysed during the current study are avail-
able at https​://dx.doi.org/10.35009​/cfcci​s-7c48.
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