REVIEW ARTICLE

741

Placebo Effect in Obsessive-Compulsive Disorder (OCD). Placebo Response and Placebo Responders in OCD: The Trend Over Time

Georgios D. Kotzalidis^{1,*}, Antonio Del Casale¹, Maurizio Simmaco¹, Lucia Pancheri², Roberto Brugnoli¹, Marco Paolini³, Ida Gualtieri³, Stefano Ferracuti⁴, Valeria Savoja⁵, Ilaria Cuomo⁶, Lavinia De Chiara¹, Alessio Mosca¹, Gabriele Sani¹, Paolo Girardi¹, Maurizio Pompili¹, Chiara Rapinesi¹, on behalf of the Sapienza Group for the Study of the Placebo Effect in Psychiatric Disorders[#]

¹Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Faculty of Medicine and Psychology, Sapienza University, Sant'Andrea Hospital, Rome, Italy; ²Società Psicoanalitica Italiana (SPI), Roma, Italy; ³Residency School in Psychiatry, Faculty of Medicine and Psychology, Sapienza University, Sant'Andrea Hospital, Rome, Italy; ⁴Department of Human Neuroscience, Sapienza University, Sant'Andrea Hospital, Rome, Italy; ⁵ASL Roma 4, Civitavecchia (Roma), Italy; ⁶ASL Roma 1, Istituto Penitenziario Regina Caeli, Rome, Italy

Abstract: *Background*: Placebo response appears to be increasing in antidepressant, antipsychotic and various internal medicine trials. A similar trend has been reported for OCD during 1989-1999. Placebo response is generally considered as the extent to which placebo treatment is associated with core symptom improvement. In this analysis, we used Joinpoint regression to assess the time trend of both placebo response and placebo responder rates according to the year of publication with no time restriction in OCD drug trials.

ARTICLEHISTORYARTICLEHISTORYCINAHL, and PsycINFO retrieved three
OCD. We included studies through inv
studies log-linear joinpoint segmented re
Revised: July 16, 2018Received: May 25, 2018
Revised: July 16, 2018Accepted: October 17, 2018DOI:
10.2174/1570159X16666181026163922DOI:
10.2174/1570159X16666181026163922DOI:
10.2174/1570159X16666181026163922Conclusion:
Conclusion:
We observed a tendency from classi
in the type of study (moving from classi

Method: We included drug and/or psychotherapy trials *vs.* placebo from PubMed, Embase, CINAHL, and PsycINFO retrieved through the search (placebo OR sham) AND (obsessive* OR OCD). We included studies through investigator consensus. We then performed on data of included studies log-linear joinpoint segmented regression models using a p<0.05 cutoff.

Results: We included 113 studies from 112 published papers. Placebo mean annual response rates in OCD studies significantly increased from 1991 to 2017 with an annual percent change (APC) of 0.66%, while placebo mean annual responder rates also significantly increased from 2010 to 2017, with an APC of 5.45%. Drug mean annual response rates in OCD studies significantly increased from 1987 to 2012 with an APC of 0.72%, while the corresponding responder rates did not show statistically significant APC changes between 1984 and 2017.

Conclusion: We observed a tendency for placebo to increase both measures of response in OCD clinical drug trials through the years that tend to approximate the responses shown by drugs. Changes in the type of study (moving from classical head to head comparisons to add-on studies in treatment-resistant populations) and countries involved in experimentation may partially account for some portion of these results. It appears that placebo effects are becoming more elusive and out of control.

Keywords: Obsessive-compulsive disorder, placebo response, placebo effect, publication year.

*Address correspondence to this author at the Sapienza University, Rome, Italy, Faculty of Medicine and Psychology, Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189 Rome, Italy; Tel: +39-0633775951; Fax: +39-0633775342; E-mail: giorgio.kotzalidis@uniroma1.it

[#]Additional members of the Sapienza Group for the Study of the Placebo Effect in Psychiatric Disorders:

Gaia Ruberto, M.D., Ph.D.; Élisa Ambrosi, M.D.; Alexia É. Koukopoulos, M.D., Ph.D.; Giovanni Manfredi, M.D., Ph.D.; Giorgio Monaco, M.D.; Isabella Panaccione, M.D., Ph.D.; Silvia Gubbini, M.D.; Pietro De Rossi, M.D., Ph.D.; Daria Piacentino, M.D., Ph.D.; Claudio Verzura, M.D.; Aldea Bandiera, Psy.D.; Manuela Trevisi, M.D.; Giada Trovini, M.D.; Livia Sanna, M.D.; Salvatore Rizzato, M.D.; Daniela Pucci, M.D.; Ilaria Falcone, M.D.; Francesco Pompei, M.D., Ph.D.; Nicoletta Girardi, M.D.; Alessio Simonetti, M.D.; Floriana Pazzelli, M.D.; Stefania Zangaro, M.D.; Martina Curto, M.D.; Gemma Callovini, M.D.; Simone Pallotino, M.D.; Giulia Serra, M.D.; Giulia Armani, Psy.D.; Teodolinda Zoppi, M.D.; Serena Sorice, M.D.; Federica Caccia, M.D.; Alessio Padovano, M.D.; Giulia Giuseppin, M.D.; Matteo Caloro, M.D.; Federica Catalfo, Psy.D.; Giuseppa Calabrò, M.D.; Emanuela Danese, M.D.; Lorenzo Mazzarini, M.D., Ph.D.; Margherita Genisio, Psy.D.; C. Ludovica Telesforo, M.D.; Meria Elena Seretti, M.D.; Alessandro Emiliano Vento, M.D.; M.D.; Franco Montebovi, M.D.; Paola Venturini, M.D.; Chiara Chetoni, M.D.; Edoardo Spinazzola, M.D.; Gloria Angeletti, M.D.; Arianna Zamparelli, M.D.; Giorgia Dimitri, M.D.; Federica Caccia, M.D.; Alessandra Talamo, M.D.; Delfina Janiri, M.D.; Carlotta Teodori, Psy.D.; Giulio M. Porfiri, M.D.

1. INTRODUCTION

A common belief lasting until the early nineties was that obsessive-compulsive disorder (OCD) did not respond to placebo [1]. However, this view rapidly changed as reliable scales developed to measure OCD symptoms.

There are two ways to measure the response of a patient or of a group of patients to a given treatment, drug or placebo, *i.e.*, to consider improvement with respect to a baseline on a predetermined rating scale in terms of points or percentage, hence providing a measure of the percent response of a group, and to define some criteria for responsiveness and provide the percentage of patients who reached or surpassed a given threshold to qualify as treatment responders. A further specification of the latter is the remitter status, based on even stricter criteria. We will call the former "placebo (or drug) effect" to differentiate it from the ambiguous term "placebo (or drug) response", and term the latter responder rate (to placebo or drug) so to hold the two concepts apart. In OCD, the most commonly used rating scale as a primary outcome measure is the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) [2, 3] and responses to treatments, or treatment effects, as we term them to avoid confusion with number of persons who are considered as treatment responders, are rated as percent variations of scores on the Y-BOCS from baseline at a given time-point. On the other hand, treatment responder rates are considered as the fraction of patients in the sample who are judged on the basis of established criteria, usually an at least 35% (or 25%, according to the study's author choice) drop of Y-BOCS scores from baseline or 1 or 2 (very much or much improved, respectively) on the Clinical Global Impressions scale, improvement version [4].

There is evidence for the growth of placebo effect (and responder rates) in clinical trials across the years for depression [5] and, less consistently, bipolar disorder [6], although some biases may have influenced the conclusions of this second study [7]. Other psychiatric disorders have not been investigated for this year-of-publication effect specifically, but a multivariate meta-analysis carried-out by Ackerman and Greenland [8] found an increase in the effect of placebo through the years, confirming the impressions of others [9]. This could be due to the host of factors, like trends in the type of patient recruited (regarding illness duration, severity, and comorbidity), type of drug used (the side effect profile of a drug like clomipramine increases the likelihood of drug identification by both clinician and patient and may affect outcome), study site characteristics (that may reflect the characteristics of participating physicians and principal investigators and contribute to large across-sites differences which are usually disregarded in most reports). outcome measures employed, publication bias-file drawer effect, and last, but not least, the fact that the more effective the drug in a study, the more effective the placebo [10]. In fact, a publication year effect has been shown for OCD treatment across the years [11]. However, Ackerman and Greenland [8], who used meta-regression to evaluate placebo-controlled drug trials in OCD, did not include in their remarkable paper, drug trials in paediatric populations did not consider surgical procedures versus sham surgery or psychotherapies *versus* sham psychological interventions,

and failed to consider a considerable number of papers covering a quite long period of time. In fact, they analysed a restricted period of time of placebo-controlled drug trials of three SSRIs and clomipramine in a period spanning from 1989 to 1999 (*i.e.*, after the introduction of the Yale-Brown Obsessive Compulsive Scale, Y-BOCS), with a consequent loss of more than ten years of literature.

Systematic investigations of treatment of OCD started at the dawn of the eighties, with the use of clomipramine [12, 13]; clomipramine [14] and imipramine [15, 16] dominated the scene during the mid-eighties, and it was only during the late eighties that SSRIs, primarily fluvoxamine, were introduced [17, 18]. The first two studies comparing sertraline to placebo appeared in 1990 and yielded contrasting results [19, 20]. The first published trials of fluoxetine versus placebo appeared in 1992 [21], but regarded data that started being gathered in the late eighties [22-24], therefore simultaneous with, if not preceding those of sertraline. It is noteworthy that fluoxetine had received extensive open trials in OCD since 1985 [25], whereas for sertraline, the two aforementioned double-blind studies were the first studies of sertraline in OCD to be published [19, 20]. This publication lag may create a bias in the attempt to clarify whether the effect of a given treatment increased or decreased with time. Unfortunately, most studies do not provide the period during which they were conducted and render it difficult to correct for this bias. Hence, we will consider publication data as a factor despite realising that it does not exactly reflect the period during which the study has been carried out.

Our aim was to extend Ackerman and Greenland's [8] observations beyond 2002, including also studies that did not use drugs, but other methods as well that could ensure double-blinding. We did not use the same method, but rather a JoinPoint regression.

2. METHODS

We carried-out a general search in the PubMed-MedLine-Index Medicus and Embase-Excerpta Medica and PsycLit-Psychological Abstracts databases using the following strategy: (placebo OR sham) AND (obsessive* OR OCD) with no time, language or any other restriction, but animal studies were subsequently excluded. We did not use the PubMed "Animal studies" function to exclude such studies, because such function often produces unreliable results. Papers were individually searched for adherence to our inclusion criteria. Retrieved relevant papers, comprising reviews and meta-analyses, were searched in their reference lists for providing additional papers with adequate research data. Final inclusion criteria for data analysis comprised: single or double-blind design, clearly stated assessment of response (responder rate or percent response on rating scales), sufficient time of treatment administration for the expected response to be observed, absence or adequate addressing of confounders that could render response not attributable to specific treatments. Specifically, the second part of cross-over studies was discarded if switching from one treatment to another had not a sufficient treatment-free wash-out period to avoid carry-over effects; survival studies were excluded when tapering-off of a combined therapy involved a drug vs. placebo when another drug or treatment

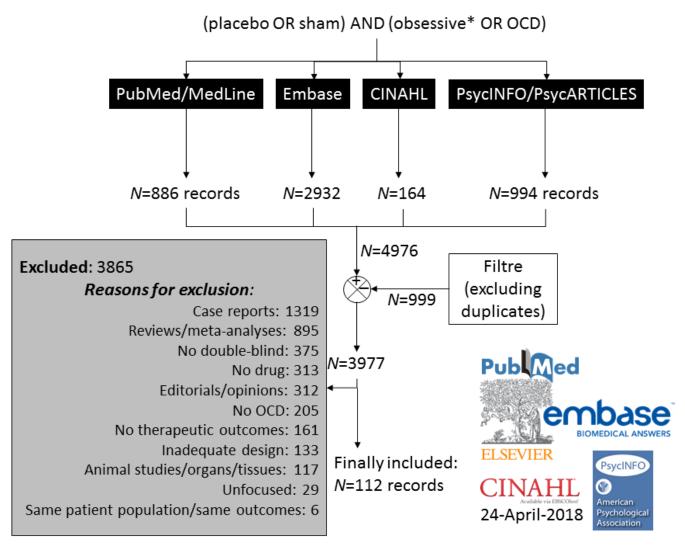


Fig. (1). Algorithm of literature search and article selection.

was continued; add-ons were given not to patients stabilised on a given drug, but on drug-free or drug naïve populations. In this first report on placebo response in OCD we concentrate on double-blind studies using drugs, hence we excluded studies with psychotherapy or comparing mechanical devices with sham, like deep brain stimulation, electroconvulsive therapy, or deep/repetitive transcranial magnetic stimulation, provided they did not have a placebo and a drug arm. Excluded were also studies focusing on other than clinical outcomes, those carried-out on mixed populations (*e.g.*, OCD and Tourette's) without providing results specific for each subpopulation, and those with designs such that a placebo effect could not be calculated.

2.1. Statistical Analysis

We analysed temporal trends of placebo and drug response rates/responder proportions through log-linear joinpoint segmented regression models, which identify points corresponding to statistically significant changes over time in the linear slope of the occurring trend [26]. We used annual mean rates of placebo and drug effect (mean placebo and drug-induced improvements and mean placebo/drug responders) as independent variable assuming constant variance (homoscedasticity) without log transformation. We applied a grid search method to fit regression functions with unknown joinpoints assuming a Poisson distribution and uncorrelated errors. We set the minimum/maximum joinpoint number from 0 to 2, and used a permutation test with overall significance level set at p<0.05 and number of randomly permuted datasets of 4,499 to select the best fit. In the final model, each joinpoint indicates a trend change. We reported the estimated annual percent change (APC) for segmented analysis. Joinpoint analyses were performed using the Joinpoint Regression Program, version 3.5, from the US National Cancer Institute (https://surveillance.cancer.gov/joinpoint/).

3. RESULTS

Our PubMed-MedLine-Index Medicus and Embase-Excerpta Medica, CINAHL, and PsycLit-Psychological Abstracts searches yielded 886, 2932, 164, and 994 papers, respectively, as of April 24, 2018. The total output of our research is shown in Fig. 1, which shows also the reasons for exclusion. All studies were searched for possible further includible papers. Included were 113 studies from 112 papers,

Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
Thorén <i>et al.</i> [13]	1980	Karolinska Universitetssj ukhuset, Karolinska Institutet, Stockholm, Sweden	24; 8 placebo vs. 8 clomi vs. 8 nortriptyline	Clomi vs. nortriptyline vs. placebo × 5 wk	↓ from BL of OCD Scale derived from the CPRS Responders classified according to clinicians' ratings	7% OCD Scale	Not given	Clomi 50→150 mg/day Nortriptyline 50→150 mg/day	42%; 21% OCD Scale	54.54% including open clomi trial; Nortriptyline: Not given
Flament <i>et al.</i> [27]	1985	Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA	19 paediatric patients; 10 received placebo first, 9 clomi	11-wk Randomised Cross-over (at wk 5) Trial; Clomi vs. placebo	↓O-C Rating Scale; no response criteria	10.37% OCR Scale		Chlomi 50→max200 mg/day	32.6% OCR Scale	
Mavissakalian et al. [14]	1985	Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA	12; 5 placebo vs. 7 clomi	RCT clomi vs. placebo ×12 wk	Response: ↓Obsessive- Compulsive Neurotic Scale; Responders: Clinician Rating for OCD (5 points; score 1 on at least 3 points)	43% O-C Neurotic Scale	15.53% Clinician Rating for OCD	Clomi 50→max300 mg/day	35.13% O-C Neurotic Scale	43% Clinician Rating for OCD
Foa <i>et al.</i> [15]	1987	Department of Psychiatry, Medical College of Pennsylvania, Philadelphia, PA, USA	37, 18 (7 scoring high [≥21] on the BDI) placebo vs. 19 (9 scoring high on the BDI) imipramine	DB RCT imipramine vs. placebo × 6 wk	Effect: ↓MOCI from BL	3.67% MOCI		Imipramine 25→max250 mg/day	7.42% MOCI	
Perse <i>et al.</i> [17]	1987	Anxiety Disorders Center, Department of Psychiatry, University of Wisconsin, Madison, WI, USA	20 randomised to placebo vs. flexible fluvoxamine doses; 4 drop- outs for various reasons left 16 patients available for the analysis; 8 placebo first, 8 fluvoxamine first	Fluvoxamine vs. placebo DB cross-over trial; placebo run-in $\times 2$ wk \rightarrow DB fluvoxamine vs. placebo $\times 8$ wk $\rightarrow \times 2$ wk placebo $\rightarrow \times 8$ wk DB cross- over	↓from BL of Maudsley OC Inventory scores for treatment effect; Responder rate: Clinician's judgement for response	-7% (Maudsley scores †)	19%	Fluvoxamine 50 → max 150 mg/day	14.54%	81%
Pato <i>et al.</i> [28]	1988	Laboratory of Clinical Science, NIMH, Bethesda, MD, USA	21 responders to clomi ×4 months; 71.42% had significant depression; all received placebo substitution	Clomi substituted by placebo in four days, then placebo ×7 wk; survival study (relapse rates)	Substitution effect: †Y-BOCS; †CPRS O-C; †NIMH-OC; Response: lack of relapse/recurrence ; evidence of recurrence: development of "significant symptoms"	43.7% ↑Y- BOCS; 52.78% ↑CPRS O-C; 43.87% NIMH- OC	9.52% (OCD symptoms)	Clomi tapering-off (four days, half the dosage first, than all drug substituted with placebo)		

Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
Goodman et al. [18]	1989	Department of Psychiatry, Yale University School of Medicine and Connecticut Mental Health Center, Ribicoff Research Facilities, New Haven, CT, USA	42; 21 placebo vs. 21 fluvoxamine	Multicentre (2 sites), DB RCT fluvoxamine vs. placebo ×6-8 wk	Effect: ↓Y- BOCS score from BL; Response: CGIi 1-2 (used different scale, but rating is similar)	0% Y- BOCS	0%	Fluvoxamine started at 50 mg/day → max 300 mg/day	22.4% Y- BOCS	42.8%
Jenike <i>et al.</i> [29]	1989	Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA	27: 14 placebo vs. 13 clomi	Multicentre (? sites), DB clomi vs. placebo × 10 wk	↓Y-BOCS scores from BL as treatment effect; no criterion for response, but stratification according to percentages of ↓Y-BOCS	8.46% ↓Y- BOCS	20-39% ↓Y- BOCS: 21.42%; ≥40% ↓Y- BOCS: 0%	Clomi 50→200 mg/day →max300 mg/day	36.93% ↓Y-BOCS	20-39% ↓Y- BOCS: 76.92%; ≥40% ↓Y- BOCS: 46.15%
Chouinard et al. [20]	1990	McGill University, Montréal, Québec, Canada	87, 44 placebo vs. 43 sertraline	Multicentre RCT DB sertraline, flexible doses vs. placebo × 10 wk	Treatment effect: %↓Y-BOCS score from BL; %↓NIMH-OC Scale score from BL; Response: CGIi 1-2	6.55% Y- BOCS; 6.13% NIMH- OC	11.364% CGIi	Sertraline 50→200 mg/day	16.2% Y- BOCS; 15.2% NIMH- OC	25.581% CGIi
Greist <i>et al.</i> [30]	1990	Department of Psychiatry, University of Wisconsin, Madison, WI, USA	31; 16 placebo <i>vs.</i> 15 clomi	Single site part of multicentre (21 sites) study, DB parallel RCT of clomi fixed→ flexible dose vs. placebo ×10 wk	Effect: ↓NIMH- OC and ↓Y- BOCS scores from BL; Response: Patient and Physician Global Evaluation (conceptually similar to CGIi 1-2)	6.97% ↓Y- BOCS; 8.64% ↓NIMH- OC	5% "CGIi"	Clomi 25→200 max 300 mg/day	34.883% ↓Y-BOCS 27.912% ↓NIMH- OC	45% CGli
Jenike <i>et al.</i> [31]	1990	Harvard Medical School, Boston, and the OCD Clinic and Research Unit, the Department of Molecular Biology, and the Inpatient Psychiatric Service, Massachusetts General Hospital, Boston, MA, USA	38; 20 placebo vs. 18 fluvoxamine	DB fluvoxamine vs. placebo × 10 wk	↓Y-BOCS scores from BL as treatment effect; no criterion for response	4%↓Y- BOCS		Fluvoxamine 50→max300 mg/day	16.81% ↓Y-BOCS	

Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
Katz <i>et al.</i> [32]	1990	New Drug Development Department- CNS Section, Pharmaceuticals Division, CIBA-GEIGY Corporation, Summit, NJ, USA	266 with Ham-D <17; 129 placebo <i>vs.</i> 134 clomi	Multicentre (12 sites), DB RCT clomi vs. placebo in pts. with DSM- III OCD and Ham- D <17 or Ham-D 17-21 (subsequently excluded from the analysis due to small sample size) ×10 wk →responders (CGIi ≤3) with treatment confirmed (placebo, N=12, clomi, N=101) ×42 wk	Effect: ↓NIMH- OC scores from BL; response: CGIi 1-2	1.96% at week 10; 21.56% at week 52; 24.71% at end-point; NIMH- OC	9.3% 10 wk; 2.4% wk 52; 16.7% at end-point (wk 70) CGIi	Clomi 20→min 100, target 250, max 300 mg/day	34.69% at week 10; 55.1% at week 52; 46.94% at end-point, NIMH- OC	75.37% 10 weeks; 61.2% week 52; 72.2% at end- point (week 70) CGIi
Mavissakalian et al. [33]	1990	Department of Psychiatry, Ohio State University, Columbus, OH, USA	25; 12 placebo vs. 13 clomi	DB RCT clomi vs. placebo ×10 wk	Effect: ↓CY- BOCS from BL; response: much improved	1.11% Y- BOCS	0% Much improved	Clomi 50→2- weeks 200 mg/day →flexible	54.19% Y-BOCS	35% Much improved
Montgomery et al. [34]	1990	Imperial College London, St Mary's Hospital Medical School, London UK	14; 7 placebo first, 7 clomi first	4-wk DB clomi vs. placebo→cross- over ×4 wk	Criteria for effect or response not specified; assessment with 6-item obsessional scale extracted from CPRS and MADRS	5.2% (↓from BL of CPRS Obs Scale scores)		Clomi 75 mg/day	64.5% (↓from BL of CPRS Obs Scale scores)	
McDougle et al. [35]	1991	Connecticut Mental Health Center, New Haven, CT, USA	30 DR (failure to reach ≥35% ↓ from BL Y-BOCS scores and CGIi>2 and clinician consensus after fluvoxamine × 8 wk) at flexible doses up to 300 mg/day; 9 placebo vs. 11 add- on lithium [study 1]; 5 vs. 5 add-on lithium	DB RCT to add-on lithium vs. placebo ×2 wk to unchanged fluvoxamine (up to 300 mg/day) [study 1, 20 patients]; 4 wk blind placebo followed by 4 wk open lithium [study 2, 10 inpatients]	Y-BOCS (response: ↓≥35% drop from BL and Y- BOCS<16); CGIi 1-2; clinician consensus: all three=marked, 2 of 3=partial, <2 no response)	Study 1: -5.09% (Y-BOCS scores↑) Study 2: 5.83% (Y- BOCS)	Studies 1 & 2: 0% marked and partial (Y- BOCS, CGIi, clinician cons.)	Clomi 200-300 mg/day + lithium 900 mg/day →0.5- 1.2 mEq in plasma	Study 1: 10.52% (Y- BOCS); Study 2: -10.66% (Y-BOCS scores†)	Study 1: 9.091% marked, 9.091% partial (Y- BOCS, CGIi, clinician's consensus); Study 2: 0% marked and partial

Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
The Clomi Collaborative Study Group [36]	1991	Clinical Neuropharmaco logy, Glaxo Inc, Research Triangle Park, NC, USA	520; 120 placebo vs. 118 clomi (study 1) 129 placebo vs. 134 clomi (study 2)	Multicentre (9 centres study 1; 12 centres, study 2), clomi vs. placebo × 10 wk; two identical studies	Effect: ↓CY- BOCS from BL; Response ↓≥35% from BL	3% Y- BOCS study 1 5% Y- BOCS study 2	7.5% Y- BOCS study 1 7% Y-BOCS study 2	Clomi 25→max300 mg/day	38% Y- BOCS study 1 44% Y- BOCS study 2	51% Y-BOCS study 1 60% Y-BOCS study 2
DeVeaugh- Geiss <i>et al.</i> [37]	1992	Clinical Neuropharmaco logy, Glaxo Inc, Research Triangle Park, NC, USA	60 children or adolescents 10-17 years, 29 placebo <i>vs.</i> 31 clomi	Multicentre (5 sites) DB RCT clomi vs. placebo × 8 wk	Effect: ↓Y- BOCS from BL; Response: CGIi 1-2	8% Y- BOCS	17% CGIi	Clomi 25→100, max 200 mg/day	37% Y- BOCS	59.8% CGIi
Mallya <i>et al.</i> [38]	1992	McLean Hospital, Harvard Medical School, Belmont, MA, USA	28 with HAM- D<20; 14 placebo vs. 14 fluvoxamine	RCT fluvoxamine vs. placebo ×10 wk	Effect: ↓Y- BOCS from BL; Response: ≥35%↓Y-BOCS from BL	5% ↓Y- BOCS	7% Y-BOCS	Fluvoxamine 50→300 mg/day	33% ↓Y- BOCS	43% Y-BOCS
Pigott <i>et al.</i> [39]	1992	NIH Clinical Center, Rockville Pike, Bethesda, MD, USA	17 drug- free; 6 placebo vs. 11 trazodone	DB RCT trazodone vs. placebo ×10 wk	Effect: ↓Y- BOCS scores from BL	10.3% Y- BOCS		Trazodone 50→ 300 mg/day	12.98%; Y-BOCS	
Riddle et al. [21]	1992	Yale Child Study Center, Yale University, New Haven, CT, USA	14 (8.5-16 years); 6 placebo first vs. 7 fluoxetine first	Cross-over randomised study fluoxetine vs. placebo ×20 wk (first 8 wk to one and 12 to the other in random order)	Effect: ↓CY- BOCS scores from BL	26.72% (week 8) CY- BOCS		Fluoxetine 20 mg/day	44.03% (week 8) CY-BOCS	
Stein <i>et al.</i> [40]	1992	Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York State Psychiatric Institute, New York, NY, USA	35 with ≥56 on SRON and SROC; comorbidity with depression only if OCD primary and dominating; 21 placebo vs. 14 clomi	Multicentre (2 sites) DB RCT to clomi vs. placebo ×10 wk	Effect: Score ↓OCS, SRON, SROC; Response: CGIi 1-2	12% OCS; 33.33% SRON; 31.63% SROC	19% CGIi	clomi 25→100- 300 mg/day	29.49% OCS; 40.49% SRON; 29.11% SROC	50% CGIi
Grady <i>et al.</i> [41]	1993	Department of Psychiatry, Duke, University Medical Center; Durham, NC, USA	13 DR (fluoxetine) OCD 80 mg/day ×10 wks; order of administrati on not specified	DB cross-over to add-on buspirone vs. placebo ×8 wk to unchanged fluoxetine (80 mg/day)	Effect: ↓Y- BOCS score from BL; Response: Y- BOCS ↓≥25% from BL and other unusual criteria	-2.9% (↑Y- BOCS scores)	0% (Y- BOCS)	Buspirone → 60 mg/day added on fluoxetine, 80 mg/die	3.91% (Y- BOCS)	7.7% (Y- BOCS)

Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
Hoehn-Saric et al. [42]	1993	Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA	21 with NIMH- OC≥9, Y- BOCS≥16; Ham- D≤21; 10 placebo vs. 11 clomi	DB CRT clomi vs. placebo ×10 wk	Effect: ↓NIMH- OC and ↓Y-BOCS scores from BL; Response: not investigated	2.083% NIMH-OC; 5.714% Y- BOCS		Clomi 25→200 mg/day; min 100 max 300 mg/day	31.521% NIMH- OC; 39.534% Y-BOCS	
McDougle <i>et</i> <i>al.</i> [43]	1993	Clinical Neuroscience Research Unit, Yale University School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA	33 DR (failure to reach ↓≥35% drop from BL Y-BOCS scores after fluvoxamine × 8 wk) at flexible doses up to 300 mg/day; 14 placebo vs. 19 add-on buspirone	RCT to add- on buspirone vs. placebo ×8 wk to unchanged fluvoxamine (up to 300 mg/day)	Y-BOCS (response: ↓≥35% from BL); CGIi 1- 2; clinician consensus	9.09% (Y- BOCS)	14.29% (Y- BOCS, CGIi, clinician consensus)	Buspirone 15→60 mg/day added on fluvoxamine at the same dose of BL	4.96% (Y- BOCS)	10.52% (Y- BOCS, CGIi, clinician's consensus)
Montgomery et al. [22]	1993	Imperial College London, Paterson Wing, St Mary's Hospital Medical School, London UK	214; 56 placebo vs. 52 fluoxetine, 20 mg/day vs. 52 fluoxetine, 40 mg/day vs. 54 fluoxetine, 60 mg/day	Multicentre (13 sites) 8- wk DB fluoxetine 20, 40 or 60 mg vs. placebo	Treatment effect: ↓Y-BOCS scores Response: ≥↓25% from BL and CGli 1-2	17.5% Y- BOCS	26%	Fluoxetine 20, 40 and 60 mg/day	21.6% 20.5% 28.6% Y- BOCS	36% 48% 47%
McDougle <i>et</i> <i>al.</i> [44]	1994	Department of Psychiatry, Yale University School of Medicine, Yale Child Study Center, New Haven, CT, USA	34 (failure to reach ↓≥35% drop from BL Y-BOCS scores after fluvoxamine × 7 wk) with or without tics; 17 add-on placebo vs. 17 add-on haloperidol	Double-blind DR to fluvoxamine since 7 wk randomised ×4 wk to add- on haloperidol or placebo	Response: Y- BOCS ↓≥35% from BL and final Y-BOCS≤16; CGIi 1-2; and consensus of clinician. Two criteria met: partial responder; all three met: marked responder	7.63%	0%	Fluvoxamine up to 300 mg/day; dose unaltered during trial; add-on haloperidol 2→max10 mg/die (mean, 6.2 mg)	27.17%	65%
Tollefson <i>et</i> <i>al.</i> [23]	1994	Psychopharmac ology Division, Eli Lilly & Co., Indianapolis, Ind, USA	355; 89 placebo vs. 87 fluoxetine 20 mg, vs. 89 fluoxetine 40 mg vs. 90 fluoxetine 60 mg	Multicentre (8 sites), DB fluoxetine at fixed doses vs. placebo × 13 wk	Y-BOCS ↓ from initial score for effect; Y-BOCS ↓≥35% for response	-1.2% (mean Y- BOCS scores ↑)	8.5%	Fluoxetine 20 mg/day 40 mg/day 60 mg day	15.24% 20.26% 25.99%	32.1% 32.4% 35.1%
Tollefson <i>et</i> <i>al.</i> * [24]	1994	Psychopharmac ology Division, Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana, USA	76 responders of the previous study with their treatment confirmed; 6 placebo vs. 23 fluoxetine 20 mg, vs. 21 fluoxetine 40 mg vs. 26 fluoxetine 60 mg	Multicentre (8 sites), DB fluoxetine at fixed doses <i>vs.</i> placebo × 6 months (extension)	Y-BOCS↓ from initial score for effect; Y-BOCS↓≥35% for response	-6.25% (mean Y- BOCS scores ↑), but at BL patients were not OCD	50% Y- BOCS	Fluoxetine 20 mg/day 40 mg/day 60 mg day	10.09% 11.32% 23.91% Y-BOCS, but at BL patients were not OCD	47% Y- BOCS

Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
Greist <i>et al.</i> [45]	1995	Dean Foundation for Health, Research, and Education, Madison, Wisconsin, USA	325; 84 placebo vs. 241 sertraline: 80 sertraline 50 mg/day; 81 sertraline 100 mg/day; 80 sertraline 200 mg/day	Multicentre (11 sites), DB parallel comparison of three dosages of sertraline vs. placebo ×12 wk	Effect: ↓Y-BOCS score from BL; Response: Y- BOCS ↓≥25% from BL CGIi 1-2	14.6% ↓Y-BOCS	30% CGIi	Sertraline, pooled 50, 100, and 200 mg/day	23.4% 27.37% 22.83% 33.02% ↓Y- BOCS	38.9% CGIi
Fux <i>et al.</i> [46]	1996	Ministry of Health Mental Health Center, Faculty of Health Sciences, Ben Gunion University of the Negev, Beersheva, Israel	13 partial or complete non- responders to clomi/SSRIs or with severe side effects; 6 placebo first, 7 inositol first	Cross-over RCT inositol vs. placebo ×6 wk; cross- over ×6 wk without washout	Response criteria not specifically stated, but data given so that we extrapolated % ↓Y-BOCS scores for response and calculated % of patients who achieved ↓Y- BOCS≥35% (or 25%) from BL for response	1.55% Y- BOCS; Placebo first at 6 wk: 12.4%	0% ↓Y- BOCS≥ 35% Placebo first at 6 wk: 0% ↓Y-BOCS≥ 25%	Oral inositol 18 g/day	21.104% Y-BOCS; Inositol first at 6 wk: 25.01%	30.77% ↓Y- BOCS≥ 35%; Inositol first at 6 wk: 28.57% (57.14% ↓Y- BOCS≥ 25%)
Goodman et al. [47]	1996	Department of Psychiatry, University of Florida College of Medicine, Gainsville, FL, USA	156; 78 placebo vs. 78 fluvoxamine	Multicentre (4 sites), DB RCT fluvoxamine vs. placebo ×10 wk	Effect: ↓Y-BOCS score from BL; ↓NIMH-OC score from BL; Response: CGIi 1- 2	5.42% Y- BOCS; 3.89% NIMH-OC	8.6%	Fluvoxamine started at 50 mg/day → max 300 mg/day	21.14% Y-BOCS; 19.101% NIMH- OC	43.4%
Nakajima et al. [48]	1996	Department of Neuropsychiatry, Kyoto Perfectural University of Medicine, Kawaramachi- Hirokoji, Kamigyoku, Kyoto, Japan	27 fluvoxamine 300 mg/die vs. 34 fluvoxamine 150 mg/die vs. 33 placebo	DSM-III-R OCD patients assigned to one of three groups: high- dose fluvoxamine vs. low-dose fluvoxamine vs. placebo × 8 wk	Y-BOCS scores (%↓Y-BOCS from BL; response ↓≥35% from BL)	7.25%	36.36%	Fluvoxamine 150 mg/day 300 mg/day	28.33%; 29.96%	79%; 77.8%
Zohar <i>et al.</i> [49]	1996	Chaim Sheba Medical Centre, Tel-Hashomer, Israel, and Sackler Medical School, Tel Aviv University, Israel	399; 99 placebo vs. 201 paroxetine vs. 99 clomi	Multicentre- multinational (? sites), DB paroxetine vs. clomi vs. placebo × 12 wk	Y-BOCS ↓≥25%	18.87%	35.4%	Paroxetine 20- 60 mg/day; Clomi 50-250 mg/day	30.77%; 32%	55.1%; 55.3%
Jenike <i>et al.</i> [50]	1997	Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA	64; 21 placebo vs. 20 phenelzine vs. 23 fluoxetine	10-wk fluoxetine vs. phenelzine vs. placebo	↓Y-BOCS scores from BL as treatment effect	1%		Phenelzine 60 mg/day, Fluoxetine 80 mg/day	9.4%; 14.7%	

Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
Lindsay <i>et al.</i> [51]	1997	Clinical Research Unit for Anxiety Disorders, School of Psychiatry, University of New South Wales at St Vincent's Hospital, Sydney, NSW, Australia	18 (13 drug- free, 5 unresponsive to clomi or fluoxetine); 9 placebo (anxiety management) vs. 9 CBT	Parallel assignment to CBT (ERP) vs. anxiety management assumed as the placebo (5 1-h sessions per wk × 3 wk); control group also did homework	Treatment effect: ↓Y-BOCS from BL; ↓MOCI from BL; ↓PADUA scores from BL; Response criteria: not provided	-5.93% (†Y- BOCS); 12.002% MOCI; 15.201% PADUA		CBT in 15 sessions divided in three weeks, about 1 hour per session, for both ERP and anxiety management (hyperventilati on and respiration and relaxation control with no cognitive restructuring and exercise at home)	61.67% Y-BOCS; 43.76% MOCI; 50.99% PADUA	
Ushijima et al. [52]	1997	Department of Psychiatry, Jikei University School of Medicine, Nishishinbashi, Minato-ku, Tokyo, Japan	33 150 mg/die fluvoxamine vs. 29 300 mg/die fluvoxamine vs. 42 placebo	Multicentre, DB fluoxetine at fixed doses <i>vs.</i> placebo × 8 wk	Y-BOCS ↓ from initial score for effect; Y-BOCS ↓≥35% for response	11.66% (mean Y- BOCS ↓)	38.1% Y- BOCS	Fluvoxamine 150 mg/day 300 mg/day	23.9% 24.05% (mean Y- BOCS ↓)	55.17% 51.51% Y- BOCS
Fallon <i>et al.</i> [53]	1998	Department of Psychiatry, Columbia University, Division of the New York State Psychiatric Institute, New York, NY, USA	54, 29 DR placebo vs. 25 DR i.v. clomi	DR to oral clomi, randomised to i.v. clomi vs. placebo × 14 days	Effect: %↓Y- BOCS from BL; %↓CGIs from BL; %↓NIMH-OC from BL; response ↓≥25% from BL; CGIi 1-2	3.3% Y- BOCS; 0% CGIs; 0% NIMH-OC	0% CGI; 0% Y- BOCS	Intravenous (i.v.) Clomi 250 mg/day	11.8% Y-BOCS; 10.1% CGIs; 9.565% NIMH- OC	20.7% CGIi 21.4% Y-BOCS
Li, J. <i>et al.</i> [54]	1998	Mental Health Center of Sichuan province, Mianyang, China	42; 12 placebo vs. 15 clomi vs. 15 paroxetine	DB CCMD-2 OCD paroxetine 20→80 mg/day vs. 50→300 mg/day vs. placebo ×4 wk	Effect: ↓Y-BOCS from BL; unclear response criteria	10.06%		20-80 mg/day paroxetine, 50-300 mg/day clomi	51.32% 48.71%	
March <i>et al.</i> [55]	1998	Departments of Psychiatry and Psychology, Duke University Medical Center, Durham, NC, USA	189 children and adolescents; 95 placebo vs. 92 sertraline	Multicentre (12 sites), RCT Sertraline flexible doses vs. placebo ×12 wk	Effect: ↓CY- BOCS from BL; Response: ≥25%↓CY-BOCS from BL	15.31% ↓CY- BOCS	37% ≥25%↓CY- BOCS	Sertraline 25- 50→max200 mg/day	29.05% ↓CY- BOCS	53% ≥25%↓CY- BOCS
Kronig <i>et al.</i> [56]	1999	Department of Psychiatry, Hillside Hospital of LIJMC, Glen Oaks, New York, NY, USA	167; 81 placebo <i>vs</i> . 86 sertraline	Multicentre (10 sites), Double- blind sertraline 50-200 mg/die randomised vs. PLC ×12 wk	CGIi 1-2 (response), ↓Y- BOCS from BL; ↓NIMH from BL (primary outcome)	17.16% Y- BOCS	23.45% CGIi	Sertraline 50- 200 mg/day	38.08%	41.8%

Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
Dannon <i>et al.</i> [57]	2000	Psychiatry Department, Chaim Sheba Medical Center, Tel Hashomer, Israel	14 DR to 60 mg/day paroxetine ≫215 wks (Y-BOCS ↓<25%), 6 placebo vs. 8 pindolol	DB RCT of DR, ×6 wk to add-on pindolol or placebo	Unresponsiveness: Y-BOCS ↓<25% from BL; Effect of treatment: ↓Y-BOCS scores from BL	7.69%		Paroxetine 60 mg/day; add- on pindolol 7.5 mg/die	25.69%	
McDougle <i>et</i> <i>al.</i> [58]	2000	Department of Psychiatry, Section of Child and Adolescent Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA	36 SSRI- refractory; 16 placebo vs. 20 add-on risperidone	Double-blind refractory to clomi, fluvoxamine, sertraline, fluoxetine, and paroxetine (failure to reach ↓≥35% drop from BL Y- BOCS scores), randomised ×6 wk to add-on risperidone or placebo	Response: Y- BOCS ↓≥35% from BL and final Y-BOCS≤16; CGIi 1-2; and consensus of clinician. Two criteria met: partial responder; all three met: marked responder	9.42%	0	Clomi, fluvoxamine, sertraline, fluoxetine, or paroxetine at fixed dose; add-on risperidone 1- 6 mg/die (mean, 2.2 mg)	31.8%	50%
Geller <i>et al.</i> [59]	2001	Pediatric OCD Clinic, McLean Hospital, Belmont, MA, USA	103 with \geq 4 on the CGIs and \geq 16 on the CY-BOCS (7- 18 years); 32 placebo vs. 71 fluoxetine	Multicentre (21 sites), 13-wk, DB RCT 2:1. Fluoxetine vs. placebo	CY-BOCS scores (response ↓≥40% from BL)	19.7%	25%	Fluoxetine, mean 24.6 mg/day	38.7%	49%
Montgomery et al. [60]	2001	Imperial College of Science, Technology and Medicine, London, UK	401; 101 placebo vs. 102 20 mg citalopram, vs. 98 40 mg citalopram, vs. 100 60 mg citalopram	Multicentre (53 sites), multinational (12 countries); randomisation to citalopram vs. placebo ×12 wk	Treatment effect: ↓Y-BOCS scores Response: ≥↓25% from BL	22.05%	36.6%	Citalopram 20 mg/day 40 mg/day or 60 mg/day	33.47% 34.23% 40.15%	57.4%; 52%; 65%;
Riddle <i>et al.</i> [61]	2001	Division of Child and Adolescent Psychiatry, Johns Hopkins Hospital, Baltimore, MD, USA	120 (8-17 years); 63 placebo vs. 57 fluvoxamine	Multicentre (17 sites) DB RCT fluoxetine vs. placebo × 10 wk	Effect: ↓CY- BOCS scores from BL; Response: CY-BOCS ↓≥25% from BL	13.63% CY-BOCS	26%	Fluvoxamine 25→ 50-max 200 mg/day	24.79% CY- BOCS	42.1%
Romano <i>et al.</i> [62]	2001	Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA	71 responders (out of 130) to 20-wk 20, 40 or 60 mg fluoxetine with $\downarrow \ge 25\%$ drop from BL; 35 placebo vs. 36 fluoxetine	Multicentre (11 sites), randomisation to fluoxetine as before vs. placebo × 52 wk	No relapse	62%		Fluoxetine 20, 40 or 60 mg/day	82.5%; only 60 mg/die fluoxetin e different from placebo	

Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
Atmaca <i>et al.</i> [63]	2002	Fırat Üniversitesi Hastanesi, Fırat Tıp Merkezi, Psikiyatri Anabilim Dalı, Elazig, Turkey	27 DR (one 3- month trial of 25→300 mg/day clomi or 50→300 mg/day fluvoxamine or 20→80 mg/day fluoxetine yielded CGIi ≥3 and Y-BOCS ≥18 and clinician consensus) to SSRIs or clomi ×2 months), 13 placebo vs. 14 DR to quetiapine add- on	Single-blind randomisation of DR patients with stabilised SSRI or clomi to add-on quetiapine or placebo × 8 wk	Treatment effect: ↓Y-BOCS score from BL; ↓CGIs from BL; response: significant improvement, ≥60% ↓Y-BOCS score from BL; partial improvement, ≥30-59% ↓Y- BOCS score from BL plus clinician consensus	10.08% (↓Y- BOCS); 15.88% (↓CGIs)	0%	Stable SSRI or clomi; add-on quetiapine flexible, <i>i.e.</i> , 50 mg/day → †25 mg/day when Y- BOCS did not ↓ by 2 from previous evaluation	44.4% (↓Y- BOCS); 47.161% (↓CGIs)	71.4%
Greist <i>et al.</i> [64]	2002	Healthcare Technology Systems, University of Wisconsin, Madison, WI, USA	218 (age 15-80), Y-BOCS≥16, not comorbid with psychoses and Tourette's; 75 placebo (relaxation) vs.74 computer- guided vs. 69 therapist-guided	Multicentre (8 sites), parallel comparison of three psychotherapies, computer-assisted CBT, therapist- conducted CBT vs. relaxation assumed as the placebo × 10 wk (therapists not raters)	Effect: ↓Self-rated Y-BOCS score from BL; Response: Y- BOCS ↓≥25% from BL CGIi 1-2; PGIi 1-2	6.6% ↓Self-rated Y-BOCS Relaxation, 1-h/day ×10 weeks	15% PGIi; 14 % CGIi	Computer- guided CBT, 9 steps: 1-3 education and assessment; 4- 9 self ERP ×1 h or more; Clinician- guided CBT, one 1-hour weekly session ×11 weeks ERP + homework	22.77% 30.16% ↓Self- rated Y- BOCS	38% PGIi; 38% CGIi 58% PGIi 60% CGIi
Koran <i>et al.</i> [65]	2002	Department of Psychiatry, Stanford, CA, USA	223 responders to 16 or 52-wk 50-200 mg/day sertraline with Y-BOCS ↓≥25% from BL and CGIi ≤3; 114 placebo vs. 109 sertraline	Multicentre (21 sites), DB randomisation to flexible sertraline or to placebo × 28 wk	No relapse, defined as either ↑Y-BOCS scores ≥5 from randomisation and total score of ≥20 and ↑CGI iscore of ≥1; Insufficient clinical response	76%		Sertraline flexible doses 50-200 mg/day	91%	
Liebowitz <i>et</i> <i>al.</i> [66]	2002	New York State Psychiatric Institute and Department of Psychiatry at Columbia University, New York, NY, USA	43 (children 6- 18 years); 22 placebo vs. 21 fluoxetine (acute); 7 placebo vs. 11 fluoxetine (extension)	Multicentre (2 sites), RCT fluoxetine vs. placebo ×8 wk (acute phase) → responders extension ×8 wk	CGIi 1 or 2 (response), ↓CY- BOCS from BL (primary outcome)	22.12% acute; 54.6% extension	31.81% (CGIi)	Fluoxetine 60- 80 mg/die	34.62% acute; 74.36% extension	57.14% CGIi

Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
Geller <i>et al.</i> [67]	2003	Obsessive Compulsive Disorder Program and Pediatric Psychopharmacol ogy Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA	8-17 yr-old children who responded to 16-wk 10-60 mg/day paroxetine; 98 placebo vs. 95 paroxetine	Multicentre (? sites); paroxetine- responder children aged 8- 17 randomised to paroxetine as before vs. placebo ×16 wk	CY-BOCS (response ↓≥25% from BL and CGIi 1 or 2); No relapse; relapse defined as ↑CGI by 1 in two follow-up visits or ↑CGI by 2 at any time or CGI≥5 at any time		56.1%	Paroxetine flexible doses (10-60 mg/die)	65.3%	
Hollander <i>et</i> <i>al.</i> [68]	2003	Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, USA	27, 10 placebo vs. 17 clonz	Multicentre (2 sites), DR + drug- naïve patients randomised 2:1 to clonz or placebo × 10 wk	CGIi 1-2	2.6%Y- BOCS	22% CGIi	Clonz 3-6 mg/day	7% Y- BOCS	6.2% CGIi
Hollander <i>et</i> <i>al.</i> [69]	2003	Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, USA	16 DR (CGIi≥3 after at least two trials of SSRIs, clomi or venlafaxine for 12 wks), 6 placebo vs. 10 add-on risperidone	DB RCT of DR patients to risperidone vs. placebo × 8 wk added on stable previous SSRI, venlafaxine or clomi	Effect: ↓Y- BOCS score from BL Response: Y- BOCS ↓≥25% and CGIs ↓≥2 points from BL	4.53% Y- BOCS	0% Y-BOCS and CGIi	Risperidone 0.5→max 3 mg/day add-on to minimum mg/day: 200 clomi, 60 fluoxetine, 150 fluvoxamine, 150 sertraline, 60 citalopram or 325 venlafaxine	20.89% Y-BOCS	40% Y- BOCS and CGIi
Hollander <i>et</i> <i>al.</i> [70]	2003	Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, USA	89 placebo vs. 88 paroxetine, 20 mg/day, vs. 86 paroxetine, 40 mg/day, vs. 85 paroxetine, 60 mg/day	Multicentre (15 sites), paroxetine, three fixed doses with an about 1:1:1:1 randomisation DB vs. placebo × 12 wk	Effect: ↓Y- BOCS score from BL Response: Y- BOCS ↓≥25% and CGIs ↓≥2 points from BL	13% Y- BOCS	Not provided	Paroxetine 20, 40, 60 mg/day	16% 25% 29% Y- BOCS	Not provided
Hollander <i>et</i> <i>al.</i> [70]	2003	Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, USA	105 responders to paroxetine randomised to placebo (<i>N</i> =52) or to paroxetine (<i>N</i> =53) 20-60 mg/day	Multicentre (15 sites), Paroxetine responders to flexible paroxetine doses (20-60 mg/day) or placebo × 6 months	Non-relapse: relapse defined as return of Y- BOCS to BL values or ≥1↑CGI at any time-point		41.2% Y- BOCS/ CGIi	Paroxetine 20, 40 or 60 mg/day		62.3% Y- BOCS/ CGIi
Hollander <i>et</i> <i>al.</i> [71]	2003	Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, USA	253; 126 placebo vs. 127 fluvoxamine controlled- release	Multicentre (5? sites) RCT Fluvoxamine controlled- release 100-300. placebo × 12 wk	Effect: ↓Y- BOCS score from BL Response: CGIi 1 or 2	19.01% Y-BOCS	23% CGIi	Fluvoxamine 100 → 100-300 mg/day	34.56% Y-BOCS	44% CGIi

Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
Bystritsky <i>et</i> <i>al.</i> [72]	2004	Department of Psychiatry and Biobehavioral Sciences, Anxiety Disorders Program, University of California at Los Angeles (UCLA) School of Medicine, Los Angeles, CA, USA	26 DR (unchanged after two adequate antidepressant trials and a course of behavioural psychotherapy), 13 placebo vs. 13 risperidone	DR to clomi or SSRIs with dose unchanged randomised × 6 wk to add-on olanzapine or placebo	Effect: % ↓Y- BOCS; Response: Y- BOCS ↓≥25% from BL	-1.99% (†Y- BOCS from BL)	0% (↓≥25% Y-BOCS)	Full-dose clomi, fluoxetine, sertraline, paroxetine; add-on olanzapine $2.5 \rightarrow 5-20$ mg/day	17.36% (↓Y- BOCS from BL)	46% (↓≥25% Y- BOCS)
Denys <i>et al.</i> [73]	2004	Rudolf Magnus Institute of Neuroscience (DD), Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands	20 DR to SSRIs to add-on placebo; 20 to add-on quetiapine	DR to SSRIs (failure to achieve ↓≥25% of Y-BOCS scores from BL) randomised to add- on quetiapine vs. placebo × 8 wk	Y-BOCS (response ↓≥35% drop from BL); CGIi 1-2	6.8% Y- BOCS; 7,5% CGIi	10% CGIi	Various SSRIs at various doses plus quietapine (B) 200-300 mg/day	31.9% Y- BOCS 27,5% CGIi	40% CGIi
Fux <i>et al.</i> [74]	2004	BeerSheva Mental Health Center, Ben Gurion University of the Negev, Beer- Sheva, Israel	11 with unsatisfactory response to SSRI during last 2 months: 5 placebo add-on vs. 6 EPA add- on	Cross-over RCT, EPA vs. placebo added-on highest tolerated SSRI dose	Response criteria not specified; assessment performed with Y-BOCS	32.3%		Various SSRIs at various doses; EPA 2g/day	28.8%	
Geller <i>et al.</i> [75]	2004	Pediatric OCD Clinic, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA	203 (7-17 years); 105 placebo vs. 98 paroxetine	Multicentre (34 sites); paroxetine vs. placebo × 10 wk	Effect: ↓CY- BOCS score from BL; Response: ↓≥25% CY- BOCS from BL	21.1%	41.2%	Paroxetine 10-50 mg/die	36%	64.9%
Kamijima <i>et</i> <i>al.</i> [76]	2004	Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan	188; 94 placebo vs. 94 paroxetine	Multicentre (? sites), DB paroxetine vs. placebo × 12 wk	Effect: ↓Y- BOCS scores from BL; response: ↓≥25% Y- BOCS from BL; CGIi 1-2	14.8% Y- BOCS	23.7% CGIi	Paroxetine 20-50 mg/day	33.4% Y- BOCS	50% CGIi
Shapira <i>et</i> <i>al.</i> [77]	2004	Department of Psychiatry, University of Florida, College of Medicine, Gainesville, FL, USA	44 partial/non responders to fluoxetine, 22 placebo vs. 22 add-on olanzapine	DR (partial/non- responders, <i>i.e.</i> , <↓25% Y-BOCS score from BL or <16 total Y-BOCS or symptomatic) to 8-wk double-blind fluoxetine randomised × 6 wk to add-on olanzapine or placebo	Treatment effect: % ↓Y- BOCS scores from BL; Response: Y- BOCS ↓≥25% from BL	3.8%	41% ↓≥25% from BL; (18% ↓≥35% Y- BOCS from BL)	Fluoxetine 40 mg/day; Olanzapine 5- 10 mg/day	5.1%	41% ↓≥25% from BL; (23% ↓≥35% Y- BOCS from BL)

Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
The Pediatric OCD Treatment Study (POTS) Team [78]	2004	Department of Psychiatry, Duke University Medical College, Durham, NC, USA	112 children and adolescents (7-17 yrs.) CY- BOCS≥16; 28 placebo vs. 28 sertraline vs. 28 cBT vs. 28 sertraline + CBT placebo	Multicentre (3 sites), balanced, masked RCT (biased by patient preference) of sertraline vs. CBT vs. sertraline + CBT vs. placebo × 12 wk	Effect: ↓CY-BOCS from BL; Response: CY-BOCS≥10	14.68%	3.6%	Sertraline 25-max200 mg/day; 14 CBT sessions with psychoeducation , cognitive training mapping OCD target symptoms and ERP; Sertraline + CBT	29.79% 46.15% 52.84%	21.4% 39.3% 53.6%
Carey <i>et al.</i> [79]	2005	MRC Research Unit on Anxiety Disorders, University of Stellenbosch, Cape Town, South Africa	42 SSRI-resistant patients defined as not responding to at least two adequate trials (12 wks); 21 SSRI+placebo, 20 SSRI+ quetiapine	Multicentre RCT (5 sites); DR (CGI≥3 or ↓Y-BOCS ≤25% from before treatment) to SSRI randomised to add- on quetiapine vs. placebo × 6 wk	Treatment effect: % ↓Y- BOCS score from BL Response: ↓Y-BOCS ≥25% from BL and CGIi 1-2	26% Y-BOCS 22.6% CGIi	47.6%	Various SSRIs at various doses; Add-on quetiapine, ≈200 mg/day	26.9% Y-BOCS 21,1% CGIi	40%
Erzegovesi <i>et</i> <i>al.</i> [80]	2005	Department of Neurosciences, San Raffaele Hospital, Vita- Salute San Raffaele University, Milan, Italy	39 patients stabilised on fluvoxamine 150- 300 mg/day; 19 placebo vs. 20 add- on risperidone; 20 DR (10 placebo; 10 risperidone) and 19 responders (9 placebo; 10 risperidone)	DR to fluvoxamine (failure to reach ↓≥35% drop from BL Y-BOCS score) and responders to open fluvoxamine randomised × 6 wk to add-on risperidone or placebo	Y-BOCS scores (response ↓≥35% drop from BL); (Responders and non- responders here refer to open fluvoxamine and <i>not</i> to the add-on)	13.89%; Responder s 27.63%; Non- responders: 6.82% Y- BOCS	Non-resp 20% Y- BOCS	Fluvoxamine 150-300 mg/die; risperidone 0.5 mg/die	18.24%; Responder s, 3.82%; non- responders , 25.57%	Non- responders, 50%
Fineberg et al. [81]	2005	Department of Psychiatry, Queen Elizabeth II Hospital, Hertfordshire, Welwyn Garden City, Department of Psychology, University of Hertfordshire, Hatfield, UK	21 DR (Y-BOCS ≥18 and ↓≥25% Y- BOCS after ≥12 wks SSRI at max tolerated dose); 10 placebo, 11 quetiapine add-on	Add-on of quetiapine vs. placebo × 16 wk on stable SSRI at max tolerated dose	Effect: %↓Y- BOCS from BL; response ↓≥25% from BL	6%	10%	Quetiapine 25→max 400 mg/die + SSRI (citalopram, sertraline, paroxetine)	14%	27.27%
Foa <i>et al.</i> [82]	2005	Center for the Treatment and Study of Anxiety, University of Pennsylvania, Philadelphia, PA, USA	122, 26 placebo vs. 36 clomi, vs. 29 ERP, vs. 31 clomi + ERP	Multicentre (3 centres), 12-wk RCT; Clomi vs. placebo vs. ERP vs. clomi + ERP	Effect: ↓Y- BOCS from BL Response: CGIi <3	11.2% Y- BOCS 6% CGIi	8%	Clomi 200 mg/day ERP: 2h exposure sessions, 5 times a week + daily exposure and ritual prevention homework max 2h Combined Clomi + ERP	30.7% Y- BOCS; 19.6% CGIi 55.28% Y- BOCS; 43.75% CGI 58.66% Y- BOCS; 40.82 CGIi	41.67% 62.07% 67.74%

Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
Kobak <i>et al.</i> [83]	2005	Dean Foundation For Health, Research and Education, Middleton, WI, USA	60 with Ham-D <16; 30 placebo vs. 30 St. John's wort (Hypericum perforatum)	Multicentre (4 sites), DB CRT of flexible <i>Hypericum</i> or placebo × 12 wk	Effect: ↓Y- BOCS scores from BL; response: CGIi 1-2	20.665 % Y- BOCS	16.7% CGIi	Hypericum perforatum (Saint John's wort) flexible doses 600→1800 mg/day	23.306 % Y- BOCS	17.9% CGIi
Koran <i>et al.</i> [84]	2005	Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, CA, USA	23 DR with OCD since at least 3 years, with Y-BOCS ≥20 and poor response to at least two SSRI trials (≥8 wks at full dose); 32 placebo	Add-on to stable antidepressant therapy of morphine, lorazepam or placebo × 7 wk: 2 wk of each in random order; cross- over, but only first part considered (prior to cross-over)	Effect: ↓Y- BOCS score Response: Y- BOCS (response ↓≥25% from BL)	7%	0%	Morphine 30 mg/week 1 →15-45 mg/week adjustment Lorazepam 1 mg →0.5-2 mg/week	27% 6%	30.43%
Li, X. et al. [85]	2005	Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, AL, USA	13 DR to ≥12- wk SSRIs (symptomatic; ≥10 score on Y-BOCS items 1-5; ≥16 total Y-BOCS score); 5 placebo first, 5 haloperidol first, 3 risperidone first	DB cross-over of DR on stable antidepressant, randomised × 9 wk to add-on risperidone, haloperidol or placebo (1 wk placebo→2 wk placebo or haloperidol or risperidone→1 wk placebo→2 wk cross-over→ 1 wk placebo→ 2 wk	Effect: ↓Y- BOCS from BL; no criteria for response	23.96%		≥40 mg fluoxetine, ≥200 mg fluvoxamine, ≥100 mg sertraline; dose unaltered during trial; add-on haloperidol 2 mg/day risperidone 1 mg/day	48.62% 36.29%	
Nakatani <i>et</i> al. [86]	2005	Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan	28 DR; 8 placebo + autogenic training vs. 10 behaviour therapy + placebo vs. 10 fluvoxamine + autogenic training	DR patients assigned to one of three groups: behavioural therapy + placebo; fluvoxamine + autogenic training; autogenic training + placebo ×12 wk	Y-BOCS scores (response ↓≥35% from BL), CGI i 1-2; responsiveness to placebo was taken as the response of Y- BOCS scores and the CGIi criterion of the placebo + autogenic training group	6.88%	0%	Fluvoxamine 150-200 mg/day	28.87%	30%
Buchsbaum et al. [87]	2006	Mount Sinai School of Medicine, New York, NY, USA	16 DR, 6 placebo vs. 10 risperidone	DR to clomi, fluvoxamine, sertraline, fluoxetine, paroxetine, citalopram, and venlafaxine randomised double- blind ×8 wk to add- on risperidone or placebo	Response: Y- BOCS ↓≥25% from BL; CGli 1-2	4.53%	0% (CGIi) 0% (Y- BOCS)	Actual minimum daily doses: 200 mg clomi, 60 fluoxetine, 150 fluvoxamine, 150 sertraline, 60 citalopram, 325 venlafaxine; add-on risperidone 0.5 → 3 mg/day	20.89%	40% (CGIi) 40% (Y- BOCS)

Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
O'Connor et al. [88]	2006	Fernand- Seguin Research Centre, Louis-H. Lafontaine Hospital, Montreal, QC, Canada	21 with Y-BOCS >16; 10 placebo vs. 11 fluvoxamine (first protocol); thereafter, 43 (comprising the first 21) received CBT vs. 10 CBT alone, vs. 12 CBT + stabilised on antidepressant	DB, random allocation to fluvoxamine vs. placebo ×5 months (first protocol); after conclusion or stabilisation (on or off-drug) of another population, all receive CBT; CBT to drug naïve patients, CBT + stabilised on drug, CBT to previous placebo group, CBT to previous fluvoxamine group × 5 months (20 sessions) (second protocol)	Treatment effect: ↓Y- BOCS scores Response: >↓35% Y- BOCS from BL	6.96% Y- BOCS	0%	Fluvoxamine 100 → max 300 mg/day; CBT – ERP 1 weekly session for a total of 20 over 5 months; CBT + fluvoxamine	15.19% 53.33% (not used in analyse s) 42.69% Y- BOCS (not used in analyse s)	9%
Fineberg et al. [89]	2007	Postgraduate Medical School, University of Hertfordshire, Hatfield, UK	320 responders to 16-wk 10 or 20 mg escitalopram with Y-BOCS ↓≥25% from BL; 157 placebo vs. 163 escitalopram 10 or 20 mg/day	Multicentre (62 sites), multi-national (14 countries), DB RCT escitalopram 10 vs. 20 vs. placebo × 24 wk	No relapse, defined as either an increase in Y-BOCS scores ≥5 from randomisation or as unsatisfactory treatment effect (lack of efficacy) judged by investigator; Responders: Y- BOCS ↓≥25% from BL	48% no relapse	72% Y- BOCS	Escitalopram fixed dose 10mg/die or 20mg/die	77% no relapse	90% Y- BOCS
Stein <i>et al.</i> [90]	2007	University of Cape Town, Department of Psychiatry, Groote Schuur Hospital, Cape Town, South Africa	458; 114 placebo vs. 113 escitalopram 10, 114 escitalopram 20, 117 paroxetine	Double-blind randomized fixed- dose escitalopram × 24 wk to paroxetine or placebo	Primary outcome: ↓Y- BOCS from BL at week 12; secondary: mean Y-BOCS change from BL at week 24; Remission: Y- BOCS ≤10 Response: CGIi 1 or 2; Y-BOCS ↓≥25% from BL	wk12: 30.54% wk24: 38.51% Y- BOCS	wk12 38.5%; wk24 38% (CGIi); wk12 52%; wk24 50% (Y- BOCS)	Escitalopram 10 mg/die or Escitalopram 20 mg/die or Paroxetine 40 mg/die	wk12: 42.97% wk24: 51.77% wk12: 45.64 wk24: 51.84% wk12: 42.75 wk24: 54.62%	wk12 50% wk24 58% (CGIi) wk12 66% wk24 63% (Y-BOCS) wk12 56% wk24 58.5% (CGIi) wk12 70.5% wk24 70.5% wk24 70.5% wk24 58% (CGIi) wk12 65% wk24 67% (CGIi)
Amiaz <i>et al.</i> [91]	2008	Division of Psychiatry, Chaim Sheba Medical Center, Tel- Hashomer, Israel	10 DR to SSRIs or clomi ×2 months; 5 placebo first, 5 naltrexone first	DB cross-over of DR patients to ≥2-month clomi or 2 SSRIs × 5 wk to add-on naltrexone or placebo, ×1 wk to add-on placebo only × 5 wk to cross-over add-on naltrexone or placebo	Treatment effect: ↓Y- BOCS score from BL; ↓CGIs from BL; no response criteria provided	5.46% (↓Y- BOCS); 18.42% (↓CGIs)		Stable SSRI or clomi; add-on naltrexone 50 → 100 mg/die	- 16.07% (↑Y- BOCS scores); -10.7% (↑CGIs scores)	

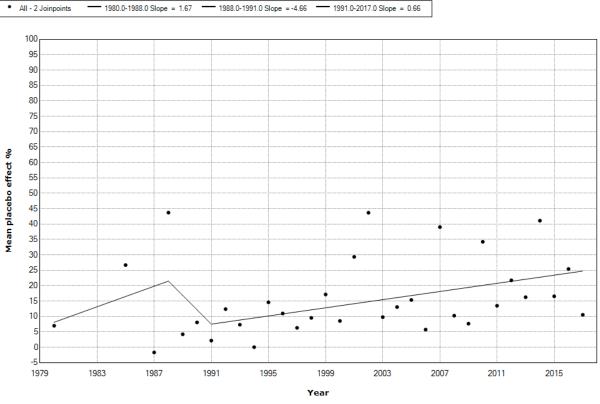
Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
Kordon et al. [92]	2008	Department of Psychiatry and Psychotherapy, University of Luebeck, Luebeck, Germany	40 DR; 20 placebo vs.20 add-on quetiapine	Multicentre (2 sites), DR to SSRI or clomi × 12 wk (failure to reach ↓≥25% drop from BL Y-BOCS scores) randomised to add-on quetiapine or placebo	Y-BOCS (response ↓≥35% drop from BL); CGIi 1-2	15.1% Y- BOCS	30% CGIi	SSRI or clomi at fixed dose; Quietiapine 400-600 mg/day	21.6% Y- BOCS	22% CGIi
Greenberg et al. [93]	2009	New York University School of Medicine, Department of Psychiatry, New York, NY, USA	13 DR (drugs or psychotherapy), with treatment stabilised ×≥12wks, 9 placebo vs. 5 glycine add-on	DB RCT 1:1 of DR to add-on glycine vs. placebo × 12 wk to unchanged regimen (drugs and/or psychotherapy)	Effect: ↓Y-BOCS score from BL; ↓NIMH-OC score from BL;↓CGIs score from BL; Response: Y- BOCS ↓≥35% from BL <i>and</i> CGIi 1-2	4.04% (Y- BOCS); 2.44% NIMH- OC; 2.36% (CGIs)	0% (Y- BOCS plus CGIi)	Glycine powder dissolved in water plus flavour enhancer → 60 g/day added on stabilised treatment (drug and/or psychotherapy)	24.59% (Y- BOCS); 22.22% NIMH- OC; 13.04% (CGIs)	40% (Y- BOCS plus CGI)
Sayyah et al. [94]	2009	Department of Psychiatry, Joondi Shapoor University of Medical Sciences, Ahwaz, Iran	44 with Y- BOCS≥21; 20 placebo vs. 24 aqueous extract of <i>Echium amoenum</i>	DB, RCT of 500 mg aqueous extract of <i>Echium amœnum</i> × 6 wk	Effect: ↓Y-BOCS scores from BL Response: not provided	11.31% Y- BOCS		125 mg aqueous extract of <i>Echium</i> <i>amoenum</i> capsules: 1 morning; 1 afternoon, 2 night	25.55% Y- BOCS	
Mowla <i>et al.</i> [95]	2010	Department of Psychiatry, Bushehr University of Medical Sciences, Bushehr, Iran	41 Y-BOCS≥18 to: - <i>N</i> =20 Topiramate; or - <i>N</i> =21 placebo; × 12 wks	12-wk, double- blind, placebo- controlled, randomized trial of 200 mg/day topiramate vs. placebo	Treatment effects: ↓Y- BOCS from BL; response: Y- BOCS ↓≥25% from BL (after 12 weeks)	2.4% (↓Y- BOCS)	0% (Y- BOCS ↓≥25% from BL)	Topiramate (initially 25 mg/day, increased in 25- mg increments weekly to a target dose of 200 mg/day	32% (↓Y- BOCS);	60% (Y- BOCS ↓≥25% from BL)
Storch <i>et al.</i> [96]	2010	Department of Pediatrics, Rothman Center for Neuropsychiat ry, University of South Florida, St. Petersburg, FL, USA	30 children and adolescents with OCD (Range 8-17 years); 15 placebo, 15 D- cycloSer	DB RCT of CBT + D-cycloSer vs. CBT + Placebo × 8 wk (10 sessions). 1:1 randomisation	Effect: % ↓ CGI- S, CYBOCS, and ADIS-CSR from BL. no criterion for response	41% (↓CGI- S), 58% (↓ CY- BOCS), 53% (↓ADIS -CSR)		25 or 50 mg of D-cycloSer (depending on patient weight) 1 h before psychotherapy, sessions 4-10	57%(\C GI-S) 72% (\ CYBOC S) 71% (\ADIS- CSR)	
Sayyah <i>et</i> al. [97]	2011	Education Development Center (EDC), Jundishapur University of Medical Sciences, Ahwaz, Iran	52 drug naïve OCD patients randomised to celecoxib (<i>N</i> =27) or placebo (<i>N</i> =25)	DB RCT of fluoxetine 20 mg/day + celecoxib 400 mg/day vs. fluoxetine 20 mg/day + placebo × 8 wk	Effect: %↓Y- BOCS score from BL; no criterion for response	46.7% (↓Y- BOCS)		Fluoxetine 20 mg/day + Celecoxib 400 mg/day	66.2% (↓Y- BOCS)	

Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
Muscatello <i>et</i> <i>al.</i> [98]	2011	Section of Psychiatry, Department of Neurosciences, Psychiatric and Anaesthesiological Sciences, Section of Pharmacology, Department of Clinical and Experimental Medicine and Pharmacology, IRCCS Centro Neurolesi "Bonino-Pulejo" University of Messina, Messina, Italy	30 Y-BOCS≥18 to N=16 aripripazole (15 mg/day) N=14 Placebo	16-wk, open- label. flexible- dose (up to 30 mg/day), pilot trial	Treatment effects: ↓Y- BOCS score from BL; partial response (pr): Y- BOCS ↓≥25% from BL; complete response (cr): Y- BOCS ↓≥35% from BL; remission (r) (Y- BOCS ≤16 after 16 weeks)	-2.54% (↓Y- BOCS)	0% (pr); 0% (cr)	Aripiprazole 15 mg/day added to SSRI	28.5% (↓Y- BOCS);	43.7% (pr); 25% (cr)
Berlin <i>et al.</i> [99]	2011	Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, USA	36 OCD patients with Y-BOCS ≥ 18; 18 randomised to placebo and 18 to topiramate	DB RCT of add- on topiramate (up to 400 mg/d) over continuing SSRI vs. placebo plus SSRIs × 12 wk	Effect: % ↓Y- BOCS score from BL after 12 weeks. No response criteria	16% (↓Y- BOCS from BL to 12 weeks)		Add-on topiramate titrated over 8 weeks up to 400 mg/day or maximum tolerated dose	38% (↓Y- BOCS)	
Pakseresht et al. [100]	2011	Jundishapur University of Medical Sciences, Ahwaz, Iran	31 (18-60 y) to -N=15 extract of <i>Valeriana</i> <i>Officinalis L.</i> (765 mg/day) or -N=16 placebo (30 mg/day) × 8 wks (Y-BOCS≥21)	8-wk double- blind, parallel- group, randomised trial	Treatment effect: ↓Y-BOCS from BL after 8 weeks; no response criteria provided	23.3% (↓Y- BOCS);		Valeriana Root (Valeriana Officinalis L.) 750 mg/day in three divided doses	43.3% (↓Y- BOCS)	
Sayyah <i>et al.</i> [101]	2012	Jundishapur University of Medical Sciences, Ahwaz, Iran	23 drug naïve OCD patients; add-on to fluoxetine, 12 ZnSO ₄ , 11 placebo	DB RCT of 20 mg/day fluoxetine + 440 mg/day ZnSO ₄ vs. 20 mg/day fluoxetine + placebo × 8 wk	Effect: % ↓Y- BOCS score from BL. no criterion for response	46.84% (↓Y- BOCS)		20 mg/day Fluoxetine + 440 ZnSO4 mg/day	54.54% (↓Y- BOCS)	
Sayyah <i>et al.</i> [102]	2012	Imam General Hospital, Jundishapur University of Medical Sciences, Ahwaz, Iran	32 adult outpatients: N=15 10 mg/day aripiprazole N=17 placebo	12-wk, double- blind RCT	Treatment effects: ↓Y- BOCS score from BL; response: Y- BOCS ↓≥25% after 12 weeks	17.6% (↓Y- BOCS);	8.3% (Y- BOCS ↓≥25% after 12 weeks)	Aripiprazole 10 mg/day	29.5% (↓Y- BOCS);	53% (Y- BOCS ↓≥25% after 12 weeks)
Afshar <i>et al.</i> [103]	2012	Nour Hoospital, Psychosomatic Research Center, Department of Psychiatry, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran	48 DR OCD patients (SSRI/clomi non- responders); 19 NAC, 20 placebo	DB RCT of add- on →2400 mg/day NAC vs. placebo ×12 wk	Effect: % ↓Y- BOCS score from BL. % ↓ CGI-S from BL Partial response: Y-BOCS ↓≥25% from BL; Response: Y- BOCS ↓≥35% from BL	20.7% (↓Y- BOCS) 10.4% (↓CGIs)	Response: 15%; No data on partial response	Initial dosage of 600 mg/d of NAC, which doubled weekly to a maximum dose of 2400 mg/d	39.2% (↓Y- BOCS); 24.9% (↓CGIs)	Response: 52.6% No data on partial response given

Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
Bruno <i>et al.</i> [104]	2012	Section of Psychiatry, Department of Neurosciences, Psychiatric and Anaesthesiological Sciences, University of Messina, Messina, Italy	33 DR OCD patients (persistent obsessive- compulsive symptoms: despite adequate SSRI trial(s) → Y-BOCS ≥16); 17 lamotrigine, 16 placebo	DB RCT of add- on lamotrigine 100 mg/day vs placebo for 16 wk	Effect: %↓Y- BOCS score from BL; Partial response: Y-BOCS ↓≥25% from BL; Response: Y- BOCS ↓≥35% from BL	-1.2% (↓Y-BOCS)	Response: 0%	Add-on lamotrigine increased from 25 mg/day to 100 mg/day at week 4, in increments of 25 mg/week Maximum dose of 100 mg maintained until the end of the trial	33.8% (↓Y- BOCS)	Partial response: 50% Complete response: 35%
Askari <i>et al.</i> [105]	2012	Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran	39 drug naïve OCD patients (Y- BOCS ≥21) randomised to placebo (<i>N</i> =20) or granisetron (<i>N</i> =19)	Multicentre DB RCT of fluvoxamine 100-200 mg/day + granisetron 2 mg/day vs. fluvoxamine 100 - 200 mg/day + placebo × 8 wk	Effect: % ↓Y- BOCS score from BL Partial response: Y-BOCS ↓≥25% from BL Response: Y- BOCS ↓≥35% from BL Remission: Y- BOCS ≤ 16	34.7% (↓Y- BOCS)	Partial response: 35%; Complete response: 35%; Remission: 35%	Fluvoxamine 100 mg/day × first 4 weeks, 200 mg/day × next 4 weeks + granisetron 2 mg/day	59.1% (↓Y- BOCS)	Partial response: 100% Complete response: 100% Remission: 90%
Ghaleiha <i>et</i> <i>al.</i> [106]	2013	Research Center for Behavioral Disorders and Substance Abuse, Hamadan University of Medical Sciences, Hamadan, Iran	38 patients with diagnosis of OCD and Y-BOCS score ≥ 21 randomised to add-on placebo ($N=19$) or memantine ($N=19$)	DB RCT of fluvoxamine + memantine vs. fluvoxamine + placebo × 8 wk	Effect: % ↓Y- BOCS score from BL Partial response: Y-BOCS ↓≥25% from BL Response: Y- BOCS ↓≥35% from BL Remission: Y- BOCS ≤16	36.9% (↓Y- BOCS)	Partial or complete response: 32% Remission: 32%	Memantine 10 mg/day for the first week of the trial, then 20 mg/day	57,9% (↓Y- BOCS)	Partial or complete response: 100% Remission: 89%
Storch <i>et al.</i> [107]	2013	Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA	47 children and adolescents with OCD (Range 7- 17 years) randomised to RegSert (<i>N</i> =14), SloSert (<i>N</i> =17) or placebo (<i>N</i> =16) + CBT for all	DB RCT of sertraline at standard dosing + CBT or sertraline titrated slowly + CBT or placebo + CBT × 18 wk. Patients randomized in a 1:1:1 fashion.	Effect: % ↓CY- BOCS score from BL. Response: CY- BOCS ↓≥30% from BL Remission: CY- BOCS score <10	37.9% (↓Y- BOCS)	Response: 62.5% (CY- BOCS ↓≥30% from BL) Remission: 18.8% (CY- BOCS score below 10)	RegSert: upward titration from 25 mg/day to 200 mg/day in 5 wk. SloSert: upward titration from 25 mg/day to 200 mg/day in 9 wk	RegSert: 34.7% (↓Y- BOCS) SloSert: 35.5% (↓Y- BOCS)	Response: 57.1% for RegSert + CBT; 64.7% for SloSert + CBT; Remission: 42.9% for RegSert + CBT; 23.5% for SloSert + CBT
Haghighi <i>et</i> <i>al.</i> [108]	2013	Research Center for Behavioral Disorders and Substances Abuse, Hamadan University of Medical Sciences, Hamadan, Iran	29 inpatients with diagnosis of OCD and Y-BOCS score \geq 21 despite treatment with SSRI or clomi to: memantine (N=14) or placebo (N=15)	DB RCT of add- on memantine 5–10 mg/day vs. placebo × 12 wk	Effect: % ↓Y- BOCS score from BL. % ↓ CGI-S from 4 th week; Partial response: Y- BOCS ↓≥25% from BL; Response: Y- BOCS ↓≥35% from BL	15.8% (↓Y- BOCS) 13.4% (↓CGIs)	Partial or complete response: 26.6%	Add-on memantine 5– 10 mg/day	32.2% (↓Y- BOCS) 30.2% (↓CGIs)	Partial or complete response: 92.8%

Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
Storch <i>et al.</i> [109]	2013	Department of Pediatrics, Rothman Center for Neuropsychiatry, University of South Florida, St. Petersburg, FL, USA	34 DR OCD patients (Y- BOCS≥ 19 despite at least 2 adequate SSRI trials) randomised to placebo (<i>N</i> =17) or paliperidone (<i>N</i> =17)	DB RCT of add- on Paliperidone (up to 9 mg/d) vs. placebo × 8 wk	Effect: % ↓Y- BOCS score from BL. %↓CGI-S from BL Response: Y- BOCS ↓≥35% from BL CGI-i = 1 - 2	15.7% (↓Y- BOCS) 18.7% (↓CGI-S)	Response: 29% (Y-BOCS ↓≥35%) 18% (CGIi =1/2)	Add-on Paliperidone starting from 3 mg/day and titrated up to 9 mg/day by week 6 unless not tolerated	29.4% (↓Y- BOCS) 20.1% (↓CGI-S)	Response: 35% (Y- BOCS ↓≥35%) 35% (CGIi=1/2)
Rodriguez <i>et</i> <i>al.</i> [110]	2013	New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY, USA	15 drug free OCD patients with Y- BOCS ≥ 16 who had failed at least one prior SSRI trial and/or CBT: 8 to ketamine and 7 to placebo	DB Crossover RCT of iv ketamine (0.5 mg/kg) vs. iv saline spaced at least 1-wk apart	Effect: ↓OCD- VAS Response: Y-BOCS ↓≥35% from BL	7.2% (↓OCD- VAS)	Response: 0%	Intravenous infusion of ketamine (0.5 mg/kg) over 40 min	45.4% (↓OCD- VAS)	Response: 50%
Simpson <i>et</i> <i>al.</i> [111]	2013	Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, NY, USA	100 patients on SSRI with still clinically significant OCD (Y-BOCS \geq 16); 97 patients to N=38 Risperidone (up to 4 mg/d) N=40 EX/RP (17 session, 2 wkly) N=19 placebo	RCT comparing SSRI augmentation with either EX/RP therapy, risperidone (→ max 4.0 mg/d), or pill placebo × 8 wk in two centres	Effect: % ↓Y- BOCS score from BL Response: Y- BOCS ↓≥25% from BL	10.81% (↓Y-BOCS)	Responders: 15% (Y-BOCS ↓≥25%)	Add-on risperidone (up to 4 mg/day) EX/RP (17, 2×week, 90 min-sessions)	EX/RP: 52.2% (↓Y- BOCS). Risperido ne: 13.4% (↓Y- BOCS)	EX/RP response: 80% Risperidone response: 22.5%
Park <i>et al.</i> [112]	2014	Department of Psychology, University of South Florida, Tampa, FL, USA	30 children and adolescents with OCD (CY- BOCS≥16) stable on psychotropic medication × ≥ 12 wks: 15 to D- cycloSer; 15 to placebo	DB RCT of ERP + D-cycloSer (25-50 mg) after last 7 sessions vs. ERP + placebo × 10 wk	Effect: %↑ Homework compliance (rated with a 7- point Likert scale ranging from 0 ("did not complete any assigned homework") to 6 ("completed all homework and made efforts above and beyond assignments"); no criterion for response	4.7% (↑ homework compliance)		Exposure and response prevention therapy (ERP) + D-cycloSer (25- 50 mg depending on weight) after last 7 session	-6% (↑ homewor k complian ce)	
Grant <i>et al.</i> [113]	2014	Pediatrics and Developmental Neuroscience Branch, NIMH, National Institutes of Health, Bethesda, MD, USA	60 treatment- resistant children and adolescents (7-17 years, CY- BOCS≥20); 30 to riluzole, 30 to placebo	DB RCT of add- on riluzole (up to 100 mg/day) vs. placebo × 12 wk	Effect: % ↓CY- BOCS score from BL. %↓CGI-S from BL %↑ CGAS from BL Response: CY- BOCS ↓≥30% from BL	22.9% (↓CY- BOCS) 10.7% (↓CGI-S) 18,8% (↑CGAS)	Response: 18%	Add-on riluzole starting from 10 mg/day and increased daily up to 100 mg/day	20.1% (↓CY- BOCS) 9.8% (↓CGI-S) 12.8% (↑ CGAS)	Response: 16%

Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
Mataix-Cols et al. [114]	2014	King's College London, Institute of Psychiatry, London, UK	27 children and adolescents with OCD (CY- BOCS≥16); 13 to D-cycloSer, 14 to placebo	DB RCT of Exposure and response prevention therapy (ERP) + D-cycloSer 50 mg after each session vs. ERP + placebo × 17 wk	Effect: % ↓CY- BOCS score from BL. Response: CY- BOCS ↓≥35% from BL Remission: CY- BOCS score ≤ 10	59.3% (↓CY- BOCS)	Response: 64.2% (CY- BOCS ↓≥35% from BL); Remission: 42.8% (CY- BOCS ≤10)	Exposure and response prevention therapy (ERP) + D-cycloSer 50 mg after each session	60% (↓CY- BOCS)	Response: 61.5% (CY- BOCS ↓≥35% from BL); Remission: 53.8% (CY- BOCS score ≤10)
Afshar <i>et al.</i> [115]	2014	Isfahan Psychosomatic Research Center, Isfahan University of Medical Sciences, Isfahan, Iran	31 Y-BOCS≥16 to - <i>N</i> =16 Topiramate (mean dose: 137.5 mg/day) - <i>N</i> =15 Placebo Add-on on current SSRIs	12-wk, double- blind, placebo- controlled	Treatment effects: ↓Y- BOCS score from BL; response (r): Y- BOCS ↓≥25% from BL after 12 weeks	8.33% (↓Y- BOCS) after 12 weeks	14.28% (Y- BOCS ↓≥25% from BL after 12 weeks)	Topiramate (range 100-200, mean dose: 137.5 mg/day), initial dose of 25 mg/day increased by 25 mg weekly to a maximum 200 mg/day	19.81% (↓Y- BOCS) after 12 weeks	53.84% (Y- BOCS ↓≥25% from BL to 12 weeks)
Sarris <i>et al.</i> [116]	2015	Department of Psychiatry, The Melbourne Clinic, The University of Melbourne, Melbourne, VIC, Australia	34 to: <i>N</i> =18 3g/day <i>N</i> AC or <i>N</i> =16 Placebo (Y-BOCS≥16)	16-wk, double- blind, placebo- controlled, randomised trial	Treatment effects: ↓Y- BOCS score from BL; response: Y- BOCS ↓≥35% after 16 weeks	19.5% (↓Y- BOCS);	27% (Y- BOCS ↓≥35% from BL)	NAC (1.5 g q 12 h)	21% (↓Y- BOCS)	20% (Y- BOCS ↓≥35% from BL)
Pittenger <i>et</i> <i>al.</i> [117]	2015	Departments of Psychiatry and Psychology, Yale Child Study Center, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA	40 DR OCD patients (SSRI/Clomi non- responders): 20 to riluzole, 18 to placebo	DB RCT of add- on riluzole (50 mg/day) vs. placebo × 12 wk	Effect: % ↓Y- BOCS score from BL; Partial response: Y- BOCS ↓≥25% from BL; Response: Y- BOCS ↓≥35% from BL	11% (↓Y- BOCS)	Partial or complete response: 11%	Add-on riluzole 50 mg/day after 2-week placebo lead-in phase	15% (↓Y- BOCS)	Partial or complete response: 26,3%
Jahanbakhsh et al. [118]	2016	Pharmaceutical Research Center, Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran	30 OCD patients currently treated with SSRI; 15 to <i>W. somnifera</i> , 15 to placebo	DB RCT of add- on <i>W. somnifera</i> extract 120 mg/day <i>vs.</i> placebo × 6 wk	Effect: % ↓Y- BOCS score from BL no criterion for response	11.1% (↓Y- BOCS)		W. somnifera extract 120 mg/day	46.2% (↓Y- BOCS)	
Paydary <i>et al.</i> [119]	2016	Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran	44 drug naïve OCD patients (Y- BOCS ≥21); 22 to NAC add-on, 22 to placebo add-on	Multicentre DB RCT of fluvoxamine 200 mg/day + NAC 2000 mg/day vs. fluvoxamine 200 mg/day + placebo × 10 wk	Effect: % ↓Y- BOCS score from BL Response: Y- BOCS ↓≥35% from BL Remission: Y- BOCS ≤ 16	30.3 (↓Y- BOCS)	Response: 22.7%	Fluvoxamine 100 mg/day for × first 4 weeks → 200 mg/day; + NAC 1000 mg/day × 1 st week → 2000 mg/day	39% (↓Y- BOCS)	Response: 54.5%


Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
Khalkhali et al. [120]	2016	Department of Psychiatry, Guilan University of Medical Sciences, Rasht, Iran	53 DR to: -N=26 Lamotrigine -N=27 placebo Y-BOCS≥21 with stable SRIs dosages × at least 3 months before the study	12-wk, double blind, placebo- controlled RCT of 100 mg/day add-on lamotrigine to SSRIs in DR OCD-patients	Treatment effects: ↓Y-BOCS score from BL; response: Y- BOCS ↓>25% from BL (at week 12)	17.7% (↓Y- BOCS);		Adjunctive lamotrigine - doses (fixed 100 mg/day) (25→100 mg/day during the first 4 weeks, increments of 25 mg/week)	32.5% (↓Y- BOCS);	
Rutrick <i>et al.</i> [121]	2016	Adams Clinical Trials, Watertown, MA, USA	50 DR to N=24 placebo or 7N=26 Mavoglurant (augmentation to SSRIs) (Y- BOCS≥16)	Multicentre, randomised, DB, add-on phase 2 study × 16 wk	Treatment effects: ↓Y- BOCS from BL; Response (Y- BOCS ↓≥25% from BL) at week 17	32.06% (↓Y- BOCS)	50% (Y- BOCS ↓≥25% from BL)	(4 week up- titration period → 12-weeks fixed-dose 200 mg Mavoglurant q 12 h → 3-weeks tapering-off	26.59% (↓Y-BOCS)	34.5% (Y- BOCS ↓≥25% from BL)
Feng <i>et al.</i> [122]	2016	Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China	360 OCD patients with Y-BOCS ≥ 16 randomised to GROUP A (N=120) GROUP B (N=120) or GROUP C (N=120)	SB RCT of TEAS with CBT + clomi (GROUP A) vs. TEAS with CBT + placebo (GROUP B) vs. sham TEAS with CBT + clomi (GROUP C) × 12 wk	Effect: %↓Y- BOCS score from BL, Response: Y- BOCS ↓≥35% from BL, Remission: CY- BOCS score ≤ 12	GROUP B: 45% (↓Y- BOCS) GROUP C: 38.2% (↓Y- BOCS)	GROUP B: Response: 82.5% Remission: 22.5% GROUP C: Response: 67.5% Remission: 9.2%	GROUP A: Transcutaneous electrical acupoint stimulation combined with CBT + clomi	GROUP A: 59.3% (↓Y- BOCS)	GROUP A: Response: 89.2% Remission: 29.2%
de Leeuw <i>et</i> <i>al.</i> [123]	2017	Altrecht Academic Anxiety Center, Utrecht, The Netherlands	39 patients with OCD randomised to D-cycloSer (<i>N</i> =19) or placebo (<i>N</i> =20) in add-on	DB RCT of Exposure and response prevention therapy (ERP) + D-cycloSer 125 mg/day vs. ERP + placebo × 8 wk	Effect: % ↓Y- BOCS score from BL. Partial response: Y-BOCS ↓≥25% from BL Response: Y-BOCS ↓≥30% from BL	17% (↓Y- BOCS)	Partial or complete response: 35%	Exposure and response prevention therapy (ERP) + D-cycloSer 125 mg/day	25.2% (↓Y- BOCS)	Partial or complete response: 90%
Asnaani <i>et al.</i> [124]	2017	Department of Psychiatry, Center for the Treatment and Study of Anxiety, University of Pennsylvania, Philadelphia, PA, USA	100 patients on SRI with Y-BOCS ≥ 16 randomised to risperidone (<i>N</i> =40), EX/PR (<i>N</i> =40) or placebo (<i>N</i> =20)	RCT comparing EX/RP therapy + SSRI, risperidone (0.25 mg/day \times 3 days, 0.5 mg/day \times 4 days, $\rightarrow \uparrow 0.5$ mg/wk to max4.0 mg/day +SSRI vs. pill placebo + SSRI \times 8 wk	Effect: ↑ QLESQ-SF score from BL; ↓SAS-SR and ↓SDS score from BL. No response criteria	11.6% (↑ QLESQ-SF); 5.5% (↓ SAS-SR); 19% (↓ SDS)		SSRI augmentation with either EX/RP therapy (17 twice-weekly, 90-min sessions) or risperidone (0.25 mg/d × 3 days, 0.5 mg/d × 4 days, → ↑0.5 mg/week to max 4.0 mg/day)	EX/RP therapy: 20.6% (↑ QLESQ- SF); 14.8% (↓ SDS) Risperidone: 5.7% (↑ QLESQ- SF) 4.5% (↓ SAS-SR) 20.6% (↓ SDS)	

Author(s)	Year	Affiliation/ Country	Population (N)	Design	Outcome Measures (Response Criteria)	Placebo Effect (%)	Placebo Responders (%)	Drug(s) or other Treatment than Placebo	Drug Effect (%)	Drug Responders (%)
Ahmadpanah et al.[125]	2017	Hamadan University of Medical Sciences (HUMS), Behavioral Disorders and Substance Abuse Research Center, Hamadan, Iran	43 DR OCD patients (not responding to SSRI or Clomi) to buprenorphine (<i>N</i> =23) or placebo (<i>N</i> =20)	DB RCT of DR patients with stabilised SSRI or clomi to add- on buprenorphine or placebo × 12 wk	Effect: % ↓Y- BOCS score from BL. Partial response: Y-BOCS ↓≥25% from BL Response: Y- BOCS ↓≥35% from BL	7% (↓Y- BOCS)	Partial or complete response: 25%	Buprenorphine tablets (2-4 g; sublingual) daily	17,5% (↓Y- BOCS)	Partial or complete response: 39%
Modarresi <i>et</i> <i>al</i> . [126]	2017	Research Center for Rational Use of Drugs, Tehran University of Medical Sciences, Tehran, Iran	32 DR OCD patients (failing at least 3 adequate trials of antidepressant, including clomi) and Y-BOCS \geq 24 randomised to memantine (<i>N</i> =16) or placebo (<i>N</i> =16)	DB RCT of add- on memantine 20 mg/day vs. placebo × 12 wk	Effect: % ↓Y- BOCS score from BL; Response: Y- BOCS ↓≥35% from BL	-0.2% (↓Y- BOCS)	Response: 0%	Add-on memantine 20 mg/day	31% (↓Y- BOCS)	Response: 73.3%
Costa <i>et al.</i> [127]	2017	Department & Institute of Psychiatry, University of São Paulo Medical School, São Paulo-SP, Brazil	40 DR OCD patients (not responding to SSRI or clomi) randomised to NAC (N=18) or placebo (N=22)	DB RCT of add- on NAC (up to 3000 mg/day) vs. placebo × 16 wk	Effect: % ↓Y- BOCS score from BL Response: Y- BOCS ↓≥25% from BL	12.1% (↓Y- BOCS)	Response: 26.3%	Add-on NAC, 1,200 mg/day for the first week, 2,400 mg in the second week, 3,000 mg/day from the third week on	16.8% (↓Y- BOCS)	Response: 37.5%
Arabzadeh <i>et</i> <i>al.</i> [128]	2017	Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran	44 drug naïve OCD patients (Y-BOCS ≥21) randomised to L-carnosine (<i>N</i> =22) or placebo (<i>N</i> =22)	DB RCT of fluvoxamine 100 - 200 mg/day + L-carnosine 1000 mg/day vs. fluvoxamine 100 - 200 mg/day + placebo × 10 wk	Effect: % ↓Y- BOCS score from BL Partial response: Y-BOCS ↓≥25% from BL; Response: Y- BOCS ↓≥35% from BL Remission: Y- BOCS ≤ 14	24.3 (↓Y- BOCS)	Partial: 45.5%; Complete: 9.1%; Remission: 9.1%	Fluvoxamine 100 mg/day × 4 wk→200 mg/day × 6 wk + L-carnosine 1000 mg/day	35.3 (↓Y- BOCS)	Partial: 45.5% Complete: 36.4% Remission: 27.3%

Abbreviations used: BDI=Beck Depression Inventory; BDZs=benzodiazepines; BL=baseline; BT= Behaviour Therapy; CBT=Cognitive-Behavioural Therapy; CGI=Clinical Global Impressions scale-i=improvement, s=severity; clomi=clomipramine; clonz=clonazepam; CCMD-2=Chinese Criteria of Mental Disorders, 2nd edition; CPRS=Comprehensive Psychopathological Rating Scale; Karolinska institutet; DB=double-blind; DLPFC=dorsolateral prefrontal cortex; DR=drug-resistant/treatment-resistant; D-cycloSer=D-cycloSerine; EPA=eicosapentaenoic acid; ERP=exposure and ritual (response) prevention; GAF=Global Assessment of Functioning; GVC=gamma ventral capsulotomy; halo=haloperidol; Ham D=Hamilton Depression Rating Scale; MOCI=Maudsley Obsessional Compulsive Inventory; MT=motor threshold; NAC=N-Acetylcysteine; NIMH= National Institute of Mental Health Global Obsessive-Compulsive Scale; OCS= Obsessive Compulsive Scale; PGI=Patient's Global Impressions; RegSert=Standard sertraline dose; SloSert=slowly titrated sertraline; SROC=Self-Rating Obsessive-Compulsive Personality Inventory; SRON=Self-Rating Obsessional Neurotic Scale; wk=weeks; Y-BOCS=Yale-Brown Obsessive-Compulsive Scale; YGTSS, Yale Global Tick Severity Scale; ZnSO₄=zinc sulfate; ↑=increase; ↓=reduction; *Patients were not DSM-IV OCD at inclusion, because they had responded to previous trial; hence, actual baseline was factitious and the differences observed were modest for all groups, meaning that treatment continued to work.

which met criteria for inclusion. The results of the included studies [13-15, 17, 18, 20-24, 28-128] are summarised in Table 1.

Joinpoint regression analyses of the period 1979-2017 showed that placebo mean annual effect rates in OCD studies significantly increased (APC value significantly differing from zero to $\alpha = 0.05$ level) from 1991 to 2017 with an APC of 0.66% (p=0.04) following a period without statistically significant APC changes (Fig. 2). Placebo mean annual responder rates also significantly increased from 2010 to 2017 with an APC of 5.45% (p=0.02) following a period without statistically significant APC changes (Fig. 3). Drug mean annual effect rates in OCD studies significantly increased from 1987 to 2012 with an APC of 0.72% (p=0.04) between two periods without statistically significant APC changes (Fig. 4). Drug mean annual responder rates did not

Multiple Joinpoint Models

Fig. (2). Multiple Join-Point model of the time (year of publication) trend of placebo effect in OCD double-blind trials.

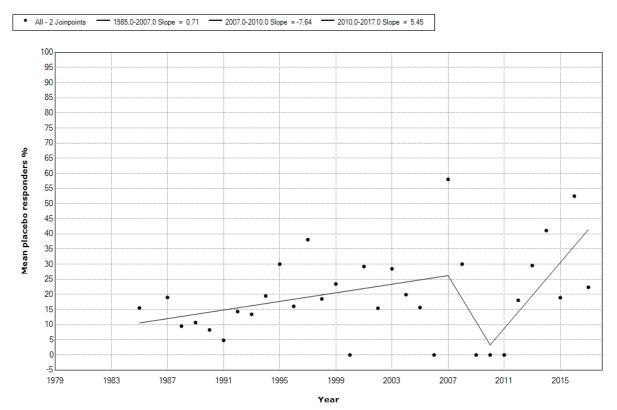
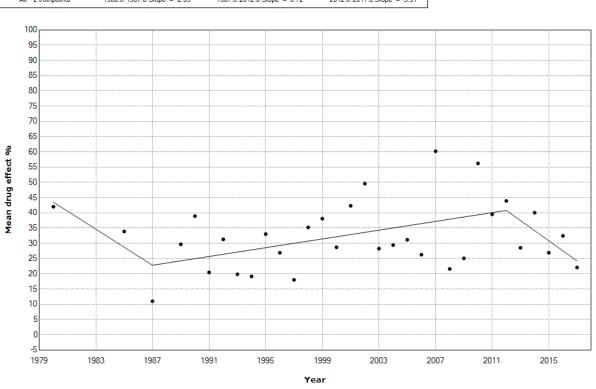



Fig. (3). Multiple Join-Point model of the time (year of publication) trend of placebo responder rates in OCD double-blind trials.

Fig. (4). Multiple Join-Point model of the time (year of publication) trend of drug effect in OCD double-blind trials.

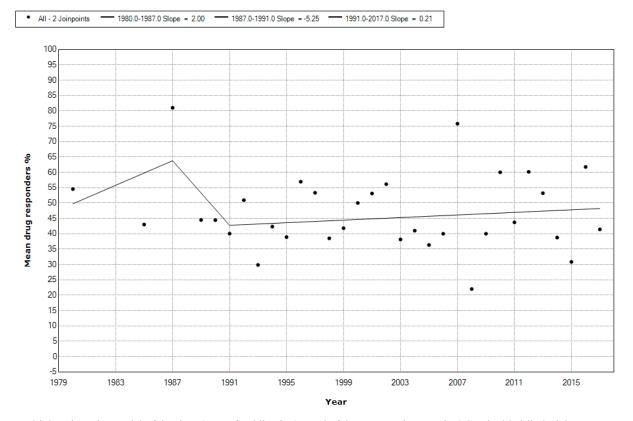


Fig. (5). Multiple Join-Point model of the time (year of publication) trend of drug responder rates in OCD double-blind trials.

Multiple Joinpoint Models

• All - 2 Joinpoints - 1980.0-1987.0 Slope = -2.95 - 1987.0-2012.0 Slope = 0.72 - 2012.0-2017.0 Slope = -3.31

show statistically significant APC changes between 1984 and 2017 (Fig. 5).

4. DISCUSSION

In this study, using Joinpoint regression analyses, we found significant increases in the net effect of placebo from 1991 to 2017 and in placebo responder rates from 2010 to 2017. The effects of drug treatment of OCD increased from 1987 to 2012, between two periods of no significant changes (1979-1987 and 2012-2017), while responder rates to drug treatment showed no statistically significant annual changes between 1984 and 2017. We confirmed the finding of a trend towards an increase of placebo effects in OCD drug treatment studies, previously reported by Ackerman and Greenland for the decade 1989 to 1999 in their 2002 metaregression [8]. Surprisingly, we did not find drugs to increase their effect of responder rates in parallel with placebo. In fact, the increasing placebo effect that was found for other psychiatric (e.g., schizophrenia [129] and depression [130]) and non-psychiatric disorders (e.g., hypertension [131]), and placebo efficacy dragged drug efficacy to higher levels [130]. Here we found a trend towards increased placebo effects and responder rate, with a decrease in the difference between drug and placebo, to the point that the most recent response rates (effects) between placebo and drugs nearly overlap (Figs. 2 and 4), while responder rates differ little (Figs. 3 and 5); something similar has been described for schizophrenia [132], but not for depression [130]. Furthermore, we also found that effect/responder rates for OCD to both placebo and drugs are low compared to other psychiatric disorders, as recently reported using effect sizes as outcome measures [133]. Why OCD should be stiffer than other psychiatric disorders in responding to treatment may have a response to the pathophysiology of the disorder and to its related personality characteristics. That you can't teach an old dog new tricks may well apply to this disorder. A therapeutic response may be hampered by too often controlling one's health state, that prevents a patient from establishing an adequate clinical progress, and people with OCD often display pathological doubt, that prompts them to control for any change all too often and then to doubt for results.

It is not easy to explain the increase with time of placebo effects and responder rates we found here. One explanation that has been offered for similar results in depression is the "baseline inflation" [134], *i.e.*, the tendency to inflate baseline scores of the scale chosen for subject inclusion in a randomised clinical trial (RCT) so to ensure more participants to the sponsor. This, combined with patient expectation and the Hawthorne-like effect of being closely observed, yields better results for drug and placebo alike. However, there has been no increase in baseline Y-BOCS scores of included samples.

Other possible explanations may involve historical factors. In fact, most early studies involved testing the efficacy of clomipramine and SSRIs in patients with OCD, or were survival studies focusing on Kaplan-Meyer curves after switching patients with a benefit on an antidepressant agent to placebo, measuring recurrence/relapse rates. In contrast, later studies increasingly focused on treatmentresistant populations and add-on drugs *vs.* placebo. It is highly probable that such populations are more resistant to the effects of both drugs and placebo. However, this should have been followed by a decrease in overall responsiveness, which we did not find; on the contrary, both effect and responder rates increased in later years, more so regarding placebo (Figs. **2-5**).

Another issue may regard the principal sites involved in the various studies. In antipsychotic drug trials, the increase in placebo response has been observed for North Americabased studies, but not for those conducted in the rest of the world or for international studies including US sites [135], and the same phenomenon has been observed for painkiller trials, with sample size and study duration driving the placebo response increase [136]. Sample size in US studies correlated weakly with placebo response in our study (Pearson's r=0.21). However, treatment duration did correlate strongly (Pearson's r=0.54). Here we observed a curious phenomenon, i.e., that in studies 1980-2008, USbased studies prevailed over the rest of the world (N=52 vs. N=24), whereas in studies conducted from 2009 on, the rest of the world studies reversed the ratio (N=13, USA vs. N=24, rest of the world). The reversal was driven by Iran (N=17), a country that was not present during the 1980-2009 period. In Iranian studies, the correlation between sample size was much weaker than in US-based studies (r=0.093), perhaps a consequence of the fact that sample sizes in these studies were about 20 each with a much lower standard deviation than in US studies (Table 1). In contrast with US studies, there was a strong *negative* correlation between treatment duration and response to placebo (r=-0.471). Despite the entity of placebo effect did not differ between US-based and Iran-based studies (Student's t=1.145; p=0.256, not significant), we feel that the recent upsurge of placebo responder rates and the constant increase of placebo response are linked to the results of Iranian studies. The samples in American studies varied widely, as did the number of sites, while the Iranian studies recruited middle samples and tended to be single-center (Table 1). It has been suggested in antidepressant trials for major depression that two factors that may be linked to reduced ability to detect a signal for an antidepressant are constituted by extremely large and extremely small samples and by multicentricity [137]; a reduced signal is usually linked to increasing placebo response that dampens the drug-placebo difference.

A possibility with longer-term treatment to associate with placebo response could reside in the exacerbating-remitting course that often characterizes OCD [138], especially in paediatric cases [139]. If the interpretation of the placebo effect as a regression to the mean holds true [140], it would ensure that by treating people for more time, there will be an increased probability of spontaneous remission of the disorder, that would be subsequently attributed to placebo. This matches the results of American studies, but is opposite to what Iranian studies tell us.

Still another possibility is a change in the characteristics of included patients. It has been speculated that RCTs tend to include patients repeatedly the same persons who participated in prior antidepressant trials, and this is usually addressed with excluding patients having participated recently in another RCT or having received psychotherapy in recent times. In fact, it was shown that patients with low income may be eager to participate in more than one antidepressant drug trial [141]. These patients would be expected to display a rather uniform behaviour in responding to treatment, thus favouring placebo response and their data tend to be increasingly included in databases, thus affecting results. In OCD, we do not have data at this regard, but the recent change in the classification of OCD spectrum disorders in the DSM-5 [142], which were previously classified amidst the anxiety disorders and included hoarding disorder [143], may have impacted the response of OCD to placebo. However, in this case, we should have expected a join point to occur about 2013, the year of introduction of DSM-5 [142]. In placebo effect, there was no such join point. Placebo effect showed a continuous growth from 1991 onwards, while placebo responder rate had a joinpoint at 2010, when the shift from DSM-IV-TR[™] had still to occur. It should be said that DSM-IV-TR[™] diagnoses in drug trials continued to be adopted along with DSM-5 diagnoses for some time. At any rate, it appears that in OCD, as in other mental and non-mental disorders, placebo effect and responder rates are puzzlingly increasing and appear to be out of control, and this depends on multiple factors [137, 144], pointing to changing populations included in RCTs (independently from initial severity) and prompting to a revision of the RCT model. Given that this trend is not specifically bound to a single condition, it is possible that it reflects continuing human evolution.

4.1. Limitations and Strengths

Our study is not a meta-analysis and the overall placebo effect and placebo-responder rates are not weighted for sample size. Furthermore, we did not include studies not using drugs, *i.e.*, somatic treatments vs. sham, and did not distinguish between adult and paediatric studies. Moreover, we did not select our studies based on their quality nor did we address possible sponsor bias. However, our study is the first considering such a wide time period and the first to consider both net placebo effects and responder rates based on clear-cut criteria. Future studies will have to address the above concerns. It has been suggested that mechanical devices [145] and surgery [146] are endowed with a superior placebo effect than drugs, although the evidence is still inconclusive [147], and placebo, despite displaying large effects in depression, was not superior in non-pharmacological than in pharmacological studies in a meta-analysis [148]. Comparison between drug and somatic treatment of OCD will show whether in this disorder there is a strong mechanical device component in placebo response and whether there is an increase of response with the year of publication with these treatments similar to what occurs with drugs.

The fact that the curves of effect and responder rates did not reciprocally correspond for both placebo and drugs may be explained by the fact that some studies did not report one of them (Table 1). Investigators need to report their data more clearly in the future, so to allow other investigators to perform meta-analyses on their data.

The current situation with OCD treatment is that this disorder is either treated with drugs having the ability to block the reuptake of serotonin or with cognitive-behavioral therapy or both, or with attempts to add-on ongoing pharmacotherapy other pharmacological agents having antidopaminergic or antiglutamatergic properties or somatic treatments like deep brain stimulation or transcranial magnetic stimulation. The first studies focused on the efficacy of drugs used classical designs and were carried-out by prestigious institutions. Once the concept that first line treatments were represented by SSRIs/clomipramine, the treatment paradigms shifted towards add-on and somatic treatments, and this may have affected the figures we obtained. The closing gap between placebo and drug treatment must prompt investigators to formulate new hypotheses to test and industries to produce alternatively working drugs.

CONCLUSION

In this Joinpoint regression analysis, we observed an increase of the response to placebo (placebo effect) as well as an increase in responder rates in OCD studies with the year of publication. Changes in study types and sites are apparently related to the results obtained. The gap between response to drug and response to placebo appears to be reducing to an extent that current therapeutic approaches to OCD are becoming questionable and should prompt to seek newer approaches in facing this stubborn disorder.

CONSENT FOR PUBLICATION

Not applicable.

FUNDING

This work has not been supported by any funding. All authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in, or financial conflict with the subject matter or materials discussed in the manuscript.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

We gratefully acknowledge the contribution of the Librarians of the School of Medicine and Psychology of Sapienza University, Ms. Mimma Ariano, Ms. Felicia Proietti, Ms. Ales Casciaro, Ms. Teresa Prioreschi, and Ms. Susanna Rospo for rendering precious bibliographical material accessible, as well as our Secretary Lucilla Martinelli for her assistance during the writing of this manuscript.

REFERENCES

- Mavissakalian, M.R.; Jones, B.; Olson, S. Absence of placebo response in obsessive-compulsive disorder. *J. Nerv. Ment. Dis.*, **1990**, *178*(4), 268-270. [http://dx.doi.org/10.1097/00005053-199004000-00010] [PMID: 2319236]
- [2] Goodman, W.K.; Price, L.H.; Rasmussen, S.A.; Mazure, C.; Fleischmann, R.L.; Hill, C.L.; Heninger, G.R.; Charney, D.S. The

Yale-Brown Obsessive Compulsive Scale. I. Development, use, and reliability. *Arch. Gen. Psychiatry*, **1989**, *46*(11), 1006-1011. [http://dx.doi.org/10.1001/archpsyc.1989.01810110048007] [PMID: 2684084]

- [3] Goodman, W.K.; Price, L.H.; Rasmussen, S.A.; Mazure, C.; Delgado, P.; Heninger, G.R.; Charney, D.S. The yale-brown obsessive compulsive scale. II. Validity. Arch. Gen. Psychiatry, 1989, 46(11), 1012-1016. [http://dx.doi.org/10.1001/archpsyc.1989.01810110054008]
 [PMID: 2510699]
- [4] Guy, W. ECDEU Assessment Manual of Psychopharmacology Revised (DHEW Publ No ADM 76-338). Rockville, MD, U.S; Department of health, education, and welfare, public health service, alcohol, drug abuse, and mental health administration, NIMH psychopharmacology research branch, division of extramural research programs, 1976, pp. 218-222.
- [5] Walsh, B.T.; Seidman, S.N.; Sysko, R.; Gould, M. Placebo response in studies of major depression: variable, substantial, and growing. *JAMA*, **2002**, *287*(14), 1840-1847.
 [http://dx.doi.org/10.1001/jama.287.14.1840] [PMID: 11939870]
- Sysko, R.; Walsh, B.T. A systematic review of placebo response in studies of bipolar mania. J. Clin. Psychiatry, 2007, 68(8), 1213-1217. [http://dx.doi.org/10.4088/JCP.v68n0807] [PMID: 17854245]
- [7] Vieta, E.; Cruz, N. Increasing rates of placebo response over time in mania studies. J. Clin. Psychiatry, 2008, 69(4), 681-682. [http://dx.doi.org/10.4088/JCP.v69n0423g] [PMID: 18507494]
- [8] Ackerman, D.L.; Greenland, S. Multivariate meta-analysis of controlled drug studies for obsessive-compulsive disorder. J. Clin. Psychopharmacol., 2002, 22(3), 309-317. [http://dx.doi.org/10.1097/00004714-200206000-00012] [PMID: 12006902]
- [9] Fineberg, N.A.; Hawley, C.J.; Gale, T.M. Are placebo-controlled trials still important for obsessive compulsive disorder? *Prog. Neuropsychopharmacol. Biol. Psychiatry*, 2006, 30(3), 413-422. [http://dx.doi.org/10.1016/j.pnpbp.2005.11.012] [PMID: 16413647]
- [10] Kirsch, I.; Sapirstein, G. Listening to Prozac but hearing placebo: A meta-analysis of antidepressant medication. *How Expectancies Shape Behavior*; Kirsch, I., Ed.; American Psychological Association: Washington, DC, **1999**, pp. 303-320. [http://dx.doi.org/10.1037/10332-012]
- [11] Kobak, K.A.; Greist, J.H.; Jefferson, J.W.; Katzelnick, D.J.; Henk, H.J. Behavioral versus pharmacological treatments of obsessive compulsive disorder: a meta-analysis. *Psychopharmacology (Berl.)*, 1998, 136(3), 205-216. [http://dx.doi.org/10.1007/s002130050558]
 [PMID: 9566805]
- [12] Montgomery, S.A. Clomipramine in obsessional neurosis: a placebo controlled trial. *Pharm. Med.*, **1980**, *1*, 189-192.
- Thorén, P.; Åsberg, M.; Cronholm, B.; Jörnestedt, L.; Träskman, L.
 Clomipramine treatment of obsessive-compulsive disorder. I. A controlled clinical trial. *Arch. Gen. Psychiatry*, **1980**, *37*(11), 1281-1285. [http://dx.doi.org/10.1001/archpsyc.1980.01780240079009]
 [PMID: 7436690]
- [14] Mavissakalian, M.; Turner, S.M.; Michelson, L.; Jacob, R. Tricyclic antidepressants in obsessive-compulsive disorder: antiobsessional or antidepressant agents? II. Am. J. Psychiatry, 1985, 142(5), 572-576. [http://dx.doi.org/10.1176/ajp.142.5.572] [PMID: 3885761]
- Foa, E.B.; Steketee, G.; Kozak, M.J.; Dugger, D. Effects of imipramine on depression and obsessive-compulsive symptoms. *Psychiatry Res.*, **1987**, 21(2), 123-136. [http://dx.doi.org/10.1016/0165-1781(87)90070-9] [PMID: 3615688]
- [16] Foa, E.B.; Steketee, G.; Kozak, M.J.; Dugger, D. Imipramine and placebo in the treatment of obsessive-compulsives: their effect on depression and on obsessional symptoms. *Psychopharmacol. Bull.*, **1987**, 23(1), 8-11. [PMID: 3602334]
- Perse, T.L.; Greist, J.H.; Jefferson, J.W.; Rosenfeld, R.; Dar, R. Fluvoxamine treatment of obsessive-compulsive disorder. *Am. J. Psychiatry*, **1987**, *144*(12), 1543-1548.
 [http://dx.doi.org/10.1176/ajp.144.12.1543] [PMID: 3120604]
- [18] Goodman, W.K.; Price, L.H.; Rasmussen, S.A.; Delgado, P.L.; Heninger, G.R.; Charney, D.S. Efficacy of fluvoxamine in obsessive-compulsive disorder. A double-blind comparison with

placebo. Arch. Gen. Psychiatry, **1989**, 46(1), 36-44. [http://dx.doi.org/10.1001/archpsyc.1989.01810010038006] [PMID: 2491940]

- [19] Jenike, M.A.; Baer, L.; Summergrad, P.; Minichiello, W.E.; Holland, A.; Seymour, R. Sertraline in obsessive-compulsive disorder: a double-blind comparison with placebo., **1990**, *147*, 923-928; erratum, Jenike and Baer, *147*, 1393.
- [20] Chouinard, G. Sertraline in the treatment of obsessive compulsive disorder: two double-blind, placebo-controlled studies. *Int. Clin. Psychopharmacol.*, 1992, 7(Suppl. 2), 37-41. [http://dx.doi.org/10.1097/00004850-199210002-00007] [PMID: 1484177]
- [21] Riddle, M.A.; Scahill, L.; King, R.A.; Hardin, M.T.; Anderson, G.M.; Ort, S.I.; Smith, J.C.; Leckman, J.F.; Cohen, D.J. Doubleblind, crossover trial of fluoxetine and placebo in children and adolescents with obsessive-compulsive disorder. J. Am. Acad. Child Adolesc. Psychiatry, 1992, 31(6), 1062-1069. [http://dx.doi.org/10.1097/00004583-199211000-00011] [PMID: 1429406]
- Montgomery, S.A.; McIntyre, A.; Osterheider, M.; Sarteschi, P.; Zitterl, W.; Zohar, J.; Birkett, M.; Wood, A.J. A double-blind, placebo-controlled study of fluoxetine in patients with DSM-III-R obsessive-compulsive disorder. *Eur. Neuropsychopharmacol.*, **1993**, 3(2), 143-152. [http://dx.doi.org/10.1016/0924-977X(93)90266-O] [PMID: 8364350]
- [23] Tollefson, G.D.; Rampey, A.H., Jr; Potvin, J.H.; Jenike, M.A.; Rush, A.J.; Dominguez, R.A.; Koran, L.M.; Shear, M.K.; Goodman, W.; Genduso, L.A. A multicenter investigation of fixeddose fluoxetine in the treatment of obsessive-compulsive disorder *Arch. Gen. Psychiatry*, **1994**, *51*, 559-567. erratum 51, 864
- [24] Tollefson, G.D.; Birkett, M.; Koran, L.; Genduso, L. Continuation treatment of OCD: double-blind and open-label experience with fluoxetine. J. Clin. Psychiatry, 1994, 55(Suppl.), 69-76. [PMID: 7961535]
- [25] Turner, S.M.; Jacob, R.G.; Beidel, D.C.; Himmelhoch, J. Fluoxetine treatment of obsessive-compulsive disorder. J. Clin. Psychopharmacol., 1985, 5(4), 207-212.
 [http://dx.doi.org/10.1097/00004714-198508000-00003] [PMID: 3894437]
- [26] Pfeffer, C.R.; Klerman, G.L.; Hurt, S.W.; Lesser, M.; Peskin, J.R.; Siefker, C.A. Suicidal children grow up: demographic and clinical risk factors for adolescent suicide attempts. J. Am. Acad. Child Adolesc. Psychiatry, 1991, 30(4), 609-616.
 [http://dx.doi.org/10.1097/00004583-199107000-00013] [PMID: 1890095]
- [27] Flament, M.F.; Rapoport, J.L.; Berg, C.J.; Sceery, W.; Kilts, C.; Mellström, B.; Linnoila, M. Clomipramine treatment of childhood obsessive-compulsive disorder. A double-blind controlled study. *Arch. Gen. Psychiatry*, **1985**, 42(10), 977-983.
 [http://dx.doi.org/10.1001/archpsyc.1985.01790330057007]
 [PMID: 3899048]
- [28] Pato, M.T.; Zohar-Kadouch, R.; Zohar, J.; Murphy, D.L. Return of symptoms after discontinuation of clomipramine in patients with obsessive-compulsive disorder. *Am. J. Psychiatry*, **1988**, *145*(12), 1521-1525. [http://dx.doi.org/10.1176/ajp.145.12.1521] [PMID: 3057923]
- [29] Jenike, M.A.; Baer, L.; Summergrad, P.; Weilburg, J.B.; Holland, A.; Seymour, R. Obsessive-compulsive disorder: a double-blind, placebo-controlled trial of clomipramine in 27 patients. *Am. J. Psychiatry*, **1989**, *146*(10), 1328-1330. [http://dx.doi.org/10.1176/ajp.146.10.1328] [PMID: 2675643]
- [30] Greist, J.H.; Jefferson, J.W.; Rosenfeld, R.; Gutzmann, L.D.; March, J.S.; Barklage, N.E. Clomipramine and obsessive compulsive disorder: a placebo-controlled double-blind study of 32 patients. J. Clin. Psychiatry, 1990, 51(7), 292-297. [PMID: 2195006]
- [31] Jenike, M.A.; Hyman, S.; Baer, L.; Holland, A.; Minichiello, W.E.; Buttolph, L.; Summergrad, P.; Seymour, R.; Ricciardi, J. A controlled trial of fluvoxamine in obsessive-compulsive disorder: implications for a serotonergic theory. *Am. J. Psychiatry*, **1990**, *147*(9), 1209-1215. [http://dx.doi.org/10.1176/ajp.147.9.1209] [PMID: 2143637]
- [32] Katz, R.J.; DeVeaugh-Geiss, J.; Landau, P. Clomipramine in obsessive-compulsive disorder. *Biol. Psychiatry*, **1990**, *28*(5), 401-

414. [http://dx.doi.org/10.1016/0006-3223(90)90408-T] [PMID: 2207219]

- [33] Mavissakalian, M.R.; Jones, B.; Olson, S.; Perel, J.M. Clomipramine in obsessive-compulsive disorder: clinical response and plasma levels. J. Clin. Psychopharmacol., 1990, 10(4), 261-268. [http://dx.doi.org/10.1097/00004714-199008000-00005] [PMID: 2286699]
- [34] Montgomery, S.A.; Montgomery, D.B.; Fineberg, N. Early response with clomipramine in obsessive compulsive disorder--a placebo controlled study. *Prog. Neuropsychopharmacol. Biol. Psychiatry*, **1990**, *14*(5), 719-727. [http://dx.doi.org/10.1016/0278-5846(90)90042-F] [PMID: 2293252]
- [35] McDougle, C.J.; Price, L.H.; Goodman, W.K.; Charney, D.S.; Heninger, G.R. A controlled trial of lithium augmentation in fluvoxamine-refractory obsessive-compulsive disorder: lack of efficacy. J. Clin. Psychopharmacol., 1991, 11(3), 175-184. [http://dx.doi.org/10.1097/00004714-199106000-00005] [PMID: 1820757]
- [36] Clomipramine in the treatment of patients with obsessive-compulsive disorder. Arch. Gen. Psychiatry, 1991, 48(8), 730-738. [http://dx.doi.org/10.1001/archpsyc.1991.01810320054008]
 [PMID: 1883256]
- [37] DeVeaugh-Geiss, J.; Moroz, G.; Biederman, J.; Cantwell, D.; Fontaine, R.; Greist, J.H.; Reichler, R.; Katz, R.; Landau, P. Clomipramine hydrochloride in childhood and adolescent obsessive-compulsive disorder--a multicenter trial. J. Am. Acad. Child Adolesc. Psychiatry, 1992, 31(1), 45-49. [http://dx.doi.org/10.1097/00004583-199201000-00008] [PMID: 1537780]
- [38] Mallya, G.K.; White, K.; Waternaux, C.; Quay, S. Short- and longterm treatment with obsessive-compulsive disorder with fluvoxamine. *Ann. Clin. Psychiatry*, **1992**, *4*, 77-80. [http://dx.doi.org/10.3109/10401239209150443]
- [39] Pigott, T.A.; L'Heureux, F.; Rubenstein, C.S.; Bernstein, S.E.; Hill, J.L.; Murphy, D.L. A double-blind, placebo controlled study of trazodone in patients with obsessive-compulsive disorder. J. Clin. Psychopharmacol., 1992, 12(3), 156-162. [http://dx.doi.org/10.1097/00004714-199206000-00002] [PMID: 1629380]
- [40] Stein, D.J.; Hollander, E.; Mullen, L.S. Comparison of clomipramine, alprazolam and placebo in the treatment of obsessive compulsive disorder. *Hum. Psychopharmacol.*, 1992, 7, 389-395. [http://dx.doi.org/10.1002/hup.470070604]
- [41] Grady, T.A.; Pigott, T.A.; L'Heureux, F.; Hill, J.L.; Bernstein, S.E.; Murphy, D.L. Double-blind study of adjuvant buspirone for fluoxetine-treated patients with obsessive-compulsive disorder. Am. J. Psychiatry, 1993, 150(5), 819-821. [http://dx.doi.org/10.1176/ajp.150.5.819] [PMID: 8480832]
- [42] Hoehn-Saric, R.; McLeod, D.R.; Zimmerli, W.D.; Hipsley, P.A. Symptoms and physiologic manifestations in obsessive compulsive patients before and after treatment with clomipramine. J. Clin. Psychiatry, 1993, 54(7), 272-276. [PMID: 8335655]
- [43] McDougle, C.J.; Goodman, W.K.; Leckman, J.F.; Holzer, J.C.; Barr, L.C.; McCance-Katz, E.; Heninger, G.R.; Price, L.H. Limited therapeutic effect of addition of buspirone in fluvoxaminerefractory obsessive-compulsive disorder. *Am. J. Psychiatry*, **1993**, *150*(4), 647-649. [http://dx.doi.org/10.1176/ajp.150.4.647] [PMID: 8465885]
- [44] McDougle, C.J.; Goodman, W.K.; Leckman, J.F.; Lee, N.C.; Heninger, G.R.; Price, L.H. Haloperidol addition in fluvoxaminerefractory obsessive-compulsive disorder. A double-blind, placebocontrolled study in patients with and without tics. *Arch. Gen. Psychiatry*, **1994**, *51*(4), 302-308. [http://dx.doi.org/10.1001/archpsyc.1994.03950040046006]
 [PMID: 8161290]
- [45] Greist, J.; Chouinard, G.; DuBoff, E.; Halaris, A.; Kim, S.W.; Koran, L.; Liebowitz, M.; Lydiard, R.B.; Rasmussen, S.; White, K.; Sikes, C. Double-blind parallel comparison of three dosages of sertraline and placebo in outpatients with obsessive-compulsive disorder. *Arch. Gen. Psychiatry*, **1995**, *52*(4), 289-295. [http://dx.doi.org/10.1001/archpsyc.1995.03950160039008] [PMID: 7702445]
- [46] Fux, M.; Levine, J.; Aviv, A.; Belmaker, R.H. Inositol treatment of obsessive-compulsive disorder. Am. J. Psychiatry, 1996, 153(9),

1219-1221. [http://dx.doi.org/10.1176/ajp.153.9.1219] [PMID: 8780431]

- [47] Goodman, W.K.; Kozak, M.J.; Liebowitz, M.; White, K.L. Treatment of obsessive-compulsive disorder with fluvoxamine: a multicentre, double-blind, placebo-controlled trial. *Int. Clin. Psychopharmacol.*, **1996**, *11*(1), 21-29. [http://dx.doi.org/10.1097/00004850-199603000-00003] [PMID: 8732310]
- [48] Nakajima, T.; Kudo, Y.; Yamashita, I.; Asai, M.; Kamijima, K.; Murasaki, M.; Yamaguchi, N.; Saito, M.; Yamawaki, S.; Nishizono, M.; Hishikawa, Y.; Machiyama, Y.; Yamauchi, T.; Moriya, N.; Toru, M.; Hirose, T.; Kojima, T.; Shimizu, M.; Tamura, A.; Endo, S.; Suzuki, J.; Takemasa, K.; Uno, M.; Hasegawa, K.; Kariya, T. Clinical usefulness of Fluvoxamine Maleate (SME3110), a selective serotonin reuptake inhibitor, in the treatment of obsessive compulsive disorder: A double blind, placebo-controlled study investigating the therapeutic dose range and the efficacy of SME3110. J. Clin. Therap. Med., 1996, 12(3), 409-437. [Rinshou Iyaku].
- [49] Zohar, J.; Judge, R. Paroxetine versus clomipramine in the treatment of obsessive-compulsive disorder. *Br. J. Psychiatry*, 1996, 169(4), 468-474. [http://dx.doi.org/10.1192/bjp.169.4.468]
 [PMID: 8894198]
- [50] Jenike, M.A.; Baer, L.; Minichiello, W.E.; Rauch, S.L.; Buttolph, M.L. Placebo-controlled trial of fluoxetine and phenelzine for obsessive-compulsive disorder. *Am. J. Psychiatry*, **1997**, *154*(9), 1261-1264. [http://dx.doi.org/10.1176/ajp.154.9.1261] [PMID: 9286186]
- [51] Lindsay, M.; Crino, R.; Andrews, G. Controlled trial of exposure and response prevention in obsessive-compulsive disorder. *Br. J. Psychiatry*, **1997**, *171*, 135-139.
 [http://dx.doi.org/10.1192/bjp.171.2.135] [PMID: 9337948]
- [52] Ushijima, S.; Kamijima, K.; Asai, M.; Murasaki, M.; Nakajima, T.; Kudo, Y.; Tashiro, N.; Kurihara, M.; Miura, S. Clinical evaluation of sertraline hydrochloride, a selective serotonin reuptake inhibitor in the treatment of obsessive- compulsive disorder: A double blind placebo controlled trial. Jpn. J. Neuropsychopharmacol., (Nihon Shinkei Seishin Yakurigaku Zasshi or Nihon Shinkei Seishin Yakuri Gakkai), 1997, 19(6), 603-623.
- [53] Fallon, B.A.; Liebowitz, M.R.; Campeas, R.; Schneier, F.R.; Marshall, R.; Davies, S.; Goetz, D.; Klein, D.F. Intravenous clomipramine for obsessive-compulsive disorder refractory to oral clomipramine: a placebo-controlled study. *Arch. Gen. Psychiatry*, 1998, 55(10), 918-924. [http://dx.doi.org/10.1001/archpsyc.55.10.918] [PMID: 9783563]
- [54] Li, J.; Xiang, H.; Du, H. Clinical controlled study of paroxetine and clomipramine in treatment of obsessive- compulsive disorder. Zhonghua jing shen ke za zhi (Chinese Journal of Psychiatry), 1998, 31, 215-217 (李建勋,向虎,杜海英. 帕罗西汀 与氯丙咪嗪治疗强迫症的临床对照研究. 中华精神科杂志. 编辑部邮箱 1998年 04期31, 215-217. (1998, (4), 23-25)). (erroneously referred to as: Jianxun L, Hu X, Haiying D. Clinical controlled study of paroxetine and clomipramine in treatment of obsessive- compulsive disorder. *Chinese J. Psychiatry*, 1998, 31, 215-217. [Chinese].
- [55] March, J.S.; Biederman, J.; Wolkow, R.; Safferman, A.; Mardekian, J.; Cook, E.H.; Cutler, N.R.; Dominguez, R.; Ferguson, J.; Muller, B.; Riesenberg, R.; Rosenthal, M.; Sallee, F.R.; Wagner, K.D.; Steiner, H. Sertraline in children and adolescents with obsessive-compulsive disorder: a multicenter randomized controlled trial J.A.M.A, 1998, 280(), 1752-1756. erratum 283, 1293
- [56] Kronig, M.H.; Apter, J.; Asnis, G.; Bystritsky, A.; Curtis, G.; Ferguson, J.; Landbloom, R.; Munjack, D.; Riesenberg, R.; Robinson, D.; Roy-Byrne, P.; Phillips, K.; Du Pont, I.J. Placebocontrolled, multicenter study of sertraline treatment for obsessivecompulsive disorder. J. Clin. Psychopharmacol., 1999, 19(2), 172-176. [http://dx.doi.org/10.1097/00004714-199904000-00013] [PMID: 10211919]
- [57] Dannon, P.N.; Sasson, Y.; Hirschmann, S.; Iancu, I.; Grunhaus, L.J.; Zohar, J. Pindolol augmentation in treatment-resistant obsessive compulsive disorder: a double-blind placebo controlled trial. *Eur. Neuropsychopharmacol.*, **2000**, *10*(3), 165-169. [http://dx.doi.org/10.1016/S0924-977X(00)00065-1] [PMID: 10793318]

- [58] McDougle, C.J.; Epperson, C.N.; Pelton, G.H.; Wasylink, S.; Price, L.H. A double-blind, placebo-controlled study of risperidone addition in serotonin reuptake inhibitor-refractory obsessivecompulsive disorder. *Arch. Gen. Psychiatry*, **2000**, *57*(8), 794-801. [http://dx.doi.org/10.1001/archpsyc.57.8.794] [PMID: 10920469]
- [59] Geller, D.A.; Hoog, S.L.; Heiligenstein, J.H.; Ricardi, R.K.; Tamura, R.; Kluszynski, S.; Jacobson, J.G. Fluoxetine treatment for obsessive-compulsive disorder in children and adolescents: a placebo-controlled clinical trial. J. Am. Acad. Child Adolesc. Psychiatry, 2001, 40(7), 773-779. [http://dx.doi.org/10.1097/00004583-200107000-00011] [PMID: 11437015]
- [60] Montgomery, S.A.; Kasper, S.; Stein, D.J.; Bang, H.K.; Lemming, O.M. Citalopram 20 mg, 40 mg and 60 mg are all effective and well tolerated compared with placebo in obsessive-compulsive disorder. *Int. Clin. Psychopharmacol.*, 2001, 16(2), 75-86. [http://dx.doi.org/10.1097/00004850-200103000-00002] [PMID: 11236072]
- [61] Riddle, M.A.; Reeve, E.A.; Yaryura-Tobias, J.A.; Yang, H.M.; Claghorn, J.L.; Gaffney, G.; Greist, J.H.; Holland, D.; McConville, B.J.; Pigott, T.; Walkup, J.T. Fluvoxamine for children and adolescents with obsessive-compulsive disorder: a randomized, controlled, multicenter trial. J. Am. Acad. Child Adolesc. Psychiatry, 2001, 40(2), 222-229. [http://dx.doi.org/10.1097/00004583-200102000-00017] [PMID: 11211371]
- [62] Romano, S.; Goodman, W.; Tamura, R.; Gonzales, J. Long-term treatment of obsessive-compulsive disorder after an acute response: a comparison of fluoxetine versus placebo. J. Clin. Psychopharmacol., 2001, 21(1), 46-52. [http://dx.doi.org/10.1097/00004714-200102000-00009] [PMID: 11199947]
- [63] Atmaca, M.; Kuloglu, M.; Tezcan, E.; Gecici, O. Quetiapine augmentation in patients with treatment resistant obsessive-compulsive disorder: a single-blind, placebo-controlled study. *Int. Clin. Psychopharmacol.*, 2002, 17(3), 115-119. [http://dx.doi.org/10.1097/00004850-200205000-00004] [PMID: 11981352]
- [64] Greist, J.H.; Marks, I.M.; Baer, L.; Kobak, K.A.; Wenzel, K.W.; Hirsch, M.J.; Mantle, J.M.; Clary, C.M. Behavior therapy for obsessive-compulsive disorder guided by a computer or by a clinician compared with relaxation as a control. *J. Clin. Psychiatry*, 2002, 63(2), 138-145. [http://dx.doi.org/10.4088/JCP.v63n0209]
 [PMID: 11874215]
- [65] Koran, L.M.; Hackett, E.; Rubin, A.; Wolkow, R.; Robinson, D. Efficacy of sertraline in the long-term treatment of obsessivecompulsive disorder. *Am. J. Psychiatry*, **2002**, *159*(1), 88-95. [http://dx.doi.org/10.1176/appi.ajp.159.1.88] [PMID: 11772695]
- [66] Liebowitz, M.R.; Turner, S.M.; Piacentini, J.; Beidel, D.C.; Clarvit, S.R.; Davies, S.O.; Graae, F.; Jaffer, M.; Lin, S.H.; Sallee, F.R.; Schmidt, A.B.; Simpson, H.B. Fluoxetine in children and adolescents with OCD: a placebo-controlled trial. J. Am. Acad. Child Adolesc. Psychiatry, 2002, 41(12), 1431-1438. [http://dx.doi.org/10.1097/00004583-200212000-00014] [PMID: 12447029]
- [67] Geller, D.A.; Biederman, J.; Stewart, S.E.; Mullin, B.; Farrell, C.; Wagner, K.D.; Emslie, G.; Carpenter, D. Impact of comorbidity on treatment response to paroxetine in pediatric obsessive-compulsive disorder: is the use of exclusion criteria empirically supported in randomized clinical trials? *J. Child Adolesc. Psychopharmacol.*, **2003**, *13*(Suppl. 1), S19-S29. [http://dx.doi.org/10.1089/104454603322126313] [PMID: 12880497]
- [68] Hollander, E.; Kaplan, A.; Stahl, S.M. A double-blind, placebocontrolled trial of clonazepam in obsessive-compulsive disorder. *World J. Biol. Psychiatry*, 2003, 4(1), 30-34. [http://dx.doi.org/10.3109/15622970309167908] [PMID: 12582975]
- [69] Hollander, E.; Baldini Rossi, N.; Sood, E.; Pallanti, S. Risperidone augmentation in treatment-resistant obsessive-compulsive disorder: a double-blind, placebo-controlled study. *Int. J. Neuropsychopharmacol.*, 2003, 6(4), 397-401. [http://dx.doi.org/10.1017/S1461145703003730] [PMID: 14604454]

- [70] Hollander, E.; Allen, A.; Steiner, M.; Wheadon, D.E.; Oakes, R.; Burnham, D.B. Acute and long-term treatment and prevention of relapse of obsessive-compulsive disorder with paroxetine. *J. Clin. Psychiatry*, 2003, 64(9), 1113-1121. [http://dx.doi.org/10.4088/JCP.v64n0919] [PMID: 14628989]
- [71] Hollander, E.; Koran, L.M.; Goodman, W.K.; Greist, J.H.; Ninan, P.T.; Yang, H.; Li, D.; Barbato, L.M. A double-blind, placebocontrolled study of the efficacy and safety of controlled-release fluvoxamine in patients with obsessive-compulsive disorder. J. Clin. Psychiatry, 2003, 64(6), 640-647. [http://dx.doi.org/10.4088/JCP.v64n0604] [PMID: 12823077]
- Bystritsky, A.; Ackerman, D.L.; Rosen, R.M.; Vapnik, T.; Gorbis, E.; Maidment, K.M.; Saxena, S. Augmentation of serotonin reuptake inhibitors in refractory obsessive-compulsive disorder using adjunctive olanzapine: a placebo-controlled trial. *J. Clin. Psychiatry*, 2004, 65(4), 565-568. [http://dx.doi.org/10.4088/JCP.v65n0418] [PMID: 15119922]
- [73] Denys, D.; de Geus, F.; van Megen, H.J.; Westenberg, H.G. A double-blind, randomized, placebo-controlled trial of quetiapine addition in patients with obsessive-compulsive disorder refractory to serotonin reuptake inhibitors. J. Clin. Psychiatry, 2004, 65(8), 1040-1048. [http://dx.doi.org/10.4088/JCP.v65n0803] [PMID: 15323587]
- [74] Fux, M.; Benjamin, J.; Nemets, B. A placebo-controlled cross-over trial of adjunctive EPA in OCD. J. Psychiatr. Res., 2004, 38(3), 323-325. [http://dx.doi.org/10.1016/S0022-3956(03)00077-3]
 [PMID: 15003438]
- [75] Geller, D.A.; Wagner, K.D.; Emslie, G.; Murphy, T.; Carpenter, D.J.; Wetherhold, E.; Perera, P.; Machin, A.; Gardiner, C. Paroxetine treatment in children and adolescents with obsessive-compulsive disorder: a randomized, multicenter, double-blind, placebo-controlled trial. J. Am. Acad. Child Adolesc. Psychiatry, 2004, 43(11), 1387-1396. [http://dx.doi.org/10.1097/01.chi.0000138356.29099.f1] [PMID: 15502598]
- [76] Kamijima, K.; Murasaki, M.; Asai, M.; Higuchi, T.; Nakajima, T.; Taga, C.; Matsunaga, H. Paroxetine in the treatment of obsessivecompulsive disorder: randomized, double-blind, placebo-controlled study in Japanese patients. *Psychiatry Clin. Neurosci.*, 2004, 58(4), 427-433. [http://dx.doi.org/10.1111/j.1440-1819.2004.01278.x]
 [PMID: 15298657]
- [77] Shapira, N.A.; Ward, H.E.; Mandoki, M.; Murphy, T.K.; Yang, M.C.; Blier, P.; Goodman, W.K. A double-blind, placebocontrolled trial of olanzapine addition in fluoxetine-refractory obsessive-compulsive disorder. *Biol. Psychiatry*, **2004**, *55*(5), 553-555. [http://dx.doi.org/10.1016/j.biopsych.2003.11.010] [PMID: 15023585]
- [78] Cognitive-behavior therapy, sertraline, and their combination for children and adolescents with obsessive-compulsive disorder: the Pediatric OCD Treatment Study (POTS) randomized controlled trial. *JAMA*, **2004**, *292*(16), 1969-1976. [http://dx.doi.org/10.1001/jama.292.16.1969] [PMID: 15507582]
- [79] Carey, P.D.; Vythilingum, B.; Seedat, S.; Muller, J.E.; van Ameringen, M.; Stein, D.J. Quetiapine augmentation of SRIs in treatment refractory obsessive-compulsive disorder: a double-blind, randomised, placebo-controlled study [ISRCTN83050762]. BMC Psychiatry, 2005, 5, 5. [http://dx.doi.org/10.1186/1471-244X-5-5] [PMID: 15667657]
- [80] Erzegovesi, S.; Guglielmo, E.; Siliprandi, F.; Bellodi, L. Low-dose risperidone augmentation of fluvoxamine treatment in obsessive-compulsive disorder: a double-blind, placebo-controlled study. *Eur. Neuropsychopharmacol.*, 2005, 15(1), 69-74. [http://dx.doi.org/10.1016/j.euroneuro.2004.04.004] [PMID: 15572275]
- [81] Fineberg, N.A.; Sivakumaran, T.; Roberts, A.; Gale, T. Adding quetiapine to SRI in treatment-resistant obsessive-compulsive disorder: a randomized controlled treatment study. *Int. Clin. Psychopharmacol.*, **2005**, 20(4), 223-226. [http://dx.doi.org/10.1097/00004850-200507000-00005] [PMID: 15933483]
- [82] Foa, E.B.; Liebowitz, M.R.; Kozak, M.J.; Davies, S.; Campeas, R.; Franklin, M.E.; Huppert, J.D.; Kjernisted, K.; Rowan, V.; Schmidt, A.B.; Simpson, H.B.; Tu, X. Randomized, placebo-controlled trial of exposure and ritual prevention, clomipramine, and their combination in the treatment of obsessive-compulsive disorder.

Am. J. Psychiatry, **2005**, *162*(1), 151-161. [http://dx.doi.org/10.1176/appi.ajp.162.1.151] [PMID: 15625214]

- [83] Kobak, K.A.; Taylor, L.V.; Bystritsky, A.; Kohlenberg, C.J.; Greist, J.H.; Tucker, P.; Warner, G.; Futterer, R.; Vapnik, T. St John's wort versus placebo in obsessive-compulsive disorder: results from a double-blind study. *Int. Clin. Psychopharmacol.*, 2005, 20(6), 299-304. [http://dx.doi.org/10.1097/00004850-200511000-00003] [PMID: 16192837]
- [84] Koran, L.M.; Aboujaoude, E.; Bullock, K.D.; Franz, B.; Gamel, N.; Elliott, M. Double-blind treatment with oral morphine in treatmentresistant obsessive-compulsive disorder. J. Clin. Psychiatry, 2005, 66(3), 353-359. [http://dx.doi.org/10.4088/JCP.v66n0312] [PMID: 15766302]
- [85] Li, X.; May, R.S.; Tolbert, L.C.; Jackson, W.T.; Flournoy, J.M.; Baxter, L.R. Risperidone and haloperidol augmentation of serotonin reuptake inhibitors in refractory obsessive-compulsive disorder: a crossover study. J. Clin. Psychiatry, 2005, 66(6), 736-743. [http://dx.doi.org/10.4088/JCP.v66n0610] [PMID: 15960567]
- [86] Nakatani, E.; Nakagawa, A.; Nakao, T.; Yoshizato, C.; Nabeyama, M.; Kudo, A.; Isomura, K.; Kato, N.; Yoshioka, K.; Kawamoto, M. A randomized controlled trial of Japanese patients with obsessivecompulsive disorder--effectiveness of behavior therapy and fluvoxamine. *Psychother. Psychosom.*, **2005**, *74*(5), 269-276. [http://dx.doi.org/10.1159/000086317] [PMID: 16088264]
- [87] Buchsbaum, M.S.; Hollander, E.; Pallanti, S.; Baldini Rossi, N.; Platholi, J.; Newmark, R.; Bloom, R.; Sood, E. Positron emission tomography imaging of risperidone augmentation in serotonin reuptake inhibitor-refractory patients. *Neuropsychobiology*, 2006, 53(3), 157-168. [http://dx.doi.org/10.1159/000093342] [PMID: 16707915]
- [88] O'Connor, K.P.; Aardema, F.; Robillard, S.; Guay, S.; Pélissier, M.C.; Todorov, C.; Borgeat, F.; Leblanc, V.; Grenier, S.; Doucet, P. Cognitive behaviour therapy and medication in the treatment of obsessive-compulsive disorder. *Acta Psychiatr. Scand.*, 2006, *113*(5), 408-419. [http://dx.doi.org/10.1111/j.1600-0447.2006.00767.x] [PMID: 16603032]
- [89] Fineberg, N.A.; Tonnoir, B.; Lemming, O.; Stein, D.J. Escitalopram prevents relapse of obsessive-compulsive disorder. *Eur. Neuropsychopharmacol.*, 2007, 17(6-7), 430-439.
 [http://dx.doi.org/10.1016/j.euroneuro.2006.11.005] [PMID: 17240120]
- [90] Stein, D.J.; Andersen, E.W.; Tonnoir, B.; Fineberg, N. Escitalopram in obsessive-compulsive disorder: a randomized, placebo-controlled, paroxetine-referenced, fixed-dose, 24-week study. *Curr. Med. Res. Opin.*, 2007, 23(4), 701-711. [http://dx.doi.org/10.1185/030079907X178838] [PMID: 17407626]
- [91] Amiaz, R.; Fostick, L.; Gershon, A.; Zohar, J. Naltrexone augmentation in OCD: a double-blind placebo-controlled cross-over study. *Eur. Neuropsychopharmacol.*, 2008, 18(6), 455-461.
 [http://dx.doi.org/10.1016/j.euroneuro.2008.01.006] [PMID: 18353618]
- [92] Kordon, A.; Wahl, K.; Koch, N.; Zurowski, B.; Anlauf, M.; Vielhaber, K.; Kahl, K.G.; Broocks, A.; Voderholzer, U.; Hohagen, F. Quetiapine addition to serotonin reuptake inhibitors in patients with severe obsessive-compulsive disorder: a double-blind, randomized, placebo-controlled study. J. Clin. Psychopharmacol., 2008, 28(5), 550-554. [http://dx.doi.org/10.1097/JCP.0b013e318185e735] [PMID: 18794652]
- [93] Greenberg, W.M.; Benedict, M.M.; Doerfer, J.; Perrin, M.; Panek, L.; Cleveland, W.L.; Javitt, D.C. Adjunctive glycine in the treatment of obsessive-compulsive disorder in adults. J. Psychiatr. Res., 2009, 43(6), 664-670.
 [http://dx.doi.org/10.1016/j.jpsychires.2008.10.007] [PMID: 19046587]
- [94] Sayyah, M.; Boostani, H.; Pakseresht, S.; Malaieri, A. Efficacy of aqueous extract of *Echium amoenum* in treatment of obsessive-compulsive disorder. *Prog. Neuropsychopharmacol. Biol. Psychiatry*, 2009, 33(8), 1513-1516.
 [http://dx.doi.org/10.1016/j.pnpbp.2009.08.021] [PMID: 19737592]
- [95] Mowla, A.; Khajeian, A.M.; Sahraian, A.; Chohedri, A.H.; Kashkoli, F. Topiramate augmentation in resistant OCD: a doubleblind placebo-controlled clinical trial. CNS Spectr., 2010, 15(11),

613-617. [http://dx.doi.org/10.1017/S1092852912000065] [PMID: 24726048]

- [96] Storch, E.A.; Murphy, T.K.; Goodman, W.K.; Geffken, G.R.; Lewin, A.B.; Henin, A.; Micco, J.A.; Sprich, S.; Wilhelm, S.; Bengtson, M.; Geller, D.A. A preliminary study of D-cycloserine augmentation of cognitive-behavioral therapy in pediatric obsessive-compulsive disorder. *Biol. Psychiatry*, **2010**, *68*(11), 1073-1076. [http://dx.doi.org/10.1016/j.biopsych.2010.07.015] [PMID: 20817153]
- [97] Sayyah, M.; Boostani, H.; Pakseresht, S.; Malayeri, A. A preliminary randomized double-blind clinical trial on the efficacy of celecoxib as an adjunct in the treatment of obsessive-compulsive disorder. *Psychiatry Res.*, 2011, 189(3), 403-406. [http://dx.doi.org/10.1016/j.psychres.2011.01.019] [PMID: 21329988]
- [98] Muscatello, M.R.; Bruno, A.; Pandolfo, G.; Micò, U.; Scimeca, G.; Romeo, V.M.; Santoro, V.; Settineri, S.; Spina, E.; Zoccali, R.A. Effect of aripiprazole augmentation of serotonin reuptake inhibitors or clomipramine in treatment-resistant obsessive-compulsive disorder: a double-blind, placebo-controlled study. J. Clin. Psychopharmacol., 2011, 31(2), 174-179. [http://dx.doi.org/10.1097/JCP.0b013e31820e3db6] [PMID: 21346614]
- [99] Berlin, H.A.; Koran, L.M.; Jenike, M.A.; Shapira, N.A.; Chaplin, W.; Pallanti, S.; Hollander, E. Double-blind, placebo-controlled trial of topiramate augmentation in treatment-resistant obsessivecompulsive disorder. J. Clin. Psychiatry, 2011, 72(5), 716-721. [http://dx.doi.org/10.4088/JCP.09m05266gre] [PMID: 20816027]
- [100] Pakseresht, S., Boostani, H.; Sayyah, M. Extract of valerian root (Valeriana officinalis L.) vs. placebo in treatment of obsessivecompulsive disorder: a randomized double-blind study. J. Complement. Integr. Med., 2011, 8(1), 32. [http://dx.doi.org/10.2202/1553-3840.1465] [PMID: 22718671]
- Sayyah, M.; Olapour, A.; Saeedabad, Ys.; Yazdan, P.R.; Malayeri, A. Evaluation of oral zinc sulfate effect on obsessive-compulsive disorder: a randomized placebo-controlled clinical trial. *Nutrition*, **2012**, 28(9), 892-895. [http://dx.doi.org/10.1016/j.nut.2011.11.027]
 [PMID: 22465904]
- [102] Sayyah, M.; Sayyah, M.; Boostani, H.; Ghaffari, S.M.; Hoseini, A. Effects of aripiprazole augmentation in treatment-resistant obsessive-compulsive disorder (a double blind clinical trial). *Depress. Anxiety*, **2012**, *29*(10), 850-854. [http://dx.doi.org/10.1002/da.21996] [PMID: 22933237]
- [103] Afshar, H.; Roohafza, H.; Mohammad-Beigi, H.; Haghighi, M.; Jahangard, L.; Shokouh, P.; Sadeghi, M.; Hafezian, H. Nacetylcysteine add-on treatment in refractory obsessive-compulsive disorder: a randomized, double-blind, placebo-controlled trial. J. Clin. Psychopharmacol., 2012, 32(6), 797-803. [http://dx.doi.org/10.1097/JCP.0b013e318272677d] [PMID: 23131885]
- [104] Bruno, A.; Micò, U.; Pandolfo, G.; Mallamace, D.; Abenavoli, E.; Di Nardo, F.; D'Arrigo, C.; Spina, E.; Zoccali, R.A.; Muscatello, M.R. Lamotrigine augmentation of serotonin reuptake inhibitors in treatment-resistant obsessive-compulsive disorder: a double-blind, placebo-controlled study. J. Psychopharmacol. (Oxford), 2012, 26(11), 1456-1462. [http://dx.doi.org/10.1177/0269881111431751] [PMID: 22351381]
- [105] Askari, N.; Moin, M.; Sanati, M.; Tajdini, M.; Hosseini, S.M.; Modabbernia, A.; Najand, B.; Salimi, S.; Tabrizi, M.; Ashrafi, M.; Hajiaghaee, R.; Akhondzadeh, S. Granisetron adjunct to fluvoxamine for moderate to severe obsessive-compulsive disorder: a randomized, double-blind, placebo-controlled trial. *CNS Drugs*, **2012**, *26*(10), 883-892. [http://dx.doi.org/10.2165/11635850-000000000-00000] [PMID: 22873680]
- [106] Ghaleiha, A.; Entezari, N.; Modabbernia, A.; Najand, B.; Askari, N.; Tabrizi, M.; Ashrafi, M.; Hajiaghaee, R.; Akhondzadeh, S. Memantine add-on in moderate to severe obsessive-compulsive disorder: randomized double-blind placebo-controlled study. J. Psychiatr. Res., 2013, 47(2), 175-180. [http://dx.doi.org/10.1016/j.jpsychires.2012.09.015] [PMID: 23063327]
- [107] Storch, E.A.; Bussing, R.; Small, B.J.; Geffken, G.R.; McNamara, J.P.; Rahman, O.; Lewin, A.B.; Garvan, C.S.; Goodman, W.K.; Murphy, T.K. Randomized, placebo-controlled trial of cognitivebehavioral therapy alone or combined with sertraline in the

treatment of pediatric obsessive-compulsive disorder. *Behav. Res. Ther.*, **2013**, *51*(12), 823-829. [http://dx.doi.org/10.1016/j.brat.2013.09.007] [PMID: 24184429]

- [108] Haghighi, M.; Jahangard, L.; Mohammad-Beigi, H.; Bajoghli, H.; Hafezian, H.; Rahimi, A.; Afshar, H.; Holsboer-Trachsler, E.; Brand, S. In a double-blind, randomized and placebo-controlled trial, adjuvant memantine improved symptoms in inpatients suffering from refractory obsessive-compulsive disorders (OCD). *Psychopharmacology (Berl.)*, **2013**, *228*(4), 633-640. [http://dx.doi.org/10.1007/s00213-013-3067-z] [PMID: 23525525]
- [109] Štořch, E.A.; Goddard, A.W.; Grant, J.E.; De Nadai, A.S.; Goodman, W.K.; Mutch, P.J.; Medlock, C.; Odlaug, B.; McDougle, C.J.; Murphy, T.K. Double-blind, placebo-controlled, pilot trial of paliperidone augmentation in serotonin reuptake inhibitor-resistant obsessive-compulsive disorder. J. Clin. Psychiatry, 2013, 74(6), e527-e532. [http://dx.doi.org/10.4088/JCP.12m08278] [PMID: 23842022]
- [110] Rodriguez, C.I.; Kegeles, L.S.; Levinson, A.; Feng, T.; Marcus, S.M.; Vermes, D.; Flood, P.; Simpson, H.B. Randomized controlled crossover trial of ketamine in obsessive-compulsive disorder: proof-of-concept. *Neuropsychopharmacology*, **2013**, *38*(12), 2475-2483. [http://dx.doi.org/10.1038/npp.2013.150] [PMID: 23783065]
- Simpson, H.B.; Foa, E.B.; Liebowitz, M.R.; Huppert, J.D.; Cahill, S.; Maher, M.J.; McLean, C.P.; Bender, J., Jr; Marcus, S.M.; Williams, M.T.; Weaver, J.; Vermes, D.; Van Meter, P.E.; Rodriguez, C.I.; Powers, M.; Pinto, A.; Imms, P.; Hahn, C.G.; Campeas, R. Cognitive-behavioral therapy vs. risperidone for augmenting serotonin reuptake inhibitors in obsessive-compulsive disorder: a randomized clinical trial. JAMA Psychiatry, 2013, 70(11), 1190-1199. [http://dx.doi.org/10.1001/jamapsychiatry.2013.1932] [PMID: 24026523]
- [112] Park, J.M.; Small, B.J.; Geller, D.A.; Murphy, T.K.; Lewin, A.B.; Storch, E.A. Does D-cycloserine augmentation of CBT improve therapeutic homework compliance for pediatric obsessivecompulsive disorder? J. Child Fam. Stud., 2014, 23(5), 863-871. [http://dx.doi.org/10.1007/s10826-013-9742-1] [PMID: 24999301]
- [113] Grant, P.J.; Joseph, L.A.; Farmer, C.A.; Luckenbaugh, D.A.; Lougee, L.C.; Zarate, C.A., Jr; Swedo, S.E. 12-week, placebocontrolled trial of add-on riluzole in the treatment of childhoodonset obsessive-compulsive disorder. *Neuropsychopharmacology*, **2014**, *39*(6), 1453-1459. [http://dx.doi.org/10.1038/npp.2013.343] [PMID: 24356715]
- [114] Mataix-Cols, D.; Turner, C.; Monzani, B.; Isomura, K.; Murphy, C.; Krebs, G.; Heyman, I. Cognitive-behavioural therapy with postsession D-cycloserine augmentation for paediatric obsessive-compulsive disorder: pilot randomised controlled trial. *Br. J. Psychiatry*, 2014, 204(1), 77-78.
 [http://dx.doi.org/10.1192/bjp.bp.113.126284] [PMID: 24262813]
- [115] Afshar, H.; Akuchekian, S.; Mahaky, B.; Zarean, E. Topiramate augmentation in refractory obsessive-compulsive disorder: A randomized, double-blind, placebo-controlled trial. J. Res. Med. Sci., 2014, 19(10), 976-981. [PMID: 25538783]
- [116] Sarris, J.; Oliver, G.; Camfield, D.A.; Dean, O.M.; Dowling, N.; Smith, D.J.; Murphy, J.; Menon, R.; Berk, M.; Blair-West, S.; Ng, C.H. N-acetyl cysteine (NAC) in the treatment of obsessivecompulsive disorder: a 16-week, double-blind, randomised, placebo-controlled study. CNS Drugs, 2015, 29(9), 801-809. [http://dx.doi.org/10.1007/s40263-015-0272-9] [PMID: 26374743]
- [117] Pittenger, C.; Bloch, M.H.; Wasylink, S.; Billingslea, E.; Simpson, R.; Jakubovski, E.; Kelmendi, B.; Sanacora, G.; Coric, V. Riluzole augmentation in treatment-refractory obsessive-compulsive disorder: a pilot randomized placebo-controlled trial. J. Clin. Psychiatry, 2015, 76(8), 1075-1084.
 [http://dx.doi.org/10.4088/JCP.14m09123] [PMID: 26214725]
- [118] Jahanbakhsh, S.P.; Manteghi, A.A.; Emami, S.A.; Mahyari, S.; Gholampour, B.; Mohammadpour, A.H.; Sahebkar, A. Evaluation of the efficacy of *Withania somnifera* (Ashwagandha) root extract in patients with obsessive-compulsive disorder: A randomized double-blind placebo-controlled trial. *Complement. Ther. Med.*, **2016**, *27*, 25-29. [http://dx.doi.org/10.1016/j.ctim.2016.03.018] [PMID: 27515872]
- [119] Paydary, K.; Akamaloo, A.; Ahmadipour, A.; Pishgar, F.; Emamzadehfard, S.; Akhondzadeh, S. N-acetylcysteine

augmentation therapy for moderate-to-severe obsessive-compulsive disorder: randomized, double-blind, placebo-controlled trial. J. Clin. Pharm. Ther., **2016**, 41(2), 214-219. [http://dx.doi.org/10.1111/jcpt.12370] [PMID: 26931055]

- [120] Khalkhali, M.; Aram, S.; Zarrabi, H.; Kafie, M.; Heidarzadeh, A. Lamotrigine augmentation versus placebo in serotonin reuptake inhibitors-resistant obsessive-compulsive disorder: a randomized controlled trial. *Iran. J. Psychiatry*, **2016**, *11*(2), 104-114. [PMID: 27437007]
- [121] Rutrick, D.; Stein, D.J.; Subramanian, G.; Smith, B.; Fava, M.; Hasler, G.; Cha, J.H.; Gasparini, F.; Donchev, T.; Ocwieja, M.; Johns, D.; Gomez-Mancilla, B. Mavoglurant augmentation in OCD patients resistant to selective serotonin reuptake inhibitors: a proofof-concept, randomized, placebo-controlled, phase 2 study. *Adv. Ther.*, **2017**, *34*(2), 524-541. [http://dx.doi.org/10.1007/s12325-016-0468-5] [PMID: 28044255]
- [122] Feng, B.; Zhang, Z.J.; Zhu, R.M.; Yuan, G.Z.; Luo, L.Y.; McAlonan, G.M.; Xu, F.Z.; Chen, J.; Liu, L.Y.; Lv, Y.Y.; Wong, H.K.; Zhang, Y.; Zhu, L.X. Transcutaneous electrical acupoint stimulation as an adjunct therapy for obsessive-compulsive disorder: A randomized controlled study. *J. Psychiatr. Res.*, **2016**, *80*, 30-37. [http://dx.doi.org/10.1016/j.jpsychires.2016.05.015] [PMID: 27281260]
- [123] de Leeuw, A.S.; van Megen, H.J.; Kahn, R.S.; Westenberg, H.G. d-cycloserine addition to exposure sessions in the treatment of patients with obsessive-compulsive disorder. *Eur. Psychiatry*, 2017, 40, 38-44. [http://dx.doi.org/10.1016/j.eurpsy.2016.06.011]
 [PMID: 27837671]
- [124] Asnaani, A.; Kaczkurkin, A.N.; Alpert, E.; McLean, C.P.; Simpson, H.B.; Foa, E.B. The effect of treatment on quality of life and functioning in OCD. *Compr. Psychiatry*, 2017, 73, 7-14. [http://dx.doi.org/10.1016/j.comppsych.2016.10.004] [PMID: 27838572]
- [125] Ahmadpanah, M.; Reihani, A.; Ghaleiha, A.; Soltanian, A.; Haghighi, M.; Jahangard, L.; Sadeghi Bahmani, D.; Holsboer-Trachsler, E.; Brand, S. Buprenorphine augmentation improved symptoms of OCD, compared to placebo - Results from a randomized, double-blind and placebo-controlled clinical trial. J. Psychiatr. Res., 2017, 94, 23-28. [http://dx.doi.org/10.1016/j.jpsychires.2017.06.004] [PMID: 28647677]
- [126] Modarresi, A.; Sayyah, M.; Razooghi, S.; Eslami, K.; Javadi, M.; Kouti, L. Memantine augmentation improves symptoms in serotonin reuptake inhibitor-refractory obsessive-compulsive disorder: a randomized controlled trial. *Pharmacopsychiatry*, 2017, 2018, 51(6), 263-269 [http://dx.doi.org/10.1055/s-0043-120268] [PMID: 29100251]
- [127] Costa, D.L.C.; Diniz, J.B.; Requena, G.; Joaquim, M.A.; Pittenger, C.; Bloch, M.H.; Miguel, E.C.; Shavitt, R.G. Randomized, doubleblind, placebo-controlled trial of N-acetylcysteine augmentation for treatment-resistant obsessive-compulsive disorder. J. Clin. Psychiatry, 2017, 78(7), e766-e773. [http://dx.doi.org/10.4088/JCP.16m11101] [PMID: 28617566]
- [128] Arabzadeh, S.; Shahhossenie, M.; Mesgarpour, B.; Rezaei, F.; Shalbafan, M.R.; Ghiasi, Z.; Akhondzadeh, S. L-carnosine as an adjuvant to fluvoxamine in treatment of obsessive compulsive disorder: A randomized double-blind study. *Hum. Psychopharmacol.*, **2017**, *32*(4), [http://dx.doi.org/10.1002/hup.2584] [PMID: 28485008]
- [129] Alphs, L.; Benedetti, F.; Fleischhacker, W.W.; Kane, J.M. Placeborelated effects in clinical trials in schizophrenia: what is driving this phenomenon and what can be done to minimize it? *Int. J. Neuropsychopharmacol.*, 2012, 15(7), 1003-1014.
 [http://dx.doi.org/10.1017/S1461145711001738] [PMID: 22217384]
- [130] Khan, A.; Fahl, M.K.; Faucett, J.; Khan, S.S.; Brown, W.A. Has the rising placebo response impacted antidepressant clinical trial outcome? Data from the US Food and Drug Administration 1987-2013. World Psychiatry, 2017, 16(2), 181-192. [http://dx.doi.org/10.1002/wps.20421] [PMID: 28498591]
- Khan, A.; Fahl, M.K.; Schilling, J.; Brown, W.A. Does the rising placebo response impact antihypertensive clinical trial outcomes? An analysis of data from the Food and Drug Administration 1990-2016. *PLoS One*, **2018**, *13*(2), e0193043.

[http://dx.doi.org/10.1371/journal.pone.0193043] [PMID: 29489874]

- [132] Rutherford, B.R.; Pott, E.; Tandler, J.M.; Wall, M.M.; Roose, S.P.; Lieberman, J.A. Placebo response in antipsychotic clinical trials: a meta-analysis. *JAMA Psychiatry*, **2014**, *71*(12), 1409-1421.
 [http://dx.doi.org/10.1001/jamapsychiatry.2014.1319] [PMID: 25321611]
- [133] Sugarman, M.A.; Kirsch, I.; Huppert, J.D. Obsessive-compulsive disorder has a reduced placebo (and antidepressant) response compared to other anxiety disorders: A meta-analysis. J. Affect. Disord., 2017, 218, 217-226. [http://dx.doi.org/10.1016/j.jad.2017.04.068] [PMID: 28477500]
- [134] Kasper, S.; Dold, M. Factors contributing to the increasing placebo response in antidepressant trials. *World Psychiatry*, **2015**, *14*(3), 304-306. [http://dx.doi.org/10.1002/wps.20245] [PMID: 26407782]
- [135] Khin, N.A.; Chen, Y.F.; Yang, Y.; Yang, P.; Laughren, T.P. Exploratory analyses of efficacy data from schizophrenia trials in support of new drug applications submitted to the US Food and Drug Administration. J. Clin. Psychiatry, 2012, 73(6), 856-864. [http://dx.doi.org/10.4088/JCP.11r07539] [PMID: 22687813]
- [136] Tuttle, A.H.; Tohyama, S.; Ramsay, T.; Kimmelman, J.; Schweinhardt, P.; Bennett, G.J.; Mogil, J.S. Increasing placebo responses over time in U.S. clinical trials of neuropathic pain. *Pain*, **2015**, *156*(12), 2616-2626.
 [http://dx.doi.org/10.1097/j.pain.00000000000333] [PMID: 26307858]
- [137] Mancini, M.; Wade, A.G.; Perugi, G.; Lenox-Smith, A.; Schacht, A. Impact of patient selection and study characteristics on signal detection in placebo-controlled trials with antidepressants. J. Psychiatr. Res., 2014, 51, 21-29. [http://dx.doi.org/10.1016/j.jpsychires.2014.01.001] [PMID: 24462042]
- Perugi, G.; Akiskal, H.S.; Gemignani, A.; Pfanner, C.; Presta, S.; Milanfranchi, A.; Lensi, P.; Ravagli, S.; Maremmani, I.; Cassano, G.B. Episodic course in obsessive-compulsive disorder. *Eur. Arch. Psychiatry Clin. Neurosci.*, **1998**, *248*(5), 240-244. [http://dx.doi.org/10.1007/s004060050044] [PMID: 9840370]
- [139] Lin, H.; Yeh, C.B.; Peterson, B.S.; Scahill, L.; Grantz, H.; Findley, D.B.; Katsovich, L.; Otka, J.; Lombroso, P.J.; King, R.A.; Leckman, J.F. Assessment of symptom exacerbations in a longitudinal study of children with Tourette's syndrome or obsessive-compulsive disorder. J. Am. Acad. Child Adolesc. Psychiatry, 2002, 41(9), 1070-1077.

[http://dx.doi.org/10.1097/00004583-200209000-00007] [PMID: 12218428]

- [140] Hróbjartsson, A.; Gøtzsche, P.C. Is the placebo powerless? An analysis of clinical trials comparing placebo with no treatment. N. Engl. J. Med., 2001, 344(21), 1594-1602.
 [http://dx.doi.org/10.1056/NEJM200105243442106] [PMID: 11372012]
- [141] Busch, A.B.; He, Y.; Zelevinsky, K.; O'Malley, A.J. Predicting Participation in Psychiatric Randomized Controlled Trials: Insights From the STEP-BD. *Psychiatr. Serv.*, **2015**, *66*(8), 817-823. [http://dx.doi.org/10.1176/appi.ps.201300557] [PMID: 25828873]
- [142] American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, 5th; (DSM-5®). Arlington, VA: American Psychiatric Publishing, Inc, 2013.
- [143] American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, 4th; -Text Revision, (DSM-IV-TR™). Washington, DC: American Psychiatric Association, 2000.
- [144] Fountoulakis, K.N.; McIntyre, R.S.; Carvalho, A.F. From randomized controlled trials of antidepressant drugs to the metaanalytic synthesis of evidence: methodological aspects lead to discrepant findings. *Curr. Neuropharmacol.*, **2015**, *13*(5), 605-615. [http://dx.doi.org/10.2174/1570159X13666150630174343] [PMID: 26467410]
- [145] Kaptchuk, T.J.; Stason, W.B.; Davis, R.B.; Legedza, A.R.; Schnyer, R.N.; Kerr, C.E.; Stone, D.A.; Nam, B.H.; Kirsch, I.; Goldman, R.H. Sham device v inert pill: randomised controlled trial of two placebo treatments. *BMJ*, **2006**, *332*(7538), 391-397. [http://dx.doi.org/10.1136/bmj.38726.603310.55] [PMID: 16452103]
- [146] Wartolowska, K.; Judge, A.; Hopewell, S.; Collins, G.S.; Dean, B.J.; Rombach, I.; Brindley, D.; Savulescu, J.; Beard, D.J.; Carr, A.J. Use of placebo controls in the evaluation of surgery: systematic review. *BMJ*, **2014**, *348*, g3253. [http://dx.doi.org/10.1136/bmj.g3253] [PMID: 24850821]
- [147] Kaptchuk, T.J.; Goldman, P.; Stone, D.A.; Stason, W.B. Do medical devices have enhanced placebo effects? J. Clin. Epidemiol., 2000, 53(8), 786-792. [http://dx.doi.org/10.1016/S0895-4356(00)00206-7] [PMID: 10942860]
- [148] Brunoni, A.R.; Lopes, M.; Kaptchuk, T.J.; Fregni, F. Placebo response of non-pharmacological and pharmacological trials in major depression: a systematic review and meta-analysis. *PLoS One*, **2009**, *4*(3), e4824. [http://dx.doi.org/10.1371/journal.pone.0004824] [PMID: 19293925]